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There is no doubt that the information hidden in entanglement entropy (EE), for example, the nth order Rényi
EE, i.e., SA

n = 1
1−n ln Tr(ρn

A), where ρA = TrAρ is the reduced density matrix, can be used to infer the organizing
principle of two-dimensional (2D) interacting fermion systems, ranging from spontaneous symmetry-breaking
phases and quantum critical points to topologically ordered states. It is far from clear, however, whether EE
can be obtained with the precision required to observe these fundamental features—usually in the form of
universal finite-sized scaling behavior. Even for the prototypical 2D interacting fermion model—the Hubbard
model—to all existing numerical algorithms, the computation of EE has not been successful with reliable data
from which the universal scaling regime can be accessed. Here, we explain the reason for these unsuccessful
attempts of EE computations in quantum Monte Carlo simulations in the past decades and, more importantly,
show how to overcome the conceptual and computational barrier with the incremental algorithm, such that the
stable computation of EE in 2D interacting fermion systems can be achieved and universal scaling information
can be extracted. Relevance toward experimental 2D interacting fermion systems is discussed.

DOI: 10.1103/PhysRevB.108.L081123

I. INTRODUCTION

Entanglement witnesses can reveal the fundamental or-
ganizing principle of quantum many-body systems [1–21].
One such witness is entanglement entropy (EE), i.e., the
nth order Rényi EE SA

n = 1
1−n ln Tr(ρn

A), where ρA = TrAρ

is the reduced density matrix of a many-body Hamiltonian
[4–8,12,22–36]. EE is an important quantity for the inves-
tigations of two-dimensional (2D) and higher-dimensional
interacting fermion systems, as it can reveal the fundamental
conformal field theory (CFT) data for the fermionic quan-
tum critical points [1,4–6], the nature of the low-energy
collective modes [12,22–24,30–32,35,36], and the topologi-
cal information [7,8], which are usually difficult to compute
otherwise. Therefore, the ability to compute the scaling be-
havior of EE for 2D interacting fermion systems holds the key
to understanding properties of non-Fermi-liquid and strange
metal states in high-temperature superconductivity, phases in
quantum moiré materials, fermion quantum criticalities, topo-
logical ordered states, etc. However, as we will explain below,
the stable computation of EE for 2D interacting fermion
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systems has not been successful despite many attempts over
the past decades.

The EE of free fermion systems can be derived via the
Widom-Sobolev formula [14,32,33,37–40] and results in the
L ln(L) scaling of a free Fermi surface in 2D [14,32–36].
The universal log coefficient beyond the area law scaling for
free Dirac fermions has also been obtained [6,14,15,41,42].
The computation of EE for interacting fermion lattice models
in 2D has not been successful, with notable exceptions includ-
ing topological EE computed from fractional quantum Hall
ground states [43,44].

Since the computation of EE in 2D interacting fermion
lattice models requires access to a many-body wave function
or partition function [4–8], the auxiliary-field determinant
quantum Monte Carlo (DQMC) method becomes a good
tool to possibly obtain EE in the exponentially large Hibert
space [22–24,26,30,31,45–49]. In the past decades, signifi-
cant algorithmic advances in the computation of Rényi EE
have been made. This was spearheaded by Grover [22],
who used the free fermion decomposition of the reduced
density matrix to identify an estimator based on indepen-
dent auxiliary-field configurations. Despite its elegance, early
implementations of this approach revealed severe statisti-
cal errors at strong coupling and not-even-large subsystem
sizes [23,24]. This motivated translating the highly successful
replica approach from path-integral spin systems [50] into
the auxiliary-field fermion language [45–47], which however
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proved cumbersome since it required introducing a repli-
cated environment for the entangling subsystem and using
an imaginary time-dependent Hamiltonian, thus substantially
increasing the computation burden [the computational com-
plexity of DQMC scales as O(βN3), with β = 1

T the inverse
temperature and N = Ld for d spatial dimension systems with
linear size L]. Furthermore, it suffered from subtle stabil-
ity issues regarding the computation of Green’s functions.
All attempts thus far in computing Rényi EE for interacting
fermions in 2D have not achieved the precision required to
extract, in the simplest square lattice Hubbard model, an area
law plus universal log due to Goldstone modes [51].

On the other hand, since the quantum Monte Carlo (QMC)
computational complexity in spin/boson systems scales as
O(βN ), the EE of 2D Heisenberg models [50,52–55] and
other related systems [12,56] has had much success, although
the data quality is always a serious issue for extracting
the expected universal scaling coefficients. This problem is
completely solved by the introduction of the incremental al-
gorithm [25,27–29]. The algorithm converts the computation
of the Rényi EE into the parallel execution of the Jarzynski
equality [57] of the free energy difference between partition
functions on replicated manifolds, making the precise deter-
mination of EE scaling on various 2D quantum spin models
possible with exquisite data quality. By using the algorithm,
controlled results with the expected CFT information can then
be obtained, including in the Néel phase of the antiferromag-
netic Heisenberg model, at the (2+1)D O(3) quantum critical
point, the deconfined quantum critical point, and inside the Z2

topological ordered kagome quantum spin liquid [27–29], to
name a few.

It is in the process of developing the incremental algorithm
into DQMC for the entanglement computation in interact-
ing fermion systems [30] that we understand the reason
why the previous direct implementation of EE computation
[22–24,26,45–47] does not work—not because of the heavy
computation added to the already expensive DQMC by adding
replicas but because the direct computation does not use the
correct sampling weight to construct a proper Markov chain
Monte Carlo simulation. The incremental algorithm [30,31],
on the other hand, features two key improvements:

(1) designing the effective Monte Carlo importance sam-
pling weight for EE computations and

(2) conditioning the exponentially small partition function
ratio into a parallel execution of values with scales of unity;

and consequently offers the correct scheme that can be
utilized to extract the EE with reliable data quality and con-
trollable polynomial computation complexity. Here, we use
the prototypical example of 2D interacting fermion lattice
models—the square lattice Hubbard model—to fully explain
the simple but fundamental breakthrough of the incremental
over the previous direct computation of EE. The algorithm
opens the avenue for the stable EE computation for 2D
fermion quantum matter and can be used to extract the univer-
sal information for the quantum critical metal and non-Fermi
liquid [14,58–67], the fermion deconfined quantum critical
point [15,31,68,69], the correlated flat-band Moiré materials
[70–75], kagome metals [76–78], and the entanglement spec-
tra and Hamiltonian [9,11,13,16,23,46,79], which cannot be
accessed with other methods.

II. MODEL AND METHOD

We study the second Rényi EE for the square lat-
tice Hubbard model at half-filling, with the Hamil-
tonian H = −t

∑
〈i, j〉(c

†
i,σ c j,σ + H.c.) + U

2

∑
i(ni,↑ + ni,↓ −

1)2, where c†
i,σ and ci,σ denote the creation and annihilation

operators with spin σ = ↑,↓ on site i, 〈i, j〉 represents the
nearest-neighbor hopping, ni,σ = c†

i,σ ci,σ is the particle num-
ber operator for spin σ , and U/t tunes the on site interaction
strength, with t = 1 the energy unit.

We utilize the projector DQMC method to compute the
Rényi EE. As described in the Supplemental Material (SM)
[80] and the literature [58–60,70–72,81,82], it carries out a
Hubbard-Stratonovich transformation to introduce an auxil-
iary field {s} to decouple the quartic fermion interaction and

compute ground-state observables as 〈O〉 =
∑

{s} W s〈O〉s

∑
{s} W s , where

W s is the unnormalized weight of configuration s proportional
to a determinant whose elements depend on s [80]. To calcu-
late the Rényi EE of interacting fermions in DQMC, Grover
[22] introduced a direct formula based on the free fermion de-
composition of the reduced density matrix ρA (with entangling
region A) using two independent auxiliary field replicas, such
that the second Rényi EE SA

2 is given by

exp
( − SA

2

) = Z (1)

Z (0)
:=

∑
{s1,s2} Ws1,s2 det gs1,s2

A∑
{s1,s2} Ws1,s2

, (1)

where Ws1,s2 = W s1W s2 , and gs1,s2
A = Gs1

A Gs2
A + (I − Gs1

A )(I −
Gs2

A ) is the Grover [22] matrix connecting the Green’s func-
tions Gs1 and Gs2 of the two replicas on A. Here, Z (1) stands
for the partition function with the fully connected entan-
gling region between the two replicas and Z (0) the partition
function of two independent replicas; we use λ ∈ [0, 1] to
parametrize the evolution from Z (λ = 0) to Z (λ = 1).

Based on Eq. (1), one can compute SA
2 as in conventional

DQMC simulations with the configurational weights Ws1,s2 ,
and this is indeed what has been implemented in previous
attempts [22–24]. However, it was noticed that the obtained
EE suffered greatly from a numerical instability issue with
poor data quality that cannot be used to extract the universal
scaling behavior:

SA
2 (L) = aL ln L + bL + s ln L + c, (2)

where the coefficients a stem from the 2D Fermi surface and
can be derived at the noninteracting limit [14,32–37] (see Eq.
(S7) and Fig. S1 in the SM [80]), b governs the area law
scaling, and s is the universal corner contribution at critical
points [5,6,12] or is proportional to the number of Goldstone
modes in symmetry-broken phases [51]. For example, for the
2D Hubbard model at U = 8, s = NG

2 = 1, where NG = 2 is
the number of Goldstone modes for a Néel state (see Fig. 2),
a result that has eluded implementations using the direct ap-
proach of Grover [22].

What has been seen, however, is that, for slightly larger
system sizes (L � 8) and slightly stronger interactions (U �
4), the distribution of the Grover determinants became very
broad with spikes (rare events). We find, if one insists on direct
computation of EE with Eq. (1), it is these rare events that
actually make great contributions to the expectation value of
EE, but since they occur less often with respect to L and U ,
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FIG. 1. The incremental computation of entanglement entropy (EE). The entanglement region A is denoted as the blue dashed box.
According to Eq. (3), we split the computation into the parallel execution of many ratios, where each ratio is bounded with a scale of unity
and the sites inside A for each parallel piece are not fixed but change stochastically. The adding and removing sites (denoted as the red dot and
dashed circle) in A are carried out with probabilities Pplus and Pminus. The quantum Monte Carlo (QMC) updates of the auxiliary field for each
parallel piece are carried out independently. When we update the s1, s2 field, the sites in A and in the environment are fixed, as denoted by the
circular arrows.

one will certainly run into a problem with increased L and U .
This means the direct computation of EE in Eq. (1) follows
the incorrect distribution Ws1,s2 and consequently does not
average according to the important sampling of a Markov
chain Monte Carlo process.

To address this issue, i.e., to sample properly in the
replicated configurational space of EE computation, the in-
cremental algorithm for fermions was recently developed in
Ref. [30] and further applied in Ref. [31]. As sketched in
Fig. 1, the incremental algorithm has improved the direct
computation in two main points:

First, it introduces a new auxiliary sampling configuration,
namely, the subset C of the entanglement region A, which
instead of calculating exp(−SA

2 ) directly converts the compu-
tation of exp(−SA

2 ) into a parallel execution of incremental
ratios as

exp
(−SA

2

) = Z (1)

Z (0)

:= Z (λ1)

Z (0)

Z (λ2)

Z (λ1)
· · · Z (λk+1)

Z (λk )
· · · Z (1)

Z (λNλ
)
, (3)

where Z (λ) = ∑
C⊆A λNC (1 − λ)NA−NC ZC [27,30] with λ ∈

[0, 1], NC (NA) is the number of sites in region C (A), and
ZC = ∑

{s1},{s2} Ws1,s2 det gs1,s2
C . Here, Nλ is the number of λk .

Further, Z (λk+1 )
Z (λk ) is computed as

Z (λk+1)

Z (λk )
=

∑
{s1,s2,C⊆A} Ws1,s2

C (λk )OC (λk, λk+1)
∑

{s1,s2,C⊆A} Ws1,s2
C (λk )

, (4)

where the observable for the EE is OC (λk, λk+1) =
( λk+1

λk
)NC ( 1−λk+1

1−λk
)NA−NC , and the sampling weight of the EE

computation is

Ws1,s2
C (λk ) = λ

NC
k (1 − λk )NA−NC Ws1,s2 det gs1,s2

C . (5)

We note the weight ratio W
s′1 ,s2
C (λk )

Ws1 ,s2
C (λk )

= W s′1 det g
s′1 ,s2
C

W s1 det g
s1 ,s2
C

of incremental

sampling in Eq. (4) is explicitly different from that of direct

sampling Ws′1 ,s2

Ws1 ,s2
= W s′1

W s1
in Eq. (1), in that it contains the contri-

bution from the determinant of the Grover matrix. In addition,
the incremental method updates the configurations C stochas-
tically with probabilities Pplus and Pminus for adding or moving
one site from region C, as shown in Fig. 1. When sampling
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FIG. 2. Entanglement entropy (EE) of the square lattice Hubbard
model at U = 8. The entanglement region A is of size L × L/2.
The red and blue lines are from the direct and incremental methods,
respectively. The deviation of the direct computation for L � 8 is
obvious. The inset shows the incremental data of SA

2 − 0.241L vs
log(L), with the slope (denoted as the black dashed line) representing
the universal log coefficient s = NG

2 = 1 in Eq. (2); our fitting results
of s = 1.06(4) are fully consistent with the expected behavior of a
Néel antiferromagnetic Mott insulator with NG = 2. It is important
to note that the error bars of direct data (red dots) are unestimated, as
the mean values have not converged, as shown in Fig. 4.
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FIG. 3. Difference between direct and incremental measure-
ments. (a) and (b) show the time series of det(gs1,s2

A ) and S(t ) from a
single Markov chain using a direct method with U = 8, L = 4. Both
observables are clearly not normally distributed, and rare events in
the form of the sudden drop in (a) and spikes in (b), denoted by blue
dotted lines, are clearly seen. (c) and (d) Z (λk+1 )

Z (λk ) for U = 8, L = 10
by the incremental method with λ ∈ [0, 1]. The number of λk , Nλ is
50, and each piece has the value of scale unity. The three arrows in
(d) point out the position of three different λk values whose time se-
ries are shown in (c). The observables are now normally distributed.

according to Eq. (5), there will be no spikes in the observable
OC (λk, λk+1), provided λk and λk+1 are close enough such
that their histograms of NC overlap. The ensemble average can
then be properly carried out.

Second, we find each piece of the ratio Z (λk+1 )
Z (λk ) in Eq. (3) can

be computed independently, which means massive paralleliza-
tion of high-performance computation (denoted in Fig. 1) can
greatly reduce the computation time. Although exp(−SA

2 ) is
eventually an exponentially small quantity, each piece in the
product of Eq. (3) has a well-behaved bound of the scale of
unity; since the independent computation of Z (λk+1 )

Z (λk ) is very
well behaved, their product gives rise to controlled EE with
the same polynomial complexity as DQMC. The increments
Z (λk+1 )
Z (λk ) of O(1) and their histograms in the noninteracting cases

are shown in the SM [80] (see also Ref. [83] therein).

III. RESULTS IN 2D HUBBARD MODEL

We have carried out EE computation for the square lattice
Hubbard model with L = 4, 8, 10, 12, 16, and 20. Most of

our data are obtained at U = 8, where the system is in the
antiferromagnetic Mott insulator state. The U = 0 limit is
discussed in the SM [80], where the computed aL ln L with
the coefficient a = 1

2 in Eq. (2) was obtained in full agree-
ment with the analytic expectation from the Widom-Sobolev
formula [14,32,37–40].

