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Mengxing Ye 1,2 and Andrey V. Chubukov3

1Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
2Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA

3School of Physics and Astronomy and William I. Fine Theoretical Physics Institute,
University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 12 June 2023; accepted 26 July 2023; published 22 August 2023)

It is generally believed that in a two-dimensional metal, whose ground state is antiferromagnetically ordered
with Q = (π, π ), thermal (static) magnetic fluctuations give rise to precursor behavior above TN in which the
spectral function of a hot fermion (the one for which k and k + Q are Fermi surface points) contains two peaks,
separated by roughly the same energy as in the antiferromagnetically ordered state. The two peaks persist in
some range of T > TN and eventually merge into a single peak at zero frequency. This behavior is obtained
theoretically by departing from free fermions in a paramagnet and evaluating the dressed fermionic Green’s
function by summing up infinite series of diagrams with contributions from thermal magnetic fluctuations. We
show, following [Y. M. Vilk and A.-M. S. Tremblay, J. Phys. I (France) 7, 1309 (1997)] that keeping vertex
renormalization diagrams in these series is crucial as other terms only broaden the spectral function of a hot
fermion but do not shift its maximum away from zero frequency. As the consequence, the magnetic pseudogap
should be treated as an input for theories that neglect vertex corrections, such as, e.g., Eliashberg theory for
magnetically mediated superconductivity. We also analyze the potential pseudogap behavior at T = 0. We argue
that it may exist, but only at a finite correlation length, and not as a precursor to antiferromagnetism.

DOI: 10.1103/PhysRevB.108.L081118

Introduction. The origin of the pseudogap behavior, ob-
served in the cuprates and other correlated materials remains
the subject of ongoing debate. Theoretical proposals for the
pseudogap can be broadly split into three categories. One
identifies pseudogap behavior with some particle-hole order
either a conventional one, such as a charge-density wave
[1–5], or less conventional, such as a circulating current
[6,7]. Another identifies the pseudogap with a spin-liquid-type
“mother” state from which one gets antiferromagnetism, su-
perconductivity, and charge order [8–12]. And the third treats
the pseudogap phase as a precursor to an ordered state—either
a spin-density-wave (SDW) order [13–30], superconductivity
[20,31–37], or pair-density wave [38].

In this Letter, we focus on the last category and discuss
some aspects of a precursor to an SDW order with Q = (π, π )
in two dimensions. We analyze the emergence of peaks at a
finite frequency in the spectral function of a fermion on the
Fermi surface, particularly, at a hot spot khs for which khs and
khs + Q are both on the Fermi surface. The emergence of such
peaks without a full gap between them is a signature feature
of pseudogap behavior.

We address two issues. The first is about pseudo-
gap behavior caused by thermal magnetic fluctuations
[14,16–20,22,23,25–28,30]. Several groups, including us,
demonstrated [16,17,19,20,22,25,30] that that pseudogap
does develop when one includes infinite series of contribu-
tions to the fermionic Green’s function from thermal (static)
spin fluctuations. In this Letter, we look more closely at the
interplay between noncrossed and crossed diagrams in these
series. The noncrossed diagrams renormalize the Green’s
function of an intermediate fermion G0(k + q, ωm) → G(k +

q, ωm) and can be absorbed into the self-consistent one-loop
theory (SCOLT). The crossed diagrams describe vertex cor-
rections. Previous studies [13,14,18,26] found that at large
dimensionless spin-fermion coupling λth, the noncrossed di-
agrams, taken alone, broaden the spectral function of a hot
fermion, but the maximum remains at ω = 0, i.e., pseudogap
does not emerge. Here, we show that (i) pseudogap behavior
does not develop within SCOLT for any value of λth, (ii)
SCOLT is the “boundary” case in the sense that already in-
finitesimally small vertex corrections give rise to a pseudogap,
and (iii) SCOLT is a member of a one-parameter set of such
boundary models, which do not display pseudogap behavior,
but develop it upon an infinitesimally small perturbation.

