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Searching for topological insulators in solids is one of the main issues of modern condensed-matter physics
since robust gapless edge or surface states of the topological insulators can be used as building blocks of
next-generation devices. Enhancing spin-orbit couplings is a promising way to realize topological insulators
in solids, whereas the amplitude of the spin-orbit couplings is not sufficiently large in most materials. Here, we
show a way to realize a topological state characterized by the quantized Zak phase, termed the Zak insulator with
spin-polarized edges in organic antiferromagnetic Mott insulators without relying on the spin-orbit coupling. The
obtained Zak insulator can have a large charge gap compared to the conventional topological insulators since
Coulomb interactions mainly govern the amplitude of the charge gap in the antiferromagnetic Mott insulators.
Besides the mean-field analysis, we demonstrate that the Zak insulator survives against electron correlation
effects by calculating the many-body Zak phase. Our finding provides an unprecedented way to realize a
topological state in strongly correlated electron systems.
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Introduction. Topologically protected gapless edge or sur-
face states, which universally appear in the topological
insulators, can propagate the charge or spin current with low
dissipation [1–3]. A prototypical example of the topological
insulators with edge states is the quantum Hall systems under
a high magnetic field [4] where the topological invariant guar-
antees the quantized Hall conductance and the gapless edge
state [5–7]. The theoretical finding of another class of topo-
logical insulators, i.e., the Z2 topological insulators in two [8]
and three dimensions [9–11], has stimulated searches for new
types of topological insulators. Nowadays, the periodic table
of the topological insulators is established [12,13], which
clarifies what kind of topological insulators can be realized
in a given spatial dimension and symmetry of the system.
Efficient ways for identifying the topological insulators based
on the symmetries of systems have also been developed and
used to search for new topological materials [14–22].

A huge amount of work on topological insulators has been
performed for mainly noninteracting (or weakly correlated)
electron systems. In the correlated electron systems, there are
several proposals for the topological states of the matter in-
duced by the correlation effects. One prominent example is the
fractional quantum Hall system [23] where the electronic cor-
relations induce the fractionalization of the fermionic degrees
of freedom. Another example is the Kitaev spin liquid [24],
which may realize in Mott insulators with strong spin-orbit
couplings (SOC) [25]. In the Kitaev spin liquid, the anisotropy
in the magnetic interactions induces the fractionalization of
the spin degrees of freedom, and it is shown that the Majorana
particles appears in the low-energy excitations. Besides those
mentioned above, there are several other theoretical proposals
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of the correlated topological phases, such as the topologi-
cal Mott insulators [26,27] induced by the cooperation of
SOC and electron correlation effects and the magnetic Chern
insulator [28]/Weyl semimetal [29] due to the noncoplanar
magnetic orders. Thus, most correlated topological insulators
require strong SOC (or effective SOC induced by the elec-
tron correlations) for their realization as in the noninteracting
topological insulators.

The topological insulators listed above are, so-called,
strong topological insulators, which have gapless edge states
regardless of the directions of truncations. Other than the
strong topological insulators, recent studies reveal the exis-
tence of weak topological insulators, which have gapless edge
states in only certain directions of truncations. A well-known
example is the weak Z2 topological insulator in the Fu-Kane-
Mele model [9].

In this Letter, we demonstrate that an organic
antiferromagnetic (AFM) Mott insulator κ-(BEDT-
TTF)2Cu[N(CN)2]X [31–35] (abbreviated as κ-X , and X
represents an anion taking Cl or Br) is a correlated weak
topological insulator that is characterized by the quantized
Zak phase, termed the Zak insulator, without relying on the
SOC. In the past few decades, organic conductors have been
studied in terms of a model compound of strongly correlated
electron systems because of their simple electronic structures,
compared to inorganic d and f electron systems. On the
other hand, their topological properties have hardly been
investigated, except for a small number of Dirac electron
systems [36–38] due to the weak SOC [39–41]. κ-X is one
of the most well-studied Mott insulators [42], showing a
wide variety of correlated phenomena, e.g., AFM orderings,
superconductivity, and metal-to-insulator transitions. The
crystal structure is composed of an alternate stacking of
two-dimensional conducting BEDT-TTF layers and insulating
anion X layers. Figure 1(a) shows the molecular arrangement
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FIG. 1. (a) Schematic lattice structure of κ-X . Shaded ovals
represent the BEDT-TTF dimers. A–D represents the independent
BEDT-TTF molecules in the unit cell. The red, purple, green, and
blue solid lines, denoted by ta, tp, tq, and tb, respectively, are the
dominant intermolecular hopping integrals [30]. The broken vertical
(horizontal) line shows a truncation to generate the gapless edge
states parallel to the b (a) axis (see Discussion in the main text).
(b) Deformed lattice structure for clarifying the Su-Schrieffer-Heeger
(SSH) [61] chains emerge along the x axis. The up and down arrows
represent the local spin moments in the AFM phase.

in the conducting layer where four BEDT-TTF molecules
form two kinds of dimers with different orientations. The sys-
tem has three electrons per dimer on average and three-quarter
filled bands. In the following, we discuss that the combination
of the dimer structure and the AFM ordering plays a key role
in the emergence of a characteristic topological state.

First, we analyze the AFM insulating state in κ-X by
means of the mean-field approximation and find that the spin-
polarized gapless edge states appear at the edges that truncate
the bonds with the strongest intradimer hopping integral ta and
these are characterized by the quantized Zak phase [43]. Next,
using the many-variable variational Monte Carlo (mVMC)
method [44,45], we calculate the many-body Zak phase de-
scribed by the twist operator [46–53] and confirm that the Zak
insulator survives against quantum fluctuations and strong
electron correlation effects.

Mean-field analysis. In order to clarify how the edge state
appears in the AFM state, we introduce the deformed lattice
structure where the A–D sites in Fig. 1(a) are mapped onto the
square lattice as shown in Fig. 1(b). In the deformed lattice,
the intradimer (ta) and interdimer (tb) bonds align alternately
along the x axis. The mean-field Hamiltonian in the AFM
state, where the up-(down-)spin electrons locate on the C and
D (A and B) sites as shown in Fig. 1(b), is given by

H =
∑
k,σ

c†
kσ

Hσ (k)ckσ , (1)

Hσ (k) =

⎛
⎜⎜⎝

�σ R0 R1 R2

R∗
0 �σ R3 R1

R∗
1 R∗

3 −�σ R4

R∗
2 R∗

1 R∗
4 −�σ

⎞
⎟⎟⎠, (2)

where c†
kσ

= (c†
Akσ

, c†
Bkσ

, c†
Ckσ

, c†
Dkσ

), R0 = ta + tbe−ikx , R1 =
tq(1 + e−iky ), R2 = tp(e−iky + e−i(kx+ky ) ), R3 = tp(1 + eikx ),
R4 = tb + tae−ikx , and � is the gap induced by the AFM order.
The coefficient σ takes +1 and −1 for up and down spins, re-
spectively. Following the ab init io evaluation [55], we take the
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FIG. 2. (a) Band structure of up-spin (red) and down-spin (blue)
electrons in the AFM insulating state, obtained by the mean-field
approximation for � = 0.2. Green lines denote the zeros of the
diagonal components of the Green’s functions for down-spin elec-
trons. For clarity, we only show the zeros that traverse the band
gap at three-quarter filling. To see how the band inversion occurs,
the unitary transformation using the eigenvectors at � point is also
performed [54]. (b) k dependences of the Zak phase Zμ↓ defined in
Eq. (3). We omit the real parts of Zμ↓ because they are sufficiently
small.

intermolecular hopping parameters for κ-Cl as (ta, tp, tq, tb) =
(−0.207,−0.102, 0.043,−0.067) eV. Figure 2(a) shows the
band structure in the AFM insulating state for � = 0.2 where
the Fermi level is located in the gap at three-quarter fill-
ing. Since � is proportional to the amplitude of the on-site
Coulomb interaction, � can be sufficiently large to induce
a large bulk gap in AFM Mott insulators. We note that the
spin splitting occurs in the M-� line due to the time-reversal
symmetry breaking even without the SOC as pointed out in
the previous study [56].

Band inversion. As discussed in Ref. [54], the band inver-
sion can be visualized by calculating the zeros of the Green’s
functions Gσ (ω, k) = [ωI − Hσ (k)]−1, where ω represents
the energy. We find that zeros of diagonal components of the
down-spin Green’s function G↓(ω, k) traverses the insulating
gap as shown in Fig. 2(a). This result indicates that the band
inversion occurs in the kx direction, i.e., among � and X =
(π, 0) or M = (π, π ) points. The band inversion suggests that
the down-spin bands in the kx direction have a topological
nature.

Quantization of the Zak phase. We examine the topological
properties of the AFM insulating state by calculating the Zak
phase [43] of the down-spin bands both for the kx and the ky

directions, which is defined as

Zμ↓ = − i

π

∫ π

−π

dkμ

[
〈u3↓(k)| ∂

∂kμ

|u3↓(k)〉
]
, (3)

where |u3↓(kμ)〉 (μ = x, y) is the third eigenstate of H↓(k). We
note that the Zak phase has been used to identify the existence
of the edge states in the analyses of the two-dimensional the-
oretical models [57,58] and the ab init io calculations [59,60].
Figure 2(b) shows the Zak phase for the kx direction (Zx↓),
which is quantized to one except for ky = π , whereas, Zy↓ is
not. These behaviors indicate the presence (absence) of the
down-spin polarized edge states perpendicular to the x (y)
direction.
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FIG. 3. (a) Schematic lattice structure for calculating the edge
states. The open- (periodic-)boundary condition in the x (y) direction
is imposed. Band dispersions E (ky ) for (b) up- and (c) down-spin
electrons. The blue squares and circles represent the gapless edge
states of down-spin electrons at three-quarter filling.

Spin polarized edge state. We investigate the existence
of the edge state by calculating the band dispersions for the
open boundary condition in the x direction shown in Fig. 3(a).
Figures 3(b) and 3(c) show the band dispersions for up- and
down-spin electrons, respectively, where the gapless edge
states appear only for the down-spin bands. The down-spin
edge states touch the bulk band dispersion at ky = π . This
result is consistent with the nonquantized Zx↓ at ky = π in
Fig. 2(b).

Here, we discuss the origin of the spin-polarized edge
states in the AFM state. For simplicity, we consider the strong-
coupling limit where the AFM-ordered moment is saturated.
Let us focus on the up-spin polarized one-dimensional (1D)
chain along the x axis composed of the C and D molecules.
In the C-D chain, each dimer is occupied by the two up-spin
electrons and one down-spin electron in the AFM state since
the number of electrons per dimer is three; the up-spin states
are fully occupied and the down-spin states are half-filled. By
considering only the down-spin electrons, the C-D chain can
be identified as the half-filled spinless fermion system on the
dimerized 1D chain, i.e., the SSH model [61].

In the lattice structure shown in Fig. 3(a), each C-D chain
is truncated at the intradimer bond with ta, which is equivalent
to the topological state of the SSH model where two unpaired
molecules appear at both ends of the chain. On the other
hand, the down-spin polarized A-B chains, which is regarded
as the SSH model of the up-spin electron, do not have such
unpaired molecules. As a result, only the down-spin polarized
edge states appear. The edge states of each chain are not
independent of each other due to the interchain hoppings tp

and tq, which results in the band dispersion along the ky axis as
presented in Fig. 3(c). In the same manner, when the boundary

condition truncating the ta (tb) bonds in the A-B (C-D) chains
is chosen, the spin polarization of the edge states is reversed.
This reversal occurs when the electron density is changed
from three-quarter to quarter filling where the up-spin po-
larized edge states appear around −0.2 eV between the two
bonding bands as shown in Fig. 3(b).

mVMC analysis. To examine the correlation effects on the
topological state beyond the mean-field level, by using the
mVMC method [44,45], we analyze the following Hubbard-
type effective model for κ-X [30,62–65],

H =
∑
i j,σ

ti j (c
†
iσ c jσ + H.c.) + U

∑
i

ni↑ni↓

+ V
∑

i, j∈dimer

nin j, (4)

where ni = ni↑ + ni↓, ti j is the hopping parameters, and U (V )
is the intramolecular (intradimer) Coulomb interaction. For
the intermolecular hopping parameters, we adopt the same
values as the mean-field Hamiltonian in Eq. (2). The in-
tradimer Coulomb interaction is set to V = U/10 as a typical
value. We use the deformed lattice structure with the number
of molecules Ns = 2Lx × 2Ly, where Lμ (μ = x, y) denotes
the number of dimers along the μ axis under the periodic
boundary condition. The form of the variational wave func-
tions is given by

|ψ〉 = PGPJ|φpair〉, (5)

where PG and PJ represent the Gutzwiller [66] and the long-
range Jastrow factors [67,68], respectively. The pair product
wave function |φpair〉 is defined as

|φpair〉 =
⎡
⎣Ns−1∑

i, j=0

fi jc
†
i↑c†

j↓

⎤
⎦

Ne/2

|0〉, (6)

where fi j represents the variational parameters and Ne is the
number of electrons. We impose 2 × 2 sublattice structure in
the variational parameters to take into account the AFM order.
We optimize all the variational parameters simultaneously
using the stochastic reconfiguration method [69]. We use the
particle-hole transformation to reduce numerical costs in the
actual calculations.

