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Tunneling anisotropic spin galvanic effect
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We show that pure spin injection from a magnetic electrode into an inversion symmetry-broken system
composed of a tunnel barrier and a metallic region generates a transverse charge current. Such a tunneling spin
galvanic conversion is robust to disorder and nonlocal, i.e., injection and detection contacts do not coincide, and
is strongly anisotropic whenever the internal spin-orbit field has a nontrivial angular dependence. The anisotropy
shows up in linear response, contrary to what happens in bulk conversion setups lacking tunneling elements.
This is particularly relevant for spin-charge conversion at oxide interfaces, where both the tunnel barrier and the
receiving low-dimensional metallic system host effective spin-orbit fields with complex angular symmetries.
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Spin-orbit coupling (SOC) in metallic systems offers many
possibilities for converting spin signals into charge ones and
vice versa [1,2]. In particular, charge currents may be gener-
ated by pure spin injection via the spin galvanic effect (SGE)
[3–7]—the conversion of a nonequilibrium spin accumulation
into a charge current—and/or the inverse spin Hall effect
(ISHE) [2,8–11]—the conversion of a pure spin flow into a
transverse charge flow. The working principle of the typical
spin pumping setup, sketched in Fig. 1, relies on both phe-
nomena: a magnetic electrode is driven by microwaves, and
its precessing magnetization injects angular momentum–but
on average no charges–into an underlying metallic system,
where SOC converts it into a measurable electric voltage.
Broadly speaking, there are two scenarios: (i) The receiving
system is three-dimensional (3D); therefore, pumping results
in a pure spin current flowing away from the magnet. This is
the case for popular metal-based setups, where the bulk ISHE
dominates spin-charge conversion [10–14]. (ii) The receiver
has no thickness through which an injected spin current may
flow; e.g., it is a two-dimensional electron gas (2DEG) at an
interface or on the surface of a 3D topological insulator. In
this case the absorbed angular momentum builds up a spin
accumulation, which is converted into a voltage by the SGE
[15–17]. If the importance of interfacial SOC à la Rashba
[18,19] is agreed upon, the situation is in practice not always
that clear-cut. This leaves room for debate concerning the
dominance of specific conversion channels, as both bulk and
interfacial contributions may exist and compete [2,19–22].

A further layer of complexity is added by the injection pro-
cess itself, which happens through an inversion-asymmetric
magnetic tunnel junction. Due to the interplay of magnetism
and interfacial SOC from inversion symmetry breaking,
junctions of these sort host a plethora of anisotropic mag-
netoelectric effects [20,23,24]. Recently, some tunneling spin
Hall [25] and anomalous Hall effects were proposed [25,26],
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arising from under-the-barrier transmission, which is not only
spin-sensitive but also skewed in momentum space [27].
Skewedness actually appears also if SOC is present only on
the injecting/receiving metallic sides [28–30], rather than
only under the barrier [25]. As emphasized in Ref. [30],
skewed injection is crucial in a novel spin-charge conversion
platform rapidly on the rise: that of high-quality 2DEGs at
oxide interfaces [31], whose fundamental and technological
potential is beyond question [32–34]. Such systems can be
easily manipulated via gates and are intrinsically inversion
asymmetric, with more or less complex forms of Rashba SOC
on the 2DEG side [33,35,36]. Closely related systems also
host various exotic transport phenomena [34,37,38].

A recent experiment showed that spin-charge conversion
in the 2DEG at the LaAlO3|SrTiO3 (LAO|STO) interface is
indeed strongly anisotropic, carrying imprints of the spin tex-
ture of the effective Rashba field [39,40]. This contrasts with
the known fact that the Onsager reciprocal phenomenon—the
generation of a nonequilibrium spin accumulation by driving
a current—is isotropic in the very same kind of systems,
independently of the Rashba texture [41]. Furthermore, at an
oxide interface Rashba SOC is present not only on the 2DEG
side but also in the barrier separating it from the spin pumper
[39], and both may contribute to spin-charge (charge-spin)
conversion. Given the context, our work addresses two central
questions.

(i) How can spin-orbit coupling generate an anisotropic
transverse charge current when a tunnel barrier is purely spin-
biased, i.e., when only angular momentum but no net charge
flows through the barrier itself? The goal is to do for the SGE
what was done for the anomalous Hall [25,26] and spin Hall
effects [25], when they were generalized to include tunneling
[42]. Since the three effects make up the family of the “spin
Hall effects” [43], our work closes the circle.