Second, we analyze whether the system can potentially
display pseudogap behavior at T = 0. We argue that this holds
in the weak-coupling regime away from the SDW quantum-
critical point (QCP) when SDW fluctuations are gapped and
weakly damped. Close to the SDW QCP, Landau damping
takes over, and A(khs, ω) has a maximum at ω = 0. This
agrees with the recent study by Grossman and Berg [39].
In a generic case when fermionic velocity vF and bosonic
velocity vs are comparable, pseudogap behavior ends up when
the system enters the strong-coupling regime near a QCP. If,
however, vs is small compared to vF , pseudogap behavior
extends into the strong-coupling regime. We emphasize that
this pseudogap is not a precursor to SDW as the magnitude
of the pseudogap in A(khs, ω) is set by the mass of the SDW
fluctuations, and it must disappear before a QCP.

Pseudogap due to thermal fluctuations. We consider a sys-
tem of fermions, interacting by exchanging spin fluctuations
with momentum near Q. We take as an input that static spin
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FIG. 1. (a) One-loop self-energy. (b) Spectral function at the hot
spot from the one-loop calculation. As the dimensionless coupling
λth = 3ḡT

2π (vF ξ−1 )2 increases, the spectral function shows pseudogap
behavior when λth > λc = 0.47.

fluctuations have the Ornstein-Zernike form with a large but
finite correlation length ξ = ξ (T ) and are coupled to fermions
by Yukawa coupling ḡ, which we assume to be comparable
to the bandwidth. Our goal is to obtain the spectral function

A(khs, ω) = −(1/π ) Im Gret(khs, ω) for a hot fermion and
verify whether at a finite T and large, but still finite ξ , its maxi-
mum splits into two maxima at a finite frequency, and whether
vertex corrections are crucial for the spitting. For this specific
goal, it is sufficient to treat ξ = ξ (T ) as an input parameter
(for self-consistent calculations of ξ (T ) see Refs. [21,30]).

The spectral function generally can easily obtained by eval-
uating the thermal self-energy �th(khs, ω). We first compute it
at the one-loop order, use the result to rationalize the need to
include higher-loop contributions, and then analyze A(khs, ω)
and the dressed �th(khs, ω) with and without vertex correc-
tions.

The one-loop thermal self-energy, shown in Fig. 1(a), is
the convolution of a propagator of a free fermion, G(0)(khs +
Q + q, ω) and a static spin propagator χ (q) = 1/(q2 + ξ−2).
Expanding the fermionic dispersion to linear order in q and
integrating over the two components of q, one obtains the
exact analytical expression [14,18,21,26,30],

�
(1)
th (khs, ω) = vF ξ−1λth

[
sgn(w)

ln[w +
√

(w)2 + 1]√
(w)2 + 1

− i
π

2
√

(w)2 + 1

]
, (1)

where λth = {3ḡT (2π (vF ξ−1)2]} is the dimensionless “ther-
mal” coupling, and w = ω/(vF ξ−1) is the dimensionless
frequency. The dimensionless coupling grows as the system
approaches the onset temperature TN of the (π, π ) order.

We show the spectral function A(1)(khs, w) = −(1/π )
Im{[vF ξ−1w − �

(1)
th (khs, w)]−1} in Fig. 1(b). At small λth,

A(1)(khs, w) is peaked at w = 0 as is expected for a weakly
interacting fermion at the Fermi surface. However, once λth

exceeds the critical value of λc = 2
√

2/(2
√

2 + π ) ≈ 0.4738,
the maximum of A(1)(khs, w) shifts to a fiRnite |w| = �̃pg ∼√

λ − λc. The pseudogap behavior becomes particularly pro-
nounced at large λth, where �̃pg > vF ξ−1, and at ω ∼ �̃pg,

∫
q

G(0)(khs + Q + q, ω)χ (q) ≈ G(0)(khs + Q, ω)
∫

q
χ (q),

(2)
such that �

(1)
th (khs, ω) ≈ �̃2

pg/ω [14,18,21,26,30] with �̃pg =
(vF ξ−1)(λ ln λ)1/2/

√
2≈( 3ḡT

2π
ln ξ )1/2. Here,

∫
q = ∫

d2q.
This self-energy is the same as in the SDW-ordered state,
hence, the emergence of the peaks at |ω| = �̃pg is quite
natural [below the peak, Im �(1)(khs, ω) remains nonzