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The energy band structure of excitons is studied in periodic potentials produced by the short-range interaction
between the exciton and electrons of Wigner lattices. Treating the exciton as a pointlike dipole that interacts with
the periodic potential, we can solve a simple one-body problem that provides valuable information on excitons
in many-body problem settings. By employing group theory, we identify the excitonic energy bands that can
couple to light and then quantify their energy shifts in response to a change in the period of the potential. This
approach allows us to emulate the response of optically active exciton and trion states to a change in electron
density. In agreement with experimental results, the exciton (trion) state shows a relatively strong (weak) energy
shift when the electron density increases. This behavior stems from the difficulty of exciton states to remain
extended, whereas the trion state remains largely the same as long as its radius is smaller than the average
distance between resident electrons. We identify an important relation between the energy blueshift of bright
excitons and the presence of a Wigner crystal, where the blueshift magnitude is proportionate to the symmetry
of the electron lattice.
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Excitons in semiconductors allow us to explore intriguing
many-body phenomena in condensed matter physics [1–3].
Through changes in energy, fine structure, and oscillator
strength of excitons in response to electrostatic gating or mag-
netic fields, we can learn about Fermi-edge singularities [4,5],
composite states [6,7], proximity effects [8,9], Fermi po-
larons [10,11], Wigner crystals [12,13], fractional filling
of moiré valleys [14,15], as well as dynamical screening
and exchange-correlation interactions [16,17]. Many of these
problems are hard to tackle from a theoretical standpoint since
it is impossible to solve the many-body wave function of the
exciton and all interacting electrons. Instead, approximated
solutions usually treat the excitonic state as a quasiparticle that
is dressed by the interacting electrons [18–28]. That is, the
exciton creation polarizes the electron gas, and the resulting
displacement of electrons modifies the exciton wave function.
An important question that arises is whether experimental re-
sults can be explained without the polarization of the electron
gas.

The motivation for asking this question is that experiments
in electrostatically doped semiconductors are often conducted
in the limit rx � rs, where rx is the exciton radius and rs is the
average distance between two nearby conduction-band elec-
trons [29–35]. Given that electrons are far more influenced by
the long-range Coulomb interaction between them than by the
short-range interaction with the exciton, the displacement of
electrons in this system can be energetically costly. We argue
in this Letter that as long as rx � rs, the excitonic absorption
spectrum can be well explained by assuming that electrons
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are “frozen” at fixed positions. The short-range interaction be-
tween the exciton and electron is replaced by a static potential,
allowing us to readily solve such an exciton problem.

There are two ways to study the interaction between the
exciton and the potential produced by a frozen landscape of
electrons in the host material. One approach is to assume
that electrons are distributed at random positions, and then
study the exciton wave function through its phase shift when
the charge density increases. We employ this method in a
companion paper [36]. The second approach is to assume
that the electrons are ordered, as in the case of a Wigner
crystal [37]. One can then study the dependence of the ex-
citon wave function on electron density through the ensuing
change in the lattice constant of the electrons crystal. We take
the second approach in this Letter, allowing us to calculate
the exciton energies by standard band theory [38,39]. We
identify an important relation between the energy blueshift
of bright excitons and the Wigner crystal symmetry. This
relation is further analyzed in Ref. [36], showing that the
energy blueshift gradually increases as electrons continuously
acquire order (starting from a random distribution of electrons
in the monolayer that is gradually transitioning to an electron
Wigner crystal). Hereafter, the crystal, lattice, and Brillouin
zone refer to the Wigner electron crystal and not the semicon-
ductor atomic crystal.

Our study focuses on two-dimensional (2D) crystals. Given
that rx � rs, where rs is now the lattice constant, we neglect
the internal relative motion of the electron and hole compo-
nents in the exciton and treat the small exciton complex as one
body with translational mass M. Furthermore, the lattice sites
are assumed to be made of electrons with different quantum
numbers (spin and/or valley) than those of the electron in
the exciton [40,41]. This distinguishability not only allows
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FIG. 1. (a) Illustration of the short-range potential profile experienced by an exciton in a triangular electron lattice. The unit cell and basis
vectors a1,2 are highlighted, where the distance between two neighboring sites is rs = |a1,2|. An electron-hole pair propagating in this lattice
can form bound or unbound states with the lattice (X − or X 0), corresponding to trion or exciton energy bands, respectively. (b) The first
(white) and second (green) Brillouin zones of the triangular lattice, along with the reciprocal-lattice basis vectors G1,2 = 2π (1/

√
3, ±1)/rs

and high-symmetry points �, M, and K . (c) and (d) Exciton band structures along axes between high-symmetry points, shown for lattice
constants rs = 15.2 and 6.8 nm, or equivalently, electron densities n = 5 × 1011 cm−2 and n = 2.5 × 1012 cm−2, respectively. The energy
bands in (d) are labeled with their �-point IRs (Table I). (e) Square amplitude color maps of the �-point wave functions in the unit cell, where
(f) shows these results along the axis marked by the dashed white line in (e).

the exciton to bind to the lattice and form a trionlike state,
but it will be shown to introduce a strong energy blueshift
of excitonlike states. The indistinguishable case is studied in
the companion paper [36]. Without loss of generality, we con-
sider a periodic Gaussian function to describe the short-range
potential exerted on the exciton by the lattice [42],

V (r) =
∑

n1,n2

V0 exp(−|r − n1a1 − n2a2|2/w2). (1)

r is the center-of-mass coordinate of the exciton. n1,2 are
integers, a1,2 are the lattice basis vectors, w is the potential
range, and V0 is its amplitude. Figures 1(a) and 1(b) show
a density plot of the potential in a triangular lattice and the
corresponding Brillouin zone, respectively.

We employ the pseudopotential method to calculate the
exciton band structure [43]. The Bloch wave function,

ψk(r) = eik·ruk(r) = eik·r ∑

G

uk(G)eiG·r, (2)

is written as a modulated periodic function uk(r), expanded as
a sum over reciprocal lattice vectors G. The Fourier compo-
nents uk(G) and exciton eigenenergies Ek are obtained from

the matrix equation
∑

G′
HGG′ (k)uk(G′) = Ek uk(G), (3)

where the Hamiltonian in reciprocal space reads

HGG′ (k) = h̄2(k + G)2

2M
δG,G′ + V (G − G′). (4)

V (G − G′) is the Fourier transform of the crystal potential per
unit cell [44].

Figures 1(c) and 1(d) show results of the exciton band
structure for two lattice constants, rs, related through nr2

s =
2/

√
3 to the electron density in a triangular Wigner crystal.

The crystal potential parameters are w = 1 nm and V0 =
−170 meV, and the exciton translation mass is M = 0.65m0,
where m0 is the free-electron mass. These are the only three
material-specific parameters, and here we chose them to
mimic the behavior in transition-metal dichalcogenide (TMD)
monolayers [45], where w is comparable to the exciton radius,
V0 is chosen to yield a trionlike band (explained below), and
M denotes the center-of-mass rather than reduced mass of
the exciton. The zero-energy level in our calculations is the
exciton resonance energy in the limit rs → ∞, corresponding
to an intrinsic semiconductor (n → 0).
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TABLE I. Character table of point group D6. The symme-
try operators include the identity operation E , ±2π/� rotations
around the z axis [C�(z)], and π rotations around axes that connect
nearest-neighbor sites of the triangular lattice (C′

2), and next-nearest-
neighbor sites (C′′

2 ).

D6 E 2C6(z) 2C3(z) C2(z) 3C′
2 3C′′

2 Linear functions

A1 +1 +1 +1 +1 +1 +1
A2 +1 +1 +1 +1 −1 −1 z
B1 +1 −1 +1 −1 +1 −1
B2 +1 −1 +1 −1 −1 +1
E1 +2 +1 −1 −2 0 0 x, y
E2 +2 −1 −1 +2 0 0

The result of having one site per unit cell [Fig. 1(a)] is that
only one band has negative energies, as shown in Figs. 1(c)
and 1(d). The negative-energy band mimics the trion state,
which is tightly bound to a lattice site, as shown in Figs. 1(e)
and 1(f) for the square amplitude of the lowest-energy wave
function at the � point (X −). The energy of the trionlike band
is ∼ − 32 meV in both Figs. 1(c) and 1(d), implying that this
energy level is weakly dependent on lattice constant (electron
density) and mostly governed by the trapping amplitude of the
potential, V0. This behavior persists as long as w ∼ rx � rs,
leading to strong localization of trionlike states at the lattice
sites. The nearly flat nature of this energy band implies a
very large effective mass, or equivalently, suppressed hopping
between neighboring lattice sites.