(ii) What is the Onsager reciprocal observable of such a
tunneling spin galvanic current?

To answer these questions we build a theory framework
describing spin-charge conversion in inversion-symmetry-
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FIG. 1. Spin pumping setup. The top magnetic (M ) and two left
(L) and right (R) normal electrodes are connected to a scattering
region S marked by the red dashed line. S consists of a tunnel barrier
(gray) on top of a metallic layer (orange). Inversion symmetry is
broken along z, either within the barrier, in the underlying layer,
or in both, yielding a SOC field à la Rashba. The M electrode is
driven and can inject/absorb spins but no charges (open circuit). The
spin-charge conversion voltage is measured between the L and R
electrodes (closed circuit) as a function of n0(θ, φ), i.e., the equi-
librium direction of the magnetization in the absence of driving.

broken multiterminal setups, in which a driven magnetic
electrode acts as a pure spin injector. Onsager reciprocity is
fulfilled by construction. The theory also treats tunnel and
receiving elements on the same footing, thus including SOC
and magnetism in either or both. Motivated by a recent ex-
periment, we apply the general theory to a model system of
an oxide interface junction. In so doing we identify a spin-
charge conversion channel which mixes skew-tunneling and
standard SGE physics, and which we refer to in the following
as “tunneling anisotropic SGE” [see Eq. (2)]. Simulations in
disordered samples show that the phenomenon is robust with
respect to scattering.

The proposed effect should appear in any magnetic tun-
nel junction with broken inversion symmetry under a spin
bias, since it works on the general principles sketched in
Fig. 2: Mott skew scattering results from spin-momentum
correlations induced by SOC when electrons impinge on
impurities [8]. Similar correlations appear if electrons cross
any scattering region with SOC, e.g., by tunneling through
a spin-orbit-coupled barrier [24–26] or by entering from or
landing into a region with SOC [28–30], leading to various
spin-charge conversion channels. (a) SOC is present only in
the barrier, where a tunneling ISHE takes place: the result-

FIG. 2. Inversion symmetry-broken magnetic tunnel junction un-
der a pure spin bias (same color code from Fig. 1). The black dotted
lines mark the electrochemical potential μL,σ = μL,−σ = μR,σ =
μR,−σ = μ + δμ of the side electrodes, which floats to ensure overall
charge neutrality.

ing skewed populations of both spin-degenerate bands yield
each a transverse charge current. Since SOC is absent from
the receiving metal, the nonequilibrium spin accumulation
induced by pumping is not converted into a current; i.e.,
there is no standard SGE on the receiving side. (b) SOC
is present only on the receiving metallic side, resulting in
two SOC-split (Rashba) bands. Skewed injection takes place
at the exit of the barrier, causing an asymmetric population
of both bands, each yielding a current similarly to case (a).
Such a skew-tunneling-induced effect is, however, not all: the
states are coupled by scattering according to standard SGE
physics [3–5,44], which now contributes to the overall SGE of
the junction. In a general inversion-asymmetric junction both
(a) and (b) mechanisms are present and responsible for the
“tunneling anisotropic SGE.”

Steady-state transport theory. Without loss of generality we
first focus on the essentials and consider the three-terminal
system from Fig. 1. Since we are interested in the DC out-
put of the setup, we reformulate the time-dependent spin
pumping problem as an effective steady-state problem. This
substantial simplification allows us to use time-independent
scattering theory—much simpler and numerically cheaper
than any time-dependent approach.

The magnet hosts free electrons whose spin σ cou-
ples to the magnetization via standard s-d exchange Hxc =
−(�xc/2)n(θ, φ) · σ, |n| = 1. The magnetization angles θ

and φ are defined as usual (see Fig. 1). Under driving the
magnetization precesses, n → n(t ), producing in the mag-
net a nonequilibrium spin polarization (density), δs(t ) =
h̄2N0/2[n × ṅ − (h̄/�xcτs)ṅ], with N0 being the density of
states per spin and unit volume at the Fermi energy, and τs

being the spin relaxation time. Such spin polarization has a
steady-state component, δs = h̄2N0/2[n × ṅ]. The latter can
be used to define an effective spin electrochemical potential
proportional to the driving frequency ω [44,45], h̄ n × ṅ ≡
δμs. The spin pumper thus acts as a magnetic electrode under
a pure steady-state spin bias—a spin bias in the absence of
any electric one. It is easy to see that δμs is parallel to the (ar-
bitrary) equilibrium direction n0 of the magnetization, since
misaligned spins relax too fast to allow any buildup [44,45].
We thus have δμs = δμ

