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Tuning heat transport in graphene by tension
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Heat transport by acoustic phonons in two-dimensional (2D) materials is fundamentally different from that in
3D crystals because the out-of-plane phonons propagate in a unique way that strongly depends on tension and
bending rigidity. Here, using optomechanical techniques, we experimentally demonstrate that the heat transport
time in freestanding graphene membranes is significantly higher than the theoretical prediction, and decreases
by as much as 33% due to an electrostatically induced tension of 0.07 N/m. Using phonon scattering and Debye
models, we explain these observations by the tension-enhanced acoustic impedance match of flexural phonons
at the boundary of the graphene membrane. Thus, we experimentally elucidate the tunability of phononic heat
transport in 2D materials by tension, and open a route towards electronic devices and circuits for high-speed
control of temperature at the nanoscale.

DOI: 10.1103/PhysRevB.108.L081401

Although in most bulk materials the propagation speed
of different types of acoustic phonons is of similar magni-
tude, the situation is vastly different in two-dimensional (2D)
materials [1–5]. In these atomically thin materials, in-plane
phonons have a constant propagation speed that is determined
by the atomic bond stiffnesses, whereas out-of-plane flexural
phonons exhibit a frequency-dependent speed that is deter-
mined by both in-plane strain and bending rigidity [6–9],
such that flexural and in-plane phonon velocities can differ
by more than an order of magnitude. Initial studies suggested
that flexural phonons provide the dominant pathway for heat
transport and storage in 2D materials [10,11], however, it has
been difficult to experimentally separate flexural and in-plane
phonon contributions.

Evidence for the importance of speed differences on the
phononic heat transport in 2D materials was provided by a
theoretical analysis [12] and by the experimental observation
of two distinct thermal time constants in graphene mem-
branes, of which the longest, τ , is a probe for studying heat
transport by the relatively slow flexural phonons [13–17]. To
understand heat propagation via these different in-plane and
out-of-plane phononic channels in 2D materials, studies of the
role of flexural phonons are essential. Yet, unlike the lattice
thermal conductivity of 2D materials, which has been well
characterized by Raman microscopy [18,19], a microscopic
picture of how the rate of heat transport is related to the
properties of flexural phonons remains elusive, as it requires a
methodology for measuring their effect on temperature varia-
tions in suspended 2D materials with nanosecond resolution.

In this Letter, we demonstrate that heat flow in graphene
can be tuned by tension using an optothermomechani-
cal method to experimentally characterize heat transport in
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graphene drum resonators with nanosecond resolution. We
control the tension by an electrostatic force induced by a
voltage Vg on a gate underneath the graphene drum. Us-
ing an optothermal drive, we actuate the graphene drum
resonators [20]. From the mechanical resonance frequency
ω0/(2π ) (>10 MHz) as a function of Vg, we determine the
in-plane tension and effective mass of the drum, and from
the mechanical response at low frequencies (<1 MHz), we
extract the thermal time constant τ of the resonators that
describes the time for heat propagating from the center to the
boundary of the membrane. To explain the observed tension
dependence of τ , we combine the Debye model for phononic
heat transport with a boundary scattering model that describes
acoustic phonon reflection and transmission at the edge of
the graphene drum. From this analysis it follows that heat
transport mainly depends on tension due to its effect on the
acoustic impedance match between the flexural phonons on
the suspended and supported part of membrane.

