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Near-frozen nonequilibrium state at high energy in an integrable system
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Ergodic many-body systems are expected to reach thermal equilibrium. Here, we demonstrate that, surpris-
ingly, high-energy electrons, which are injected into a quantum Hall edge mode with finite-range interactions,
stabilize at a far-from-thermalized state over a long timescale. To detect this nonequilibrium state, one positions
an energy-resolved detector downstream of the injection point. So far, nonequilibrium distributions in integrable
systems were either found not to display relaxation at all, or generically relax to near-thermal asymptotic states.
In stark contrast, the here-obtained many-body state comprises fast-decaying transient components, followed by
a nearly frozen distribution with a peak near the injection energy.
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Many-body systems by and large tend to thermalize and
display ergodicity [1–3]. This is not generally the case for
integrable many-body systems. Kinematics in one dimension
imposes several constraints which may undermine the ability
of a many-body system to relax towards equilibrium [4–6].
The analysis of such systems is largely based on Luttinger
models and generalizations thereof [7–17]. Specifically, the
low-energy dynamics of the edge of quantum Hall phases is
a convenient platform to test these paradigmatic concepts in
a condensed matter setting [18–36]. Interestingly, for multi-
channel platforms, treating interactions as short ranged still
results in quasithermal states [31,32,34,37–40]. In the pure
case of a chiral single-channel one-dimensional system, re-
laxation is not facilitated unless we consider finite-range
interactions [18,21,30,41–43].

When dealing with a linear fermionic spectrum, it is well
known that the relaxation of high-energy electronic excita-
tions is suppressed due to the incompatibility of momentum
and energy conservation [13–16,44]. Notwithstanding, the
mere fact that the injection of particles occurs locally leads
to a breaking of translational invariance and facilitates some
relaxation [23,45]. In this Letter, we study this relaxation
and find that it does not lead to equilibration. Furthermore,
we study qualitative and robust features of this relaxation.
Electrons that are locally injected at a well-defined energy
interact with the channel’s Fermi sea via finite-range inter-
actions, which leads to partial energy relaxation downstream
of the injection point. We predict the emergence of a rather
extreme far-from-equilibrium state, in which the injected elec-
trons remain pinned near their injection energy, giving rise
to a nonmonotonous double-peak distribution. We argue that
this lack of equilibration is a consequence of the weak break-
ing of translational invariance. Our predictions can be tested,
employing local tunneling spectroscopy measurements of a
chiral fermionic channel, e.g., a quantum Hall edge amenable
to experimental study.

For a simplified model that features one velocity for plas-
mons excited from the Fermi sea and another velocity for

the injected electron, we use bosonization to compute the
full nonequilibrium electron distribution as a function of the
distance between the injection point and the point where
electrons are detected. In order to test the result that the elec-
tron distribution exhibits a state far from thermal equilibrium
which remains asymptotically stable [cf. Eq. (2) and Fig. 2],
we employ a more general model of a screened interaction.
The latter features a continuum of plasmon velocities. Our
analysis focuses on the limit of high injection energy, in
which the originally injected electron can be energetically
distinguished from Fermi sea excitations. After an initial
time dynamics represented by the two-velocity model, some
additional relaxation takes place, which however keeps the
distribution close to the injection energy, and thus far from
thermal equilibrium [see Fig. 3(a)].

General framework and results. In order to describe the
injection and detection of single electrons at specific energies
in the chiral channel, we consider the model depicted in Fig. 1.
A quantum dot emits an electron at energy ωi from a source
contact into the channel at chemical potential μ [46]. This
injected electron propagates along the channel for a distance

FIG. 1. An emitter quantum dot injects electrons at energy ωi

into a chiral quantum channel, to subsequently be extracted by a
detector quantum dot at energy ωf and distance x. Finite-ranged
Coulomb interactions between electrons in the channel limit the
average amount of energy transferred per interaction process.
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x. Subsequently, this electron itself, or electrons and holes
excited during propagation (manifest through plasmons gen-
erated on top of the Fermi sea), are detected by a second
quantum dot at energy ωf, producing a signal in the drain. The
Hamiltonian for the chiral quantum channel is given by