The positive-energy bands in Figs. 1(c) and 1(d) describe
states in which the exciton tends to stay away from lattice sites
(i.e., not bound to the crystal). Figures 1(e) and 1(f) show that
the �-point wave functions become more extended across the
unit cell as the energy of the state increases. To check which
of the states can strongly couple to light, we look for wave
functions that retain the 1s character of the envelope function
of the bright exciton [38]. Before embarking on the symmetry
analysis, we note that focusing on the �-point wave functions
is justified when the lattice constant rs is much smaller than
the photon wavelength needed to create the bright exciton of
the semiconductor (λx). Put differently, the exciton momen-
tum following light excitation is much smaller than the width
of the Brillouin zone, h/λx � 2π/rs.

Table I shows the character table of point group D6, corre-
sponding to the � point of the 2D triangular lattice, where the
z axis is along the out-of-plane direction. Among the seven
lowest-energy states of the � point that we show in Figs. 1(c)
and 1(d), only the lowest two transform as the identity irre-
ducible representation (IR) A1. The transformation properties
of A1 describe the envelope functions of the ground-state trion
or exciton (1s), whose coupling to light is strongest. Of the
remaining �-point states that are shown in Figs. 1(c)–1(f),
those that transform as E1 can turn valuable in experiment.
The doubly degenerate IR E1 transforms as an in-plane vector
(x and y). As such, the selection rule A1 × E1 = E1 man-
dates that the dipole transition between E1 and A1 states does
not vanish, 〈A1|p|E1〉 
= 0, where the momentum operator p
also transforms as an in-plane vector (i.e., represented by
E1). As we show next, the consequences of this property

can be used to test if the electrons are ordered in a Wigner
lattice.

Consider a photoexcited semiconductor with trions or ex-
citons in their ground state (1s). The center-of-mass envelope
functions of these excitonic complexes are described by the
two aforementioned A1 states if the electrons in the semicon-
ductor are ordered in a Wigner lattice. If the semiconductor
is further excited by a second light source with far-infrared
photons, the absorption of these photons is greatly enhanced
when their energy matches the energy gap between A1 and
E1 states, EE1 − EA1 . To verify that the absorption resonance
stems from optical transitions of the Wigner-induced exciton
band structure, rather than being an accidental occurrence, one
can tune the electron density in the semiconductor to control
the energy gap EE1 − EA1 . The solid lines in Fig. 2(a) show the
energy shifts of these states in a triangular Wigner lattice. The
energy gaps between E1 (black solid line) and any of the A1

states (red or blue solid lines) increase with electron density.
Figure 2(a) shows that the energy shift of the trion (X −)

has the smallest change when the electron density increases.
As long as w ∼ rx � rs, the strong localization around the
lattice sites renders the trion state less susceptible to a change
in electron density [Figs. 1(e) and 1(f)]. The slight redshift of
the trion energy when the density increases is explained by
the slightly improved overlap of the wave function between
lattice sites. In sharp contrast, the exciton states are extended,
meaning they are susceptible to density changes. Their en-
ergy blueshift becomes stronger as the exciton becomes more
extended (i.e., higher energy), as can be seen by comparing
the smaller blueshift of A1(X 0) compared with that of E1 in
Fig. 2(a). The reason is that the attractive potential from lattice
sites tends to lower the energy of the state, and higher-energy
states better avoid these sites, as can be seen in Figs. 1(e)
and 1(f).

To further understand the energy blueshift of extended
states, we repeat the calculation by turning off the potential,
V0 → 0. The band structure in this nearly-free-exciton model
is shown in Fig. 2(b). While trion states evolve from the
lowest-energy band around the � point, exciton states evolve
from the excited energy bands around the � point. The sixfold
state degeneracy of the second state originates from the six �

points at the centers of the second Brillouin zones, highlighted
by green hexagons in Fig. 1(b). The energy of this degenerate
state is linearly related to electron density in the nearly-free-
exciton model

E�
� = h̄2

M

4π2

√
3

n, (5)

shown by the dashed line in Fig. 2(a). When V0 
= 0, the
excitonlike states A1(X 0) and E1 are not completely free, since
the lattice potential lowers their energy from that of the nearly
free model. Yet, the linear dependence on charge density is
largely kept, especially for higher-energy states as shown in
Fig. 2(a). The relatively strong energy shift of the exciton
compared with that of the trion comes from the difficulty of
the exciton state to remain extended when the electron density
increases (i.e., smaller distance between lattice sites).

The behavior shown in Fig. 2(a) is corroborated in
optical experiments of electrostatically doped TMD mono-
layers in which the electrons (or holes) are not necessary
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FIG. 2. (a) �-point energies of the trion (X −), bright exciton (X 0), and excited exciton state with E1 symmetry as a function of electron
density n (bottom x axis) or Fermi energy EF = h̄2πn/me (top x axis, where me = 0.4m0). The dashed line denotes the energy E�

� of the nearly-
free-exciton model. (b) Energy band structure of the nearly-free-exciton model (V0 = 0) when n = 2.5 × 1012 cm−2. (c) �-point energies of the
trion and exciton in three lattice structures: triangular (green), square (orange), and honeycomb (magenta). The dashed lines are the respective

E�
� , E�

� , and E�� of the nearly-free-exciton model.

ordered [29–35]. Regardless of such order, the small energy
shift of the trion should persist as long as the average dis-
tance between two electrons in the interacting electron gas
is large compared with the extension of the trion wave func-
tion. Similarly, the energy blueshift of excitons exists even
when electrons are not ordered because of the susceptibility
of extended states to density changes [36]. The signature of
an electron Wigner crystal manifests through enhancement
of the energy blueshift. Before analyzing how order affects
the energy shifts, we note that the trion and exciton states in
our model have similar attributes to attractive and repulsive
polarons in the following sense [10,24]. The attractive polaron
in our case is an exciton that is strongly attracted to lattice
sites, whereas the repulsive polaron is an exciton that tends
to stay away from them. Both attributes are seen in Figs. 1(e)
and 1(f), where the lattice site is at the center of the unit cell.
Contrary to the Fermi-polaron picture, however, our model
explains the energy shifts as a natural consequence of the or-
thogonality between trion and exciton states without resorting
to the polarization of the electron gas.

The dependence of the trion and exciton energies on the
order of electrons is further explored by repeating the calcula-
tions in square and honeycomb 2D lattices. The Supplemental
Material provides detailed information of their exciton band
structures [42]. Figure 2(c) shows the energy dependence of
the trion (X −) and exciton (X 0) states on electron density
in the three studied lattices. The dashed lines correspond to
�-point energy gaps in the nearly-free-exciton model of each
lattice type,

E�
� = h̄2

M
2π2n and E�

� = 1

2
E�

� = h̄2

M

2π2

√
3

n . (6)

Figure 2(c) shows that the trion energy weakly depends
on the lattice type, whereas the exciton energy shows clear
dependence. The reason is that delocalized exciton states can
better “sense” the lattice structure at a larger range from the
lattice site. To understand the dependence on lattice types,
we write the smallest distance between two neighboring elec-
trons in each lattice: r�

s � 1.07n−1/2, r�s = n−1/2, and r�s �

0.877n−1/2. This parameter is a measure of how close the
electrons are packed, indicating that for a certain change in
electron density, the resulting change in rs is largest in the
triangular lattice. As such, the energy blueshift of the exciton
in this lattice has the strongest dependence on density.

The dependence of the exciton energy blueshift on the
lattice type is a central result of this Letter. It suggests that
the blueshift is stronger when the lattice tends to structures
with higher symmetry. Such a change in energy blueshift of
the exciton can be used as a precursor to Wigner crystalliza-
tion [12]. For example, the energy blueshift becomes weaker
when the temperature increases due to the reduced order of
the lattice [36]. The Wigner crystal should also become dis-
ordered by continuing to increase the electron density (when
rs is small enough) [46,47]. The broadening of the exciton
peak when the charge density increases or at elevated temper-
atures can be modeled by spatial fluctuations of rs. Finally, we
mention that regardless of order, the energy blueshift effect is
relatively strong when the electron of the exciton has different
quantum numbers than those of the semiconductor electrons
(spin and/or valley) [36]. Otherwise, Pauli exclusion helps the
exciton to avoid indistinguishable electrons [6,48], leading to
a weaker energy blueshift due to the exchange interaction.

In conclusion, we have presented a band theory to study
the behavior of excitons and trion states in electrostatically
doped semiconductors. We have explained how energies of
these states shift as a function of electron density, and
provided important guidelines to detect the elusive Wigner
crystal if the electrons of the host semiconductor are ordered.
Ramifications of this study can be used to emulate various
lattices in which excitons propagate in the same manner that
electrons propagate in atomic crystals or light in photonic
crystals. Beyond Wigner crystals, such lattices can emerge in
moiré heterostructures [49,50] or atom-decorated monolayer
semiconductors. In the latter case, advanced fabrication tech-
niques can engineer artificial lattices with various symmetries
through controlled placement of atoms or molecules in or
adjacent to 2D semiconductors. Such fabricated lattices can be
used as far-infrared light detectors, as a means to enhance the
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functionality of polariton cavities, or as a platform to further
investigate excitonic band structures.
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