Four graphene drum resonators, devices D1–D4, are mea-
sured to study the effect of tension on heat transport, as
shown in Figs. 1(a) and 1(b). The surface profile measured
by atomic force microscopy indicates an initial downward
deflection of the membrane, resulting from sidewall adhesion
at the edge of the membrane [21] [see Fig. 1(c)]. We measure
the motion of the resonators using the interferometer depicted
in Fig. 1(d). By exciting the membrane with a modulated
blue laser, while interferometrically detecting its motion, the
frequency response of the devices is determined and used to
characterize both the mechanical and thermal parameters of
the devices. Figure 1(e) shows the measured motion amplitude
zω of device D1 at Vg = 0 V over the frequency range from 0.1
to 100 MHz. We extract ω0/(2π ) and quality factor Q of the
device by fitting the measured data to a harmonic oscillator
model [Fig. 1(f)]. For device D1 this results in ω0/(2π ) =
25.49 MHz and Q = 43.25. The average quality factor of the
four devices at room temperature is Q = 36.5 ± 8.4, which
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FIG. 1. Graphene membrane characterization. (a) Schematic of a graphene drum of radius r over a cavity of depth d1 in a SiO2/Si substrate
irradiated by lasers. The graphene has a sidewall of length d0 into the cavity. The voltage Vg pulls the drum down by zg, increasing its tension.
(b) Optical image of the drums with a scale bar of 10 µm. (c) Atomic force microscope line trace over device D4 indicates a downward
deformation of drum, originating a kink at the boundary. Note the different units for x and z on the axis. (d) Interferometric setup. The sample
is placed inside a vacuum chamber (VC). The blue (405 nm) laser is intensity modulated by a vector network analyzer (VNA) to actuate the
resonator. Intensity variations of the reflected red (633 nm) laser caused by resonator motion, are measured by a photodiode (PD) and recorded
with the VNA. PBS: polarized beam splitter; DM: dichroic mirror. (e) Frequency response of device D1, including real (red) and imaginary
(blue) parts of the motion zω. (f) Fits of zω/(2π ) (lines) to Eq. (1) to obtain ω0. (g) Fits of Eq. (1) to zω near the thermal peak (black solid and
dashed lines) provide τ , Cfast, and Cslow of the resonator.

is comparable to literature values [22,23]. Around 1 MHz,
we observe an additional broad signal in the imaginary part
of the frequency response [Fig. 1(g)]. This signal is asso-
ciated [20] with the frequency-dependent optothermal force
Fth,ω on the resonator, because it is only present when driving
the membrane optothermally. Following literature [13], far
below mechanical resonance, the displacement zω = Fth,ω/k is
proportional to the effective thermal expansion force Fth,ω that
is delayed with respect to the laser power P(t ) = Paceiωt as a
consequence of the time τ it takes to increase the membrane
temperature by laser heating. As shown by the fits in Fig. 1(g),
the low-frequency zω is given by

zω = Cslow

1 + iωτ
+ Cfast, (1)

where Cslow and Cfast are the normalized thermal expan-
sion amplitudes contributed from out-of-plane and in-plane
phonons, respectively [13]. We extract these parameters by
fitting Eq. (1) to the real and imaginary parts of the mea-
sured zω, as depicted in Fig. 1(g). Here, the peak in the
imaginary part of zω is located at 1.23 MHz, corresponding
to τ = (2π × 1.23 MHz)−1 = 129 ns. We checked the laser
power dependence and verified that it has no significant effect
on the measured value of τ (see Figs. S1(a) and S1(b) in [24]).

By applying Vg on graphene drum resonators, we observe
a clear change in both the measured ω0/(2π ) and τ (see
Fig. 2). Vg generates an electrostatic force, pulling the drum
down and thereby increasing tension. Figure 2(a) shows plots
of ω0/(2π ) against Vg for all devices from −4 to 4 V. The
typical W-shaped curves show both electrostatic softening

and tension hardening, as often observed in electrostatic gate
tuning of graphene membranes [22]. The observed values of
τ , of all above 75 ns, are significantly higher than the value
of τ ≈ 2 ns obtained from the theoretical expression τ =
r2ρgcp/(2k), that follows from solving the heat equation for
a perfect circular graphene membrane [37] for typical values
of specific heat cp and thermal conductivity k. Interestingly, it

FIG. 2. Tuning thermodynamic properties of graphene drum de-
vices with gate voltage. (a) Solid dots: ω0 vs Vg measured in devices
D1–D4; drawn lines: fits based on Eq. (2). (b)–(e) Points: τ vs Vg

measured in devices D1–D4, respectively; solid lines: fits to data
using the Debye and scattering models; error bars are from the fits
to the measured thermal signals as plotted in Fig. 1(g).
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is also shown here that τ reduces by as much as 33% when the
tension in the membrane is increased by Vg [Figs. 2(b)–2(d)].
This n-dependent decrease in τ is unexpected from the heat
equation, because recent studies show that cp increases [38]
while k decreases [39,40] as the tension in graphene increases,
from which one would expect τ to increase at higher n, pre-
cisely opposite to our experimental observations.

To shed light on the obtained large magnitude of τ and its
negative dependence on Vg-induced tension in Figs. 2(b)–2(e),
we first quantify n in the drum. Following literature [22], we
model ω0/(2π ) tuning of the drum resonator by continuum
mechanics,

ω0(Vg) =
√√√√ 1

meff

[
2πEts0

1 − υ2
+ 8πEt

(1 − υ2)r2
z2

g − 1

2

∂2Cg

∂z2
g

V 2
g

]
,

(2)
in which s0 is the built-in strain, meff is the modal mass of the
fundamental mode of the circular membrane resonator with
a theoretical value meff,th = 0.271πr2ρg where ρg is the mass
density of double-layer graphene, Cg is the capacitance be-
tween membrane and bottom gate, and the second derivative
∂2Cg

∂z2
g

quantifies the electrostatic softening. The 2D Young’s

modulus Et ≈ 175.39 N/m on average and the Poisson ra-
tio υ = 0.16 were determined via atomic force microscopy
(AFM) indentation [41] [see Supplemental Material (SM)
Sec. 1 [24]]. The center deflection zg can be expressed [42] as
ε0r2V 2

g /(8g2
0n0), where n0 = Ets0/(1 − υ ) is the pretension,

ε0 is the permittivity of vacuum, and g0 = d1 + d2/εSiO2 − d0

is the effective gap between the drum and the electrostatic
gate. We fit the measured Vg dependence of ω0 by Eq. (2)
[black lines in Fig. 2(a)] to extract the fit parameters n0,

meff, and ∂2Cg

∂z2 for each device (listed in Table S1 [24]). The
extracted initial tension n0 for all devices ranges from 0.18
to 0.34 N/m, which corresponds to typical literature values
reported for graphene membranes [22,42–44]. We attribute
the variation in shapes of ω0/(2π ) vs Vg among devices
D1–D4 to the different n0 and meff of the membranes [22].
The good quality of the fits with Eq. (2) in Fig. 2(a) (drawn
lines) allows us to use the obtained fit parameters to extract the
membrane deflection zg at all Vg. By using the equation [22]
n = n0(1 + 4z2

g/r2), we obtain the corresponding membrane
tension n(Vg).

Since the classical heat equation clearly does not suffice
to account for the observed τ and its tension dependence, we
now will use a phonon scattering model to assess the tran-
sient thermal conduction in the membrane [12]. This model
assumes that the in-plane and out-of-plane phonon baths are
decoupled from each other except from the scattering at the
boundary. Moreover, we neglect any heat transport through
polymer residues left over after fabrication as its thermal
conductivity (0.2 W/mK) is much lower than that of graphene
(>1000 W/mK) [18,45]. The kink at the membrane edge
[Fig. 1(c)] is the main source of n-dependent phonon scat-
tering [46] (see Fig. S2 [24]) and results in the following
expression for τ ,

τ = r

2cz
∑

j w1z→2 j
, j = l, t, z, (3)

in which the transmission rate w1z→2 j is the probability that
a flexural phonon on the suspended part of the graphene
(subscript 1) is transmitted across the membrane edge and
becomes a phonon of type j on the supported part of
the graphene (subscript 2), where j can either be a flexu-
ral phonon ( j = z), or a longitudinal or transverse in-plane
phonon ( j = l, t). w1z→2 j depends both on n and on the speed
of sound cz of flexural phonons (see SM Sec. 2 [24]). Due
to the scattering at the edge of the membrane, the calculated
magnitude of w1z→2 j is much lower than 1, which results in a
value of τ that is much larger than the value τ = r2ρgcp/(2k)
in the absence of scattering. This scattering is a kind of
Kapitza thermal boundary resistance [47] and thus potentially
accounts for the large value of τ observed in our fabricated
graphene resonators [Figs. 2(b)–2(e)]. We also calculated the
contribution of in-plane phonons to τ using the scattering
model and found that it is much smaller than the contribution
of flexural phonons (see SM Sec. 2 [24]). Therefore, we only
consider the incidence of flexural phonons in Eq. (3).

Heat is transported by phonons of many different frequen-
cies, while w1z→2 j depends on the speed of these phonons.
Therefore, to analyze the effect of tension on heat transport,
the dispersion relation for flexural phonons is needed, which
is given [48] by ωq = √

(κq4 + nq2)/(ηρg), where q is the
wave number, κ is the bending rigidity of the membrane,
and η = meff/(0.271πr2ρg) is the normalized areal density of
the membrane (listed in Table S1 for all devices [24]). This
dispersion relation is in line with the results of studies from
first principles (from the � to K point) [49], from which the
speed of sound for flexural phonons is found using cz = ∂ωq

∂q .
We now theoretically estimate the thermal time constant

of graphene drum resonators. In practice, flexural phonons
over a large frequency span, ranging up to the Debye fre-
quency ωqd , will contribute to τ . Note that the frequency
of flexural phonons is much larger than that of 1/τ , since
τ describes the timescale of thermal expansion of the en-
tire membrane. To account for this [see the flow chart in
Fig. S6(a) [24]], we analyze the heat transport contribution for
every q using the tension-dependent phonon speed cz(ωq, n)
and determine the thermal time constant for phonons of that
wave number τ (ωq, n) using Eq. (3). Then, we use the Bose-
Einstein distribution to determine the expected phonon energy
density via the specific heat spectral density Cz

v,ω(ωq, n) of
flexural phonons of a certain q (Debye model). The detailed
expression of Cz

v,ω(ωq, n) can be found in Eq. (S2) [24].
Finally, we take a weighted integral over the contributions
of all flexural phonons to determine τ (n) using 1/τ (n) =∫ ωqd

0 Cz
v,ω(ωq, n)/[Cz

v (n)τ (ωq, n)]dωq, where the total specific
heat due to flexural phonons is determined using Cz

v (n) =∫ ωqd

0 Cz
v,ω(ωq, n)dωq [48,50]. More details about the phononic

scattering and Debye models can be found in SM Secs. 3 and
4 [24].

The obtained function τ (n) is fit to the experimental data
in Figs. 2(b)–2(e), obtaining good agreement between fit
and experiments for all four devices, using κ as the only
fit parameter. All other model parameters are determined
independently from measurements. The fitted values of κ

vary over a range from 0.6 to 9.4 eV, which is similar to
values reported in the literature [51,52]. Although the exact
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FIG. 3. Analysis and experimental demonstration on tunable heat transport in graphene drum resonators. (a) Ratio of normalized thermal
expansion amplitudes |Cfast/Cslow| vs tension n. Points: the measurements; solid lines: the modeled estimates. (b)

∑
j w1z→2 j ( j = l, t, z) of

flexural phonons for devices D1–D4 as cz = 575 m/s, indicating the tension-enlarged impedance matching of acoustic phonons at the boundary
of membrane. This tunability is the same for all-frequency phonons with different cz. (c) Left panel: calculated ωq(q) for devices D1–D4. ωq(q)
is dominated by n in the ∼MHz regime (red shadow) and dominated by κ in the ∼THz regime (blue shadow), respectively, while the crossover
frequency ωqc is located at the ∼GHz regime. Right panel: Cz

v,ω for all devices. (d) Tunable τ with n varying from 0.1 to 10 N/m, using device
D3 as an example. Green points: the measured τ vs n for device D3; blue line: estimated τ by the scattering model; red line: tension tunability
|dτ/dn|; gray region: the estimation of τ using r2ρgcp/(2k).

mechanism behind these bending rigidity variations remains
unclear, we observe in Fig. S6(b) that κ increases with η

of the membranes [24], potentially indicating that polymer
residues do not only affect the mass of the membrane, but also
play an important role in the heat transport by increasing the
membrane’s bending rigidity.

To analyze the main mechanism by which n can reduce τ

in graphene resonator, we investigate three different ways: via
cz(n, ωq), via Cz

v,ω(n, ωq), and via w1z→2z. Since n mainly af-
fects the dispersion relation of low-frequency (MHz) phonons,
the direct impact of n on τ via the first two paths is relatively
small [see Figs. S7(f) and S7(i) in SM [24]]. Therefore, the ob-
served decrease of τ in Figs. 2(b)–2(e) is mainly attributed to
the n-induced increase in

∑
j w1z→2 j , as plotted in Fig. 3(b).

Specifically, we see the wave amplitudes |u2 j | of all three
transmitted modes increase with n [Fig. S2(b)], indicating an
enhanced impedance matching of acoustic phonons between
the suspended and supported part of the membrane.

Besides τ , the normalized thermal expansion amplitudes
Cfast and Cslow in Eq. (1) can provide us with more infor-
mation on the heat flow. We attribute the opposite signs of
Cfast and Cslow in the measurements to the opposite signs of
the Grüneisen parameters for the in-plane and out-of-plane
phonon modes. Here, we will use them to analyze the rela-
tive contributions of the in-plane and flexural phonons to the
thermal expansion force [13], and also show that the tension
dependence of these amplitudes Cfast and Cslow agrees well to
the presented model. From the low-frequency fits of zω [see
Fig. 1(g)], we determine the tension dependence of Cfast and
Cslow in Eq. (1). Because the thermal expansion amplitude is
proportional to the temperature increase, the measured ratio
|Cfast/Cslow| is approximately proportional to the relative tem-
perature increase of both phonon baths [13]. Qualitatively, the
n-enhanced cz will reduce the edge scattering rate according to
Eq. (3), and therefore increases the cooling rate of the flexural
phonon bath. As a consequence, the temperature increase of
that phonon bath and Cslow decrease [7], which leads to an in-
crease of the ratio |Cfast/Cslow| with n as observed in Fig. 3(a).
Also shown in Fig. 3(a) (lines), our model also accurately

captures the relation between n and |Cfast/Cslow| for all devices
(see more details in SM Sec. 5 [24]).

We now turn to Fig. 3(c) to get more insight in the tension
tuning mechanism of τ . For high-frequency (∼THz) flexural
phonons [blue shadow, Fig. 3(c)], κ dominates ωq(q) for all
devices D1–D4 [Fig. 3(c), left panel], and thus Cz

v,ω(ωq) also
shows significant device-to-device variations [Fig. 3(c), right
panel] which is responsible for the measured variations in τ .
More details about how κ and η affect ωq(q) and Cz

v,ω(ωq)
can be found in SM Sec. 4 [24]. On the other hand, for low-
frequency (∼MHz) flexural phonons [red shadow, Fig. 3(c)],
the situation is completely different. The resonance frequency
of the graphene membranes can be understood as a standing
wave of flexural acoustic phonons and is thus proportional to
the ratio cz ∝ √

n/η and the membrane radius, such that κ

does not play an important role. cz is thus fully determined
by n and η, in line with experimental graphene resonators
reported in the literature [22]. We estimate the crossover
frequency ωqc where the phonon dispersion ωq(q) makes
the transition from the tension n-dominated to κ-dominated
regime, at around 13.5, 8.4, 27.7, and 67.3 GHz for devices
D1–D4, respectively [see Fig. 3(c)].

The measured parameters (listed in Table S1 [24]) allow
us to model the phonon dispersion and specific heat spectral
density in Fig. 3(c) over the wide frequency range from the
MHz to the THz regime. Let us discuss how this results in the
tunability of the heat transport using Fig. 3(d). As n increases
from 0.1 to 10 N/m, τ decreases from ∼1 µs to less than 4 ns
(blue line), while the tunability |dτ/dn| also decreases signif-
icantly (orange line). In such a wide tuning of n, the tunability
of heat transport is attributed not only to the increase of the
transmission rate w1z→2 j of flexural phonons, but also to the
increased speed of sound [cz ≈ √

n/(ηρg) for n � κq2] and
the change of Cz

v,ω(n, ωq). The low τ (∼2 ns at n = 10 N/m)
under high tension is comparable to its value obtained from
the heat equation r2ρgcp/(2k), demonstrating that at high
tension, the heat flow rate from the center to the boundary
of the membrane [20,23] [gray region, Fig. 3(d)] sets a lower
limit on the acoustic phonon transport rate, whereas at low
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tension the boundary scattering determines the upper limit.
Understanding these limits on the tension tunability of heat
transport is important for proposed applications in the field
of 2D phononics, such as switchable thermal transistors, ul-
trasensitive thermal logic gates, and reconfigurable phononic
memories [53,54].

To conclude, we measured the thermal time constant
that governs nanosecond-scale heat transport in suspended
graphene drums and presented experimental evidence for its
tunability via gate-controlled in-plane tension. Using a De-
bye model that captures the scattering of acoustic phonons
at the membrane edge, we present a microscopic picture
of heat transport in suspended graphene membranes, where
bending rigidity and tension dominate the flexural dispersion
relation for THz and MHz frequency phonons, respectively.
Tension is responsible for tuning the transmission rate of

flexural phonons from the suspended to the supported part
of the graphene. The gained insight not only advances our
fundamental understanding of acoustic phonons in 2D mate-
rials, but also enables pathways for controlled and optimized
thermal management in 2D-based phononic, thermoelectric,
electronic, and quantum devices, as well as in 2D sensing ap-
plications such as a nanoelectromechanical system (NEMS).
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