The results of EE at U = 8 are shown in Fig. 2. Here,
the entanglement region is half of the lattice: L/2 × L. One
clearly sees that, when the system size L is small, the results
of the two methods coincide, but when the size gradually
increases, the mean value of the direct method starts to deviate
from the expected behavior of the incremental one.

Moreover, since the half-filled square lattice Hubbard
model is always in an antiferromagnetic Mott insulating phase
(U > 0), the SA

2 of the system with spontaneous broken SU(2)
continuous symmetry should have a form in Eq. (2) with
a = 0, b finite, and the universal log-coefficient s = NG

2 = 1,
where NG = 2 is the number of the Goldstone modes [12,51].
As shown in the inset of Fig. 2, the log coefficient after
extracting the area law term is 1.06(4), very consistent with

(a)

(b)
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1.3

1.35

1.4

1.45

Direct

Incremental

0 0.5 1 1.5 2 2.5 3

10
4

2

2.2

2.4

2.6

2.8

3

0 0.5 1 1.5 2

10
5

3.5

4

4.5

5

(c)

FIG. 4. Convergence comparison between the direct and incre-
mental methods. (a) For L = 4,U = 8, the direct method (red line)
can slowly converge to an exact value, while the incremental method
(blue dots) converges fast. (b) For L = 6,U = 8, the direct method
converges within a reasonable central processing unit (CPU) time
but with big fluctuations; the incremental method converges fast.
(c) For L = 10,U = 8, the direct method cannot converge within a
reasonable CPU time; the incremental method converges fast.
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the theoretical expected value 1. The results of the direct
computation will not be able to perform such an analysis.

To reveal the difference between the two methods, we
record the time series of EE computation along the Markov
chain, S(t ) = − ln[ 1

t

∑t
i=1 exp(−SA

2 )(i)], where S(t ) repre-
sents the expectation value of observable SA

2 after the first t
DQMC sweeps. As shown in Fig. 3(b), for the direct method,
SA

2 does not follow normal distribution, and whenever a peak
is sampled, there is an obvious drop in the mean value of
EE calculated, as shown in Fig. 3(a). The S(t ) is affected by
these rare events, which renders the direct computation with
very poor performance. As L and U increase, a very long
Markov chain is needed to obtain accurate values, as shown
in Fig. 3(b) and the red lines in Fig. 4. In fact, from Fig. 4(c),
one sees for L = 10 and U = 8 that the direct S(t ) has not
converged. The incremental EE has no problem. For each
parallel piece, the range of the observable is controlled as we
have considered the determinant of the Grover matrix in the
weight during sampling in Eq. (5). In Fig. 3(d), the range of
the partition function ratios is given, with L = 10,U = 8, and
λk = [sin (0.002+50(k−1))π

2 ]2. And the sampling distributions of
three colored points are shown in Fig. 3(c). The incremental
method with its fast convergence and parallel computation
clearly outperforms direct computation.

IV. DISCUSSION

By utilizing the square lattice Hubbard model, we reveal
the fundamental difference between the direct and incremental
computation of EE in that the two major improvements: (i)
designing the effective Monte Carlo sampling weight and

(ii) conditioning the exponential factor of partition function
ratios into parallel execution of values with scale of unity;
bestow the incremental method access to the entanglement
scaling behavior of 2D interacting fermion models. Our ap-
proach establishes the paradigm of EE computation for 2D
highly entangled fermion quantum matter and has the poten-
tial to offer universal experimentally measurable quantities to
guide experiments in quantum critical metal and non-Fermi-
liquid [14,58–67], the fermion deconfined quantum critical
point [15,31,68,69], the correlated flat-band Moiré materials
[70–75] and kagome metals [76–78], and the entanglement
spectra and Hamiltonian in 2D interacting fermion systems
[9,11,13,16,23,46,79].
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