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We consider a configuration of three stacked graphene monolayers with equal consecutive twist angles θ .
Remarkably, in the chiral limit when interlayer coupling terms between AA sites of the moiré pattern are
neglected we find four perfectly flat bands (per valley and spin) at a sequence of magic angles which are exactly
equal to the twisted bilayer graphene (TBG) magic angles divided by

√
2. Therefore, the first magic angle

for equal-twist trilayer graphene (eTTG) in the chiral limit is θ∗ ≈ 1.05◦/
√

2 ≈ 0.74◦. We prove this relation
analytically and show that the Bloch states of the eTTG’s flat bands are nonlinearly related to those of TBG.
Additionally, we show that at the magic angles, the upper and lower bands must touch the four exactly flat bands
at the Dirac point of the middle graphene layer. Finally, we explore the eTTG’s spectrum away from the chiral
limit through numerical analysis.

DOI: 10.1103/PhysRevB.108.L081124

I. INTRODUCTION

The remarkable theoretical predictions [1,2] of the fas-
cinating properties of twisted bilayer graphene (TBG) at
a special (“magic”) angle θ∗ ≈ 1.05◦ and experimental re-
alization of this configuration have uncovered an array of
correlated phenomena, such as Mott-insulating and supercon-
ducting phases [3–5]. This tantalizing discovery has sparked
an avalanche of further experimental and theoretical research
[6–32], aimed at gaining a deeper understanding of the under-
lying physics of these van der Waals heterostructures.

The investigation of multiple graphene layer configura-
tions, such as twisted trilayer graphene, is a natural general-
ization of the study of twisted bilayer graphene [33–40]. The
multilayer systems possess a greater number of parameters,
which enhance their tunability. The initial theoretical inves-
tigation of twisted trilayer graphene (TTG) [33,34] unveiled
a similar flattening of electronic bands at various “magic”
angles, which ultimately led to experimental discovery of
correlated phenomena and other intriguing physics [41–46].
The interacting effects in such systems are under persis-
tent theoretical investigation [47–49]. Other twisted graphene
multilayer systems were discussed theoretically [50–55] and
realized experimentally [56–58] where similar interacting ef-
fects were discovered.

In this Letter, we focus on twisted trilayer graphene with
equal small consecutive twist angles θ . We refer to such
a system as equal-twist trilayer graphene (eTTG), and it is
schematically represented in Fig 1. This particular twist con-
figuration of TTG has already been discussed in [34,37–40].

The main result of this Letter is exact relations between
magic angles and perfectly flat band wave functions of eTTG
and TBG systems in the chiral limit (i.e., the limit when in-
terlayer hopping terms between AA sites of the moiré pattern
are neglected). We show below that the magic angles of these
systems are related as

θeTTG = θTBG/
√

2. (1)

Therefore the first magic angle of eTTG is θ∗ ≈ 1.05◦/
√

2 ≈
0.74◦. Remarkably this relation is exactly inverse of the re-
lation found in [33] for alternating-twist trilayer graphene
(aTTG):

θaTTG = θTBG

√
2. (2)

In contrast to the aTTG case the relation (1) can be established
only in the chiral limit. Moreover the relation between the
Bloch states of the eTTG’s exactly flat bands and those of
TBG is valid only at the magic angles.

The Letter is organized as follows. In Sec. II we formulate
the continuum model for twisted trilayer graphene and then
consider the case of the equal-twist configuration of trilayer
graphene (eTTG). We obtain the Hamiltonian for such a con-
figuration in the chiral limit. In Sec. III we present our main
result, namely the relation between magic angels and perfectly
flat band Bloch states of eTTG and TBG in the chiral limit.
In Sec. IV we discuss theoretical and experimental challenges
arising from investigation of eTTG away from the chiral limit.

II. CONTINUUM MODEL FOR TWISTED
TRILAYER GRAPHENE

We consider a system of three stacked graphene monolay-
ers, where each layer � = 1, 2, 3 is rotated counterclockwise
by an angle θ� around an atom site and then shifted by a
vector d�, so atoms in each layer are parametrized by r =
Rθ�

(R + τα ) + d�, where Rθ = e−iθσy is the rotation matrix
and R and τα run over the lattice and sublattice sites. The
continuum model Hamiltonian for twisted trilayer graphene
can be written as [33]

H =
⎛
⎝ −ivF σθ1∇ T 12(r − d12) 0

T 12†(r − d12) −ivF σθ2∇ T 23(r − d23)
0 T 23†(r − d23) −ivF σθ3∇

⎞
⎠,

where vF ≈ 106 m/s is the monolayer graphene Fermi veloc-
ity, σθ ≡ ei θ

2 σzσe−i θ
2 σz , σ = (σx, σy), and d��′ = 1

2 [d� + d�′ +
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FIG. 1. A schematic illustration of the equal-twist trilayer
graphene: the top and bottom layers are twisted by an angle θ in
opposite directions relative to the middle layer.

i cot(θ�′�/2)σy(d� − d�′ )] is the moiré pattern displacement
vector. The moiré potential between adjacent layers � and �′
is

T ��′
(r) =

3∑
n=1

T ��′
n e−iq��′

n r, (3)

where T ��′
n+1 = w��′

AAσ0 + w��′
AB(σx cos nφ + σy sin nφ) and

q��′
1 = 2kD sin(θ�′�/2)Rφ��′ (0,−1), q��′

2,3 = R±φq��′
1 , (4)

with θ��′ = θ� − θ�′ , φ��′ = (θ� + θ�′ )/2, φ = 2π/3, and kD =
4π/3

√
3a is the Dirac momentum of the monolayer graphene

with lattice constant a = 1.42 Å. The coupling between adja-
cent layers � and �′ is characterized by two parameters w��′

AA

and w��′
AB representing intra- and inter-sublattice couplings.

The chiral limit corresponds to w��′
AA = 0.

In this Letter we consider only a trilayer configuration
with two equal consecutive twist angles θ ; thus we take
θ1 = −θ , θ2 = 0, and θ3 = θ (magic angles in the chiral limit
of a general TTG configuration with θ12/θ23 = p/q, where
p and q are coprime integers and are discussed elsewhere
[59]; see also [34]). Moreover we assume that there is no
displacement between layers d��′ = 0 (for the aTTG case it
was shown in [60] that this is energetically favorable stacking
configuration). Finally for a small angle θ we set φ��′ = 0
leading to q12

1 = q23
1 = q1 [34]. Thus we obtain the following

Hamiltonian for eTTG:

HeTTG =
⎛
⎝−ivF σ−θ∇ T (r) 0

T †(r) −ivF σ∇ T (r)
0 T †(r) −ivF σθ∇

⎞
⎠, (5)

where we also assumed that the coupling parameters wAA

and wAB do not depend on layers. The moiré Brillouin zone
(mBZ) for this Hamiltonian is depicted in Fig. 2. The re-
ciprocal moiré lattice is generated by vectors b1,2 = q2,3 −
q1. In the coordinate space the eTTG configuration forms
a single moiré lattice that is spanned by the lattice vectors
a1,2 = (4π/3kθ )(±√

3/2, 1/2), with kθ = 2kD sin(θ/2), and
we neglect the effects of the moiré lattice [37]. It is useful
to introduce complex coordinates z, z̄ = rx ± iry in real space
and k, k̄ = k1 ± ik2 in momentum space. The Hamiltonian

FIG. 2. (a) Original Brillouin zones of three graphene layers with
their Dirac points K1, K2, and K3. Three layers are consecutively
twisted by the same angle θ , so |q12

1 | = |q23
1 |. (b) Moiré Brillouin

zone for eTTG. We neglect a relative rotation between vectors q12
1

and q23
1 and denote them by q1. The wave vector k is zero at the

Dirac point K2.

(5) acts on a spinor 	(r) = (φ1, η1, φ2, η2, φ3, η3), where the
indices 1,2,3 represent the graphene layer.

For a small twist angle θ we can neglect the phase factors
in the Pauli matrices σ±θ → σ. Introducing the dimensionless
variable α = wAB/(vF kθ ), and writing the Hamiltonian (5) in
the sublattice basis 	(r) = (φ1, φ2, φ3, η1, η2, η3), we obtain

HeTTG =
(
M(r) D†

3 (r)
D3(r) M(r)

)
, (6)

where we have rescaled coordinates r → kθ r and the Hamil-
tonian, so the energies of (6) are measured in units of vF kθ .
The operators D3 and M are

D3(r) =
⎛
⎝ −2i∂̄ αU (r) 0

αU (−r) −2i∂̄ αU (r)
0 αU (−r) −2i∂̄

⎞
⎠,

(7)

M(r) = wAA

wAB

⎛
⎝ 0 U0(r) 0

U0(−r) 0 U0(r)
0 U0(−r) 0

⎞
⎠,

where the potentials U (r) = ∑3
n=1 ωn−1e−iqnr and U0(r) =∑3

n=1 e−iqnr, ω = eiφ , qn = R(n−1)φ (0,−1), and we in-
troduced derivatives ∂, ∂̄ = 1

2 (∂x ∓ i∂y). The Bloch states
	k(r) = (φk(r), ηk(r)) of (6) are parametrized by the wave
vector k from the mBZ and satisfy the following boundary
conditions:

	k(r + a1,2) = eik a1,2U (3)
φ 	k(r), (8)

where the matrix U (3)
φ = 1AB ⊗ diag(ω, 1, ω∗).

III. RELATION TO THE TWISTED BILAYER GRAPHENE

In this section we show that eTTG Hamiltonian (6) has
an infinite series of magic angles and exactly flat bands in
the chiral limit wAA = 0. Moreover the magic angles and the
Bloch states of the eTTG’s flat bands are related to those of
TBG. Namely, if TBG has two exactly flat bands at the magic
angle θTBG then eTTG must have four exactly flat bands at the
magic angle at θeTTG = θTBG/

√
2.
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The Hamiltonian for TBG in the chiral limit has the fol-
lowing form in the sublattice basis [29]:

HTBG =
(

0 D†(r)
D(r) 0

)
, D(r) =

( −2i∂̄ αU (r)
αU (−r) −2i∂̄

)
.

(9)

The Bloch’s wave functions k(r) = (ψk(r), χk(r)) satisfy
the boundary conditions

k(r + a1,2) = eik a1,2U (2)
φ k(r), (10)

where U (2)
φ = 1AB ⊗ diag(1, ω∗). This Hamiltonian has two

exactly flat bands at zero energy over the entire mBZ:

HTBGk(r) = ε0(k)k(r), ε0(k) = 0,

at the infinite series of magic angles α = 0.586, 2.221, . . . .
These flat bands are formed by the Bloch states k = (ψk, 0)
and ̂k = (0, χk ), where the functions ψk satisfy the equation

D(r)ψk(r) = 0, ψk(r + a1,2) = eika1,2Uφψk(r), (11)

with Uφ = diag(1, ω∗) and the functions χk satisfy D†χk = 0
with the same boundary conditions.

Let us assume we have two wave functions ψk and ψk′

at wave vectors k and k′ of the mBZ [we notice that the
eTTG and TBG Hamiltonians (6) and (9) have identical
mBZ]. These wave functions are two-component spinors:
ψk = (ψk1, ψk2) and ψk′ = (ψk′1, ψk′2) and we can construct
the following three-component wave function using their
components:

φk+k′+q1 (r) = ψk(r) × ψk′ (r)

≡
⎛
⎝ ψk1(r)ψk′1(r)

1√
2
[ψk1(r)ψk′2(r) + ψk2(r)ψk′1(r)]

ψk2(r)ψk′2(r)

⎞
⎠,

(12)

where the subscript of the functions indicates the location at
the BZ. Thus one can check that the resulted function φ satisfy
(8) for the point k + k′ + q1 of BZ. This construction allows,
in principle, to find several wave functions at the given point
of BZ, but we will show that they are linearly dependent. It
is possible to check that this wave function satisfies the zero-
energy equation of eTTG,

D3(r)φk+k′+q1 = 0, (13)

and the boundary conditions (8), provided we use the follow-
ing relation between the parameters α (twist angles) of eTTG
and TBG:

αeTTG =
√

2αTBG (θeTTG = θTBG/
√

2). (14)

Hence we constructed zero-energy Bloch states 	k+k′+q1 =
(φk+k′+q1 , 0) of the Hamiltonian HeTTG in the chiral limit
wAA = 0. Similarly we can construct zero-energy Bloch states
	̂k+k′+q1 = (0, ηk+k′+q1 ) using the functions χk and χk′ of
TBG. The spectrum of eTTG in the chiral limit at the first two
magic angles is depicted in Fig. 3 and we listed the first four
magic angles in TBG and eTTG in Table I. Below we write
explicit expressions for the eTTG flat bands Bloch states and
explain why there are four exactly flat bands in this case.

FIG. 3. Spectrum of the equal-twist trilayer graphene Hamilto-
nian (6) in the chiral limit (wAA/wAB = 0) at the first two magic
angles α = 0.83 and α = 3.14. There are four exactly flat bands at
zero energy (highlighted in red).

It was derived in [29] that the wave functions ψk(r) in (11)
have the form

ψk(r) = fk(z)ψK (r),

fk(z) = ei ka1
a1

z ϑ1([z − (1 − ik)z0]/a1|ω)
ϑ1((z − z0)/a1|ω)

, (15)

where a1,2 = (a1,2)x + i(a1,2)y, z0 = 1
3 (a1 − a2), and ψK =

(ψK,1, ψK,2) is a solution of (11) at the Dirac point K , which
corresponds to k = 0 (this solution exists for an arbitrary twist
angle). The theta function ϑ1(z|τ ) is defined as

ϑ1(z|τ ) =
+∞∑

n=−∞
eiπτ (n+ 1

2 )2
e2π i(z− 1

2 )(n+ 1
2 ), (16)

and has zeros at z = m + nτ . At the magic angles, the function
ψK (r) has a zero at the point r0 = 1

3 (a1 − a2). This zero
cancels with the zero of the theta function in (15), making
ψk(r) finite. The function ψk(r) has zero at z = (1 − ik)z0

due to the theta function in the numerator.
Using these results for TBG we obtain for the eTTG zero-

energy wave functions

φk(r) = fk′ (z) fk−k′−q1 (z)φK1 (r), (17)

where φK1 = ((ψK,1)2,
√

2ψK,1ψK,2, (ψK,2)2) is the zero-
energy solution at the Dirac point K1 of eTTG (corresponds
to k = q1). The functions (17) have two zeros (or a double
zero) in the moiré lattice unit cell and thus there are only
two linearly independent solutions (17) at each point of the
mBZ [61] and using Eq. (12) for different wave functions of
TBG we would always get a linear combination of these basis

TABLE I. Comparison between magic angles for TBG and eTTG
in the chiral limit (wAA/wAB = 0).