We first examine the stability of the AFM order in the
Hamiltonian defined in Eq. (4). As the initial states, we choose
an AFM state and a paramagnetic (PM) state. By optimizing
them, we evaluate energies of the AFM and the PM states.
Figure 4(a) shows these energies as functions of U and the
AFM state becomes the ground state for U � 1.5 eV. The
energy-level crossing indicates the first-order phase transition
between the AFM and the PM phases. We also show the
AFM-ordered moment defined by

mAF = ∣∣Sz
A + Sz

B − Sz
C − Sz

D

∣∣, (7)

Sz
ν = 1

LxLy

∑
i∈ν

1

2
(〈ni↑〉 − 〈ni↓〉), (8)

in Fig. 4(b), where mAF becomes finite above U ∼ 1.5 eV.
Thus, this result shows that the ground state of the Hubbard
model in Eq. (4) is the AFM-ordered state even if we take
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FIG. 4. (a) Energies of the PM and AFM solutions as a function
of U in the unit of eV; the contributions proportional to U are
subtracted for clarity. The system size is chosen as L = Lx = Ly.
(b) The AFM order parameter mAF as a function of U . (c) The
expectation value of the twist operator defined in Eq. (13). We fix
Ly = 4 and change Lx from 6 to 24. The lines indicate the results of
the least-squares fitting of the data for Lx � 18 and U = 3.

into account quantum and spatial correlation effects seriously
beyond the mean-field approximation.

Many-body Zak phase. Here, we examine the topological
nature of the AFM state obtained by the mVMC method. To
extract the many-body topological invariant, we calculate the
expectation value of the following twist operator, defined as

T̂σ (Lx, Ly) = exp

⎡
⎣Ns−1∑

j=0

i
2π

Lx
x( j)n jσ

⎤
⎦, (9)

where x( j) is the x coordinate of the unit cell to which the jth
site belongs. This twist operator is a two-dimensional exten-
sion of the 1D twist operator for spinless fermions [48,49,53]
defined as

T̂1D(Lx ) = exp

[
Lx−1∑
x=0

i
2π

Lx
xnx

]
. (10)

For the 1D SSH model, the expectation value of T̂1D in large
system sizes becomes [53]

〈T̂1D(Lx )〉 = (−1)Lx+1eiνπ , (11)

where ν is the Zak phase, which becomes one (zero) for the
topological (trivial) phase. Since T̂σ can be regarded as the
stacking of T̂1D, in large system sizes, we obtain the following
relation:

〈T̂σ (Lx, Ly )〉 = 〈T̂1D(Lx )〉Ly = eiνπLy (−1)Ly (1+Lx ). (12)

Thus, in the topological and trivial phases, we obtain 〈T̂σ 〉 =
(−1)Ly (2+Lx ) and 〈T̂σ 〉 = (−1)Ly (1+Lx ), respectively. Therefore,

the topological (trivial) phase is characterized by 〈T̂σ 〉 = −1
(〈T̂σ 〉 = 1) when both Lx and Ly are odd. Using the wave
function obtained by the mVMC method, we evaluate the
following quantity defined as

Tσ (Lx, Ly) = Sσ |〈T̂σ (Lx, Ly)〉|1/Ly , (13)

where Sσ is a sign of 〈Tσ (Lx, Ly)〉 for odd Lx and Ly, e.g.,
Sσ = sgn[〈Tσ (Lx = 5, Ly = 5)〉]. When the electron with σ

spin has the topological nature, Tσ (Lx, Ly) = −1 is satisfied
in large system sizes. We note that thin-torus geometry is
necessary to correctly take the thermodynamic limit of the
expectation values of the twist operators in two or higher
dimensions [51,70]. Thus, in actual calculations, we fix Ly and
change Lx to take the thermodynamic limit.

In Fig. 4(c), we show size dependences of Tσ (Lx, Ly) for
U = 2 and 3 where the AFM state is the ground state. We
find that T↓ is converged to −1, whereas, T↑ is converged
to 1 in the thermodynamic limit for both values of U . This
result demonstrates that the down (up) spin electrons have
a topologically nontrivial (trivial) nature in the AFM state.
The existence of the nontrivial many-body Zak phase only
for down-spin electrons indicates that the spin-polarized edge
states appear in the AFM state, which is consistent with the
results of the mean-field analysis.

Discussion. In the analysis so far, we have considered the
deformed lattice in Fig. 1(b) and focused on the edge states
perpendicular to the x axis, i.e., a axis in the original lattice
in Fig. 1(a) for simplicity. On the other hand, in the original
lattice, since the A-B and C-D dimers are oriented by almost
45◦ as shown in Fig. 1(a), we can choose the edge perpen-
dicular to the b axis to truncate the strong ta bonds under the
open (periodic) boundary condition for the b (a) direction as
exemplified by the thin black broken line in Fig. 1(a). In this
case, the spin-polarized edges states emerge perpendicular to
the b axis.

These spin-polarized edge states originate from the co-
operative effects of the dimer structure and AFM ordering.
Focusing on the up- (down-) spin-polarized dimers in the
AFM ordered state, a half-filled fermion system with the up
(down) spins in the 1D dimer chain, i.e., the SSH model,
is spontaneously formed. In order to experimentally realize
a half-filled spinless fermion system, one requires to spin-
polarize a quarter (or three-quarter) filled electron system by
applying a strong magnetic field, which sometimes leads to
additional changes in the electronic state. On the other hand,
the present result shows that it can be more easily realized
owing to electron correlation effects without any external
field. The dimer structure, three-quarter-filled band, and the
AFM ordering are widely common not only in κ-type ET
salt but also in many other organic charge-transfer complexes,
e.g., TMTTF, dmit, and β ′-type ET salts. These systems will
provide useful platforms for future experimental studies on the
correlated Zak insulator with the spin-polarized edge states.

We emphasize that the present mechanism is strikingly
different from the so-called topological Mott insulator in
Ref. [26] where the complex bond order parameter, via
the Fock decoupling of the intersite Coulomb interaction
V , activates the topological phase. In this Letter, V plays
a supplementary role in stabilizing the AFM Mott insu-
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lating state but is not essential for the emergence of the
topological state; as far as the AFM insulating state remains,
the topological insulator with the quantized Zak phase can
realize without V .

We comment on the classification of the topological phase
found in this Letter. Here, we use the term topological insu-
lator in the sense that insulator with a nontrivial topological
invariant. In this sense, the AFM Mott insulator in κ-X can
be regarded as a correlated topological insulator with the
quantized Zak phase. This is the reason why we call the
AFM Mott insulator the correlated Zak insulator. However,
the quantization of the Zak phase relies on the particular
surface termination, truncating the intradimer bond. Thus,
strictly speaking, this Zak insulator is not a strong topological
insulator but classified into a weak one. Besides truncating the
intradimer bond, the edge state might be achieved by chemical
substitution of one BEDT-TTF molecule of the dimer on the
surface.

Here, we discuss experimental detections of the present
spin-polarized edge states. The experimental techniques sen-
sitive to surface magnetization and applicable to organic
compounds are considered to be helpful, e.g., magneto-optical
Kerr effect [71] and magnetic force microscopy [72]. Whether
the net surface magnetization survives or not strongly depends
on the interlayer stacking of the two-dimensional AFM orders
along the c axis, which is perpendicular to the a and b axes.
According to the recent experiments [73,74], there are two
AFM compounds, κ-Cl and the deuterated κ-Br, showing dif-
ferent stacking patterns. Applying the present results to these
compounds, we can expect that κ-Cl shows the net surface
magnetization along the a axis, which is perpendicular to the
bulk weak ferromagnetic moment along the b axis due to the

DM interaction, whereas, κ-Br does not, depending on their
AFM stacking patterns. Therefore, the comparison between
these two compounds provides a good testbed for our scenario
in experiments.

Finally, we refer to the possibility of the reconstruction
of the edge states, which might occur in the strongly corre-
lated region but is not considered in our Letter. To accurately
investigate how the reconstruction occurs, it is necessary to
examine the effects of the long-range part of the Coulomb
interactions in the effective Hamiltonians. The ab init io down-
folding method [75–77] is a promising way to accurately
evaluate the screened Coulomb interactions in the low-energy
effective Hamiltonians. In previous studies, it has been shown
that the ab init io effective Hamiltonians can correctly describe
the electronic structures of several molecular solids [78–81].
Performing such an ab init io investigation for κ-X is an in-
triguing issue but left for future studies.
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