H =
∫

dk vkĉ†
k ĉk + 1

4π

∫
dkdk′dq νqĉ†

k−qĉ†
k′+qĉk′ ĉk . (1)

Here, v denotes the bare velocity in the channel, the matrix
element νq constitutes the Fourier transform of the screened
Coulomb interaction matrix element in real space, of strength
ν0 = ν and screening length λ. Relaxation in such channels is
almost completely suppressed for injection energies ωi below
the quotient of the highest plasmon velocity v̄ and the screen-
ing length λ [21,42,45,47]. Below this threshold, injected
electrons remain energetically indistinguishable from charge
carriers excited from the Fermi sea, hence relaxation is subject
to Pauli blockade constraints. For pointlike interactions in real
space (λ → 0), the ratio v̄/λ diverges such that no relaxation
occurs at all. In this Letter, we focus on the opposite limit
ωi � v̄/λ, and observe an inhibition of relaxation that does
not rely on the aforementioned effect.

We first consider a simplified picture of a two-velocity
kinematics, which features the velocity v of the electron in-
jected at high energy and another velocity v̄ = v + ν/2π for
all plasmons excited from the Fermi sea. Then, the excess
electron distribution p(ωf ) ≡ fChannel(ωf ) − fDrain(ωf ) in the
chiral channel featuring the electron distribution fChannel, mea-
sured with respect to the ground state distribution fDrain of
the drain, can be obtained through bosonization. This excess
distribution, which is proportional to the current in the drain,
is shown in Fig. 2 for several injection energies ωi.

For high injection energies, ωi3 � v̄/λc (blue curve), the
injected electron can be distinguished from electrons excited
from the Fermi sea (around μ = 0) by choosing a sufficiently
high detection energy ωf. Within the two-velocity model, λc

can be interpreted as a cutoff [42], which, similarly to the
screening length λ above, governs the transition from the
plasmonic to the fermion sector [cf. Eqs. (7) and (8) below].
The distribution of injected electrons that dissipate some of
their energy (next to the delta peak for elastically transmitted
electrons at ωi3 in Fig. 2) is given by

pinelastic(xs, ωif )
ωi,ωf�v̄/λc= x2

s

x2
s + λ2

c

λ2
c

v̄2
ωif exp

[
−ωif

λc

v̄

]
, (2)

where ωif = ωi − ωf denotes the injected electron’s energy
loss. For high injection energies, the distance xs = (v̄ − v)x/v
corresponds to the spatial extent of the excitation arriving at
the detection point (given the inherent chirality of the prob-
lem, below we refer to xs as time); the ratio xs/λc is the
dimensionless interaction strength that controls a perturbative
expansion. Remarkably, the state in Eq. (2) remains concen-
trated within an interval v̄/λc below the injection energy, far
from thermal equilibrium, even in the limit of asymptotic
propagation distance xs/λc → ∞. For intermediate injection
energies ωi2 � v/λc (Fig. 2, yellow curve), scattering to en-
ergies in the region of energetic overlap between injected
and excited electrons is reduced by Pauli blockade. At low
injection energies ωi1 � v/λc (Fig. 2, green curve), Coulomb
repulsion reduces the rate of electrons tunneling into the

FIG. 2. The distribution p of electrons at the detection energy
ωf with respect to the channel’s ground state, after injection of an
electron at energy ωi, is shown at a fixed distance x between injection
and detection points. Here, p has been obtained from bosonization
[cf. Eq. (5)] for a model that features one velocity v for the injected
electron and one velocity v̄ > v for all plasmons in the Fermi sea
[cf. Eq. (8)], at v̄ = 1.2v and xs = 0.5λc, where λc corresponds to
the screening length. At a high injection energy (ωi3 = 14v/λc, blue
curve), the distribution of injected electrons that dissipate some of
their energy (next to the delta function peak of elastically transferred
electrons at ωi3 ) is completely separated from the distribution of
electron-hole pairs (close to μ = 0). For an intermediate injection
energy (ωi2 = 7v/λc, yellow curve), scattering to energies in the
region of energetic overlap between injected and excited electrons is
suppressed by Pauli blockade. At a low injection energy (ωi1 = v/λc,
green curve), Coulomb repulsion reduces the rate of electrons tun-
neling into the channel (zero-bias anomaly [37]), and Pauli blockade
further reduces relaxation.

channel (zero-bias anomaly [37]), and Pauli blockade further
reduces relaxation.

Taking into account screened interactions in the system
generates a continuum of plasmon velocities ranging from v

to v̄. This takes us beyond the two-velocity picture. A full re-
summation of the high-energy electron-plasmon perturbation
theory, and numerical evaluation of the thus-obtained electron
distribution for the aforementioned type of interaction, con-
stitutes our main result. This numerically obtained electron
distribution is displayed in Fig. 3(a), for several values of xs.

Initially, the dynamics of the distribution [xs = 0 to blue
triangle in Fig. 3(b)] resembles the dynamics obtained from
the model in which all plasmons share the same velocity v̄

[compare the solid blue curve at xs = 2.2λ in Fig. 3(a), and
the solid blue curve in Fig. 2, next to ωi3 ]. In contrast to the
two-velocity model, this buildup period is here followed by a
phase of rapid decay [blue triangle to green circle in Fig. 3(b)].
Remarkably, after this phase of decay, the center as well as the
maximum of the distribution decay only very slowly [green
circle to red asterisk in Fig. 3(b)] towards the Fermi level
at ωf = 0. Dissipation of the injected electron’s energy is
inhibited, such that the distribution remains metastable close
to the injection energy ωi, and thus far from thermal, on a
length scale that far exceeds the screening length.

Bosonization approach. In the following, the theoretical
background to obtain the above-described results is laid out.
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FIG. 3. (a) Distribution psc of high-energy injected electrons that
underwent relaxation [cf. Eq. (9)], as a function of detection energy
ωf, for several values of xs. Here, this distribution has been obtained
for the screened interaction (6), which gives rise to a continuum
of plasmon velocities in the Fermi sea. The energy loss ωif, max

(yellow arrows) at the maximum of the distribution pmax (horizontal
green line) is indicated for xs = 11λ, after the distribution underwent
buildup and a short period of rapid decay (green curve). Following
this period, psc varies only slowly, and remains far from thermal
equilibrium. The vertical blue line at the injection energy ωi indicates
elastic transfer (no energy loss). The probability of such transfer at
xs = 2.2λ (Pelastic ≈ 0.31) significantly exceeds the respective values
at xs = 11λ (Pelastic ≈ 9.3×10−6) and xs = 79λ (Pelastic ≈ 4.0×10−7);
the latter are not indicated. (b) Energy loss ωif, max (yellow) and
peak height pmax (purple) of the distribution psc, as a function of
xs [markers indicate xs values corresponding to distributions in (a)].
After an initial buildup period (xs = 0 to blue triangle), followed by
a rapid decay (blue triangle to green circle), the electron distribution
develops a metastable profile. The distribution as a function of xs

then varies only slowly on the scale of the screening length (cf. green
circle to red asterisk), and does not display efficient decay towards
the Fermi level located at ωf = 0.

Linearity of the fermionic dispersion relation in the first term
of Eq. (1) allows to obtain the greater (+) and lesser (−)
Green’s functions of the channel via bosonization [30,41–43],

G±(x, t ) = G±
0 (x, t )eS±(x,t ). (3)

Here, the noninteracting Green’s function G±
0 (x, t ) =

1/2π (x − vt ± iε) has been separated from the part that

describes interactions via the exponent [42]

S±(x, t ) =
∫ ∞

0

dq

q
(e∓i(ωqt−qx) − e∓i(vqt−qx) ). (4)

The bosonic dispersion relation ωq = vq(1 + νq/2πv) deter-
mines the velocities of the collective plasmon modes.

Given that tunneling to and from emitter and detector
quantum dots is weak, the current out of and into the drain
is proportional to the distribution of electrons at propagation
length x [48] and energy ωf with respect to the ground state of
the channel, provided that an electron tunnels into this channel
at ωi. The general expression for this distribution is given by
[49–51]

p(x, ωi, ωf )

= v2

2π

∫ +∞

−∞
dt0

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 eiωft0 e−iωi (t1−t2 )

× G−(0, t1 − t2)Gα (0,−t0)[�−+(x, 0, t0, t1, t2)

− �−−(x, 0, t0, t1, t2)], (5)

where α denotes the lesser component (−) for ωf < 0 (be-
low the Fermi level), and the greater component (+) for
ωf > 0 (above the Fermi level), and �βγ (x, t0, t1, t2, t3) =
Gβ (x, t0 − t3)Gγ (x, t1 − t2)/Gβ (x, t1 − t3)Gγ (x, t0 − t2).

For interactions that decay exponentially in momentum
space,

ν(exp)
q = ν exp (−λ|q|), (6)

we perform an order-by-order integration of Eq. (4) in an
expansion in powers of ν/2πv, which leads to

S(exp)±(x, t ) =
∞∑

k=1

1

k

[ ν
2π

t

x − vt ± iλk

]k

. (7)

Within the two-velocity approximation, one replaces λk by λc

(for all k) and obtains (cf. Supplemental Material [52])

G±
v-v̄ model(x, t ) = 1

2π

1

x − vt ± iε

x − vt ± iλc

x − v̄t ± iλc
(8)

(cf. Refs. [21,42]), which display poles determined by the
velocity v of high-energy electrons (which corresponds to the
slope of ωq for large q � 1/λ) and the velocity of low-energy
plasmons v̄ (given by the slope of ωq at q = 0).

Employing the thus-obtained Green’s functions in Eq. (8),
we can evaluate the relaxation distribution in Eq. (5)
analytically. Above the Fermi sea, ωf > 0, the electron dis-
tribution of Eq. (5) features two contributions, p(ωf > 0) =
Pelasticδ(ωi − ωf ) + pinelasticθ (ωi − ωf ). The first contribution,
Pelastic, has been investigated in detail [42,43], and describes
the weight of the delta peaks located at the injection energies
ωii in Fig. 2. The second contribution to the electron current,
pinelastic (for explicit expressions see Supplemental Material
[52]), is composed of three parts: the distribution in Eq. (2),
that corresponds to the originally injected electron entering
the detector at an energy other than the injection energy ωi,
the distribution pe

exc of electrons excited from the Fermi sea
entering the detector, as well as interference terms (cf. the dis-
cussion based on perturbation theory [45] which, in contrast
to present results, diverges for xs � λ).
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Below the Fermi sea, ωf < 0, we find p(ωf < 0) =
ph

excθ (ωi + ωf ) + ph
intθ (ωi + ωf ) which entails a contribution

ph
exc of holes left behind by excited electrons pe

exc, as well as
interference terms ph

int (see Supplemental Material [52]). The
full electron distribution obtained from Eq. (5) is displayed in
Fig. 2, for several values of the injection energy ωi. In the limit
of high injection energies, ωi � v̄/λc (ωi3 = 14v/λc, solid
blue), injected and excited electrons are energetically well
separated, and all above-mentioned interference terms vanish.
For intermediate injection energies (ωi2 = 7v/λc, dashed yel-
low), scattering to energies in the region of energetic overlap
of injected and excited electrons is suppressed by Pauli block-
ade. At low injection energies (ωi1 = v/λc, dotted-dashed
green), Coulomb repulsion reduces the rate of electrons tun-
neling into the channel (zero-bias anomaly [37]), and Pauli
blockade further reduces relaxation.

Semiclassical approach. To evaluate the distribution of in-
jected electrons for arbitrary screened interactions νq, which
allows for a continuum of plasmon velocities, we separate
the contribution of injected electrons that are detected close
to the injection energy from charge carriers excited from the
Fermi sea. Within this semiclassical picture, valid at high in-
jection energies (cf. Refs. [42–44] and Supplemental Material
[52]), we provide a full resummation of a perturbation expan-
sion that treats the injected electron as distinguishable from
bosonized plasmons in the Fermi sea, and fixes the injected
electrons transition time at t = x/v. The approach generates
the expression (cf. Supplemental Material [52])

psc(x, ωif ) =
∫ ∞

−∞

dt

2π
eiωift

× exp

{∫ ∞

0

dq

q
4 sin2

[
qx

2

νq

2πv

](
e−iωqt − 1

)}
,

(9)

in which the second term in the exponential corresponds to
the contribution of elastic transport in which no plasmons
are excited, and the first term in Eq. (9) in the exponential
contains the information about relaxation via excitation of
any finite number of plasmons. The squared sine factor in
Eq. (9) precisely results from the mismatch of the dispersion
of the high-energy electron at energy vq and the dispersion
of low-energy plasmons at energy ωq, and the argument of
this factor encodes energy-time uncertainty between this mis-
match 
ω = ωq − vq and the transit time of the high-energy
electron 
t = x/v. Thus, longer 
t favor larger momentum
transfer, for which the discrepancy 
ω becomes smaller. At
the same time, large momentum transfer is hampered by the
finite-ranged nature of interactions which causes a cutoff in
momentum space, such that the observed inhibition of re-
laxation likely emerges as a result of these two competing
mechanisms.

To test the validity of the high injection energy expression
in Eq. (9), we insert Eq. (8), which features one velocity v̄ for
all excited plasmons in the Fermi sea, into Eq. (9), written
in terms of Green’s functions (see Supplemental Material
[52]). This directly produces Eq. (2), which had initially been
obtained by evaluation of the full distribution given by Eq. (5),
followed by the limit ωi � v̄

λ
, ωif. For exponentially decaying

interactions, Eq. (6), we evaluate Eq. (9) numerically after
taking a scaling limit in which x/λ → ∞ and ν/2πv → 0,
while the product xs/λ of these two quantities is kept constant
[53] (cf. Supplemental Material [52]).

Discussion. Results of this numerical evaluation are dis-
played in Fig. 3. Figure 3(a) shows the energy distribution
of the arriving particles psc, for several values of effective
interaction strength xs/λ. Initially (short times, xs = 2.2λ,
see the blue curve), the distribution is very similar to the
prediction of the two-velocity model. At intermediate times
(xs = 11λ, green curve) one observes rapid decay, while for
longer timescales (xs = 79λ, red curve) the decay is very slow.
The slow decay of the distribution is made further apparent in
Fig. 3(b), which shows the maximum pmax of the distribution
as well as the energy loss ωif, max at this maximum, as a
function of time xs. The quantities ωif, max and pmax, as well
as the entire distribution display oscillatory behavior, which
they share with the magnitude of the elastic contribution
[42,43,52]. The frequency of this oscillation corresponds to
the maximum of the Galileo transformed bosonic spectrum
ωq − vq [54]. The decay of psc as a function of xs/λ is
markedly slow; ωif, max and pmax can be fitted to weak power
laws ωif, max ∼ (xs/λ)0.101±0.004 and pmax ∼ (xs/λ)−0.202±0.006.
This fit was performed at those xs/λ at which p(0)

sc displays the
first five local minima. Note though that asymptotic saturation
cannot be excluded.

We conclude by noting that GaAs and graphene are can-
didate materials for the observation of the above-described
metastable electronic distribution. At 10 T, the energy gap
between the zeroth and first Landau levels in GaAs is about
17 meV [55], and 115 meV in graphene [56]. The unit of
energy h̄v̄/λ for our results depicted in Fig. 3, at an estimated
screening length of 0.5 µm, amounts to 0.1 meV in GaAs and
1 meV in graphene. For both materials, the gap thus accom-
modates the entire energy range displayed in Fig. 3 by a wide
margin. Quantum dot spectroscopy experiments have already
been carried out in GaAs at high injection energies [23,24],
and isolation of a single channel from a multichannel sys-
tem has been experimentally realized [24,35,57]. In graphene,
precise control of transport has recently been demonstrated in
Fabry-Pérot interferometers [58,59].

In summary, we have investigated the relaxation of elec-
trons injected into a one-dimensional chiral channel, which
interact with charge carriers in the channel via finite-ranged
interactions. For a simplified model that features one veloc-
ity of incoming electrons and one velocity for plasmons in
the Fermi sea, we found a stable highly nonthermal state,
concentrated close to the energy of injected electrons. For a
more realistic model that features a continuum of plasmon
velocities, we predict a state that remains nearly frozen close
to high injection energies, far from thermal equilibrium.
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