↑
M − δμ

↓
M , where δμσ

M, σ =↑,↓ is the
deviation from equilibrium of the electrochemical potential
for n0-polarized majority/minority electrons. The σ -polarized
currents flowing into/out of the three-terminal setup of Fig. 1
are written in the Landauer-Büttiker form following Ref. [46]:

Iσ
α = e

h

∑
β,σ ′=↑↓

∫
dε

[
f
(
ε, μσ

α

) − f
(
ε, μσ ′

β

)]
T σσ ′

αβ (ε). (1)

Here T σσ ′
αβ is the transmission probability from lead β

with spin σ ′ to lead α with spin σ , and f (ε, μ) =
1/[1 + e(ε−μ)/(kBT )] is the Fermi function, with T being
the (uniform) temperature and kB being the Boltzmann
constant. In our configuration the left and right (α = L
and R) normal electrodes are at the same electrochemical
potential μσ

L = μσ̄
L = μσ

R = μσ̄
R ≡ μ + δμ, with σ̄ ≡ −σ ,

while in the magnetic (α = M) terminal μσ
M = μ + δμσ

M .
Linear response (small δμ, δμσ

M) yields in the normal
electrode Iσ

α = ∑
σ ′[(δμσ ′

M − δμ)/e]Gσσ ′
αM , α = L and R,

and in the magnetic one Iσ
M = [(δμ − δμσ

M )/e]
∑

σ ′[Gσσ ′
ML +
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Gσσ ′
MR ] + [(δμσ̄

M − δμσ
M )/e]Gσ σ̄

MM . The conductances are
Gσσ ′

αβ = e2

h

∫
dε(−∂ε f0)T σσ ′

αβ , with f0 being the equilibrium
distribution.

Charge conservation dictates that the currents Iα = ∑
σ Iσ

α

add up to zero, IM + IL + IR = 0. Furthermore, the pumping
electrode remains charge neutral on average, i.e., IM = 0 [47].
Lengthy but straightforward calculations allow one to write
the spin current in lead M (Is

M ≡ (h̄/2e)[I↑
M − I↓

M]) and the
charge currents in the normal leads (IL, IR) in response to
the spin bias δμs. The spin-charge (sc) conversion current
Isc generated by the tunneling anisotropic SGE is a trans-
verse current. We define it as the difference between L and
R currents: Isc = IL − IR = Gscδμs/e. The corresponding con-
ductance Gsc reads

Gsc = GLM (G↑
RM − G↓

RM ) − GRM (G↑
LM − G↓

LM )

GM
, (2)

having defined Gσ
αM = ∑

σ ′ Gσ ′σ
αM , GαM = ∑

σ G
σ
αM , and

GM = ∑
α GαM , with α = R, L.

In the Onsager reciprocal scenario an electric bias drives
a current R → L, μL − μR = −δμLR [48], which generates
a pure spin current Is

M into the M electrode. The latter is
Is
M = (h̄/2e)Ics, with Ics the charge-spin (cs) conversion cur-

rent, Ics = I↑
M − I↓

M = Gcs δμLR/e. The conductance is

Gcs = −GML(G↑
MR − G↓

MR) − GMR(G↑
ML − G↓

ML )

GM
, (3)

with Gσ
Mα = ∑

σ ′ Gσσ ′
Mα , α = L, R. From microreversibility in

the presence of exchange interaction, one has Gσσ ′
αβ (�xc) =

Gσ̄ ′σ̄
βα (−�xc) [49,50], which leads to the Onsager-Casimir re-

lation for the tunneling SGE:

Gsc(�xc) = Gcs(−�xc). (4)

Equations (2), (3), and (4) are central results of our work. They
are fully general, i.e., independent of any detail of the multi-
terminal structure, and their extension to an arbitrary number
of electrodes is straightforward. Indeed, we verify Eq. (4) for
our LAO|STO model in a five-terminal configuration below.