α1 α2 α3 α4

TBG 0.586 2.221 3.75 5.276
eTTG 0.829 3.141 5.30 7.461
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FIG. 4. Spectrum of the equal-twist trilayer graphene Hamil-
tonian (6) for wAA/wAB = 0.6, 0.7, 0.8 at the twist angles α =
0.8, 0.76, 0.72 close to the first magic angle α = 0.83. For each
ratio wAA/wAB we chose a twist angle such that it minimizes the
bandwidth of the first two lowest energy bands. The four lowest
energy bands are highlighted in red. These bands are exactly flat in
the chiral limit (wAA/wAB = 0) at the magic angle.

solutions. There is a freedom to choose a basis of two linearly
independent solutions φ

(1)
k and φ

(2)
k and one possible choice is

φ
(1)
k (r) = fk(z) f−q1 (z)φK1 (r),

φ
(2)
k (r) = fk+q1 (z) f−2q1 (z)φK1 (r). (18)

We notice that these functions are not necessarily orthogonal.
It is possible to construct an orthogonal set following [61].
Hence the functions 	k = (φk, 0) and 	̂k = (0, ηk ) comprise
four exactly flat bands.

Now we show that at the magic angles of the chiral
eTTG the upper and lower bands touch the four exactly flat
bands at the Dirac point K2, as can be seen in Fig. 3. The
emergence of two additional zero modes 	̃K2 = (φ̃K2 , 0) and
	̃K2 = (0, η̃K2 ) at the magic angles is related to existence of
unphysical singular solutions ψ̃k(r) and χ̃k(r) of the chiral
TBG Hamiltonian at the magic angles [62]. As was shown in
[62] Eq. (11), apart from the regular solution ψk(r) in (15),
admits a singular solution ψ̃k(r) which has a pole instead of
a zero. Since this solution is singular it never appears in the
spectrum of TBG. But in the case of eTTG the relation (12)
allows one to construct a nonsingular wave function φ̃K2 (r) by
multiplying components of the function ψ̃k with the pole by
the components of the function ψk′ with zero, such that the
pole and zero are at the same point of the moiré unit cell and
cancel each other. This is possible provided k + k′ + q1 = 0.

In spite of infinitely many combinations k and k′ satisfying
this constraint, there is only a single linearly independent
wave function φ̃K2 (r) and for concreteness we choose k = 0
and k′ = −q1, so we can write

φ̃K2 (r) = ψ̃K (r) × ψK ′ (r), (19)

where ψ̃K and ψK ′ are the singular and regular solutions of
Eq. (11) at the TBG Dirac points K (k = 0) and K ′ (k = −q1),
respectively. A similar construction applies to the function
η̃K2 (r).

Finally in Fig. 4 we plot a spectrum of the eTTG Hamil-
tonian (6) away from the chiral limit. We see that the four
lowest energy bands are sensitive to the coupling parameter
wAA. Nevertheless the first two lowest energy bands remain
relatively flat in a small range of twist angles close to the first
eTTG magic angle α = 0.83.

IV. DISCUSSION

In conclusion, we related magic angles and the Bloch states
of the exactly flat bands of eTTG to those of TBG in the
chiral limit. The electronic band structure of TBG has been
extensively studied [29,62–67]. We remark that the relation
between the alternating-twist trilayer graphene (aTTG) and
TBG found in [33] is a linear algebraic relation between the
aTTG and TBG Hamiltonians and works for any twist angles
α and ratio of the coupling parameters wAA/wAB. In contrast,
the relation between the eTTG and TBG zero-energy Bloch
states is nonlinear and is valid only at the magic angles or
Dirac points. In general the rest of the spectrum of eTTG and
TBG at the magic angles is different.

Finally we remark that the current experimental works did
not investigate eTTG at the range of angles close to the first
magic angle θ∗ ≈ 0.74◦ predicted in this Letter. Although the
lowest energy bands of eTTG near the magic angle lose their
perfect flatness away from the chiral limit, it is still possible
that these bands “remember” the holomorphic structure of the
Bloch states (18) in the chiral limit, similarly to the case of
TBG [68], and this could potentially pave the way for exciting
new discoveries.
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