Anisotropies. To explain anisotropic effects in two-terminal
magnetic tunnel junctions with SOC, Refs. [24,25] give ar-
guments which can be generalized to multiterminal setups
(see Figs. 1 and 3). To be definite, consider the spin-resolved
transmission Gσ

αM = ∑
σ ′ Gσ ′σ

αM , written as

Gσ
αM = e2

h

∫
dε

(
−∂ f0

∂ε

)∑
k

W σ
α (ε, k). (5)

Here k labels the propagating modes in lead M, i.e., k is
the momentum in the x-y junction plane. To establish di-
rect contact with Refs. [24,25], we introduced the spin- and
momentum-resolved transmission probability W σ

α (ε, k) =∑
σ ′

∑
qα

[t†t]σσ ′
kqα

, with qα the mode label (transverse momen-
tum) in lead α, and t the transmission amplitudes entering
the scattering matrix [46,50]. Without SOC, the transmission
W σ

α (ε, k) is even in k, W σ
α (k) = W σ

α (−k). With SOC in the
scattering region S—in the barrier, in the 2DEG, or in both—
there appears a SOC field b(k) such that b(k) = −b(−k),
spoiling the k → −k symmetry of W σ

α (ε, k): transmission

FIG. 3. (a) Five-terminal setup, with sketch of the
�xc(z) and α3(z) profiles. (b) and (c) Polar plots of the
normalized spin-charge conversion conductance gsc(φ) ≡√

(Gx
sc )2 + (Gy

sc )2/
√

(Gx
sc )2

max + (Gy
sc )2

max for θ = π/2. Panels
(b) and (c) show numerical data for ξxc = 1.2Lz and ξxc = 1.6Lz,
respectively. Other parameters are specified in the main text. Insets:
Fermi contour for �xc(0) = 0 in panel (b) and �xc(0) = −0.6 in
panel (c) at angles φ = 0 (right) and φ = 3π/2 (bottom).

is now, in general, skewed. Indeed, W σ
α (ε, k) is a function

of the angle between n and b(k), the magnetization and the
SOC field defining the two physically preferred directions of
the problem. Simple manipulations show that such properties
are transferred to the conductance Gsc, yielding the formal
expansion

Gsc =
∑

k

∑
n

G (n)
sc [n · b(k)]n. (6)

Odd terms vanish, while the surviving even ones reflect the
spin texture defined by b(k). That is, spin-charge conver-
sion by (tunnel) injection through S is anisotropic, and the
anisotropy is dictated by the shape of b(k). Note that if mag-
netism extends into the SOC region it will modify b(k) and
thus the anisotropy, as shown below. These arguments are
general but qualitative, as the coefficients of the expansion
are unknown. For more quantitative statements we turn to
microscopic simulations.

Numerics: LAO|STO junction. We consider the five-
terminal configuration of a recent experiment [39] [see
Fig. 3(a)]: the bottom 2DEG (z = 0) is in contact with the up-
per magnetic electrode (z > Lz) via an extended barrier (0 <

z � Lz). Given the existing effective models for LAO|STO
2DEGs [33,35,36], we focus on the dxz-dyz hybrid band to
highlight the anisotropic character of tunneling spin galvanic
physics in a minimal two-band model. The effective Hamil-
tonian includes a fourfold symmetric cubic Rashba term [35]
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and reads

H =
[

p2

2m
+ U (z)

]
+ α3(z)

(
p2

x − p2
y

)
(σ x py − σ y px )

− �xc(z)

2
n(θ, φ) · σ − h̄2∂2

z

2m
. (7)

The Rashba constant α3(z) �= 0 in the 2DEG and vanishes for
z > 0. The s-d exchange term �xc(z) is instead at full strength
in the magnetic electrode, �xc(z > Lz ) = �xc, and drops to
zero towards the 2DEG, �xc(0 � z � Lz ) = �xc exp[−(Lz −
z)/ξxc]. The tunnel barrier U (z) is a rectangular barrier of
height U0, shown in black in Fig. 3(a). The three-dimensional
scattering region is built by discretizing the Hamiltonian (7)
on a cubic lattice of size Lx = Ly = 50 sites and height Lz =
6 sites. The z = 0 layer—the 2DEG—is connected to four
two-dimensional leads along x and y, all normal (�xc = 0,
α3 = 0). Each lead is WL = 30 sites wide and attached cen-
trally to the 2DEG layer. The upper contact is the M electrode
(�xc �= 0, α3 = 0). In a real setup the 2DEG modes have
a finite extension along z, which allows coupling through
the barrier and into M. To mimic this extension we model
the extended barrier defined above as three transition layers
(without SOC) just above the 2DEG, topped with two layers
with on-site energy U (z) = U0 > μ representing the tunnel
barrier [51]. With lattice spacing a = 1, we set the isotropic
hopping parameter t = 1, and we fix μ = 1.1, α3 = −0.2,
�xc = −0.6, U0 = 1.9, and ξα = 2Lz. For z = 0 the on-site
energy is 4t , ensuring good coupling to the two-dimensional
leads, while it is 6t in the upper layers.

We use the KWANT package [52] to compute the trans-
missions T σσ ′

αβ at energy μ. Details can be found in the
Supplemental Material [53]. The lead indices α and β are
shown in Fig. 3, with B and F respectively labeling the back
and front contacts. The resulting spin-charge conductance Gx

sc
along the x axis,

Gx
sc = 1

GM
[GLM (G↑

RM − G↓
RM ) − GRM (G↑

LM − G↓
LM )

+ (G↓
LM − G↓

RM )(G↑
BM + G↑

FM )

− (G↑
LM − G↑

RM )(G↓
BM + G↓

FM )], (8)

is calculated at zero temperature and yields the current Ix
sc =

IL − IR = Gx
scδμs/e. The y current Iy

sc = IB − IF = Gy
scδμs/e

follows by exchanging L ↔ B and R ↔ F in Eq. (8). Re-
sults for ξxc = 1.2Lz, which ensures that magnetism is absent
from the 2DEG, are shown in Fig. 3(b) (black line) as a
polar plot. The spin-charge conductance shows the four-
fold symmetry of the Rashba bands (C4v), see inset. This is
compatible with experimental observations [39]. Quantitative

comparisons should, however, be avoided, since they require
a multiband model and orbital effects beyond our scope.
Furthermore, if magnetic exchange below the barrier grows
stronger, the response is distorted [see Fig. 3(c)], where ξxc =
1.6Lz. The competition between SOC and magnetism splits
the spin-charge conversion maxima, reflecting the distorted
Fermi contours shown in the insets of Fig. 3(c).

Figures 3(b) and 3(c) show that our results are robust to
scattering. We average over 150 configurations of standard
white noise disorder V (x, y, z) = K0tVxyz, with K0 a dimen-
sionless parameter setting its strength as a fraction of the
hopping parameter t , and Vxyz a normally distributed random
number centered on 0. The petal-shaped curves are perfectly
visible. As expected, convergence is better for weaker disorder
(compare blue and yellow curves) and weaker magnetization
(compare left and right panels). Note that we show normalized
curves, since a reliable estimation of the disorder-dependent
amplitude of the bulk signal requires a more precise barrier
model and a larger sample.

Onsager reciprocity and anisotropies. The above clarifies
why in the very same oxide 2DEG the ISGE is isotropic
[41], while the SGE measured in a spin pumping setup is
not: Onsager reciprocal quantities are not the current-induced
spin polarization on the 2DEG side, δS2DEG, and the spin
polarization-induced current on the same side, I2DEG. They are
rather the current I2DEG and the nonequilibrium spin polariza-
tion δSM on the magnetic electrode side [54]; i.e., the whole
experimental setup should be considered when discussing
spin-charge reciprocity [55,56]. The Landauer-Büttiker ap-
proach does this by default [57].

Conclusions. We identified and microscopically charac-
terized the tunneling anisotropic SGE taking place at an
inversion-symmetry-broken magnetic tunnel junction under a
pure spin bias, as well as its reciprocal effect. Our theory is
general and should be relevant in any multiterminal junction
where magnetization and spin-orbit coupling coexist. When
applied to the specific case of an oxide-based spin pumping
setup it provides a microscopic description of anisotropies
of the kind recently observed and validates general phe-
nomenological arguments [39]. We expect our framework and
conclusions to apply to orbital angular momentum-to-charge
conversion as well, which can be tackled following, e.g.,
Ref. [58]. However a precise test for LAO|STO first requires a
fully established low-energy model (see Ref. [59] for a recent
attempt at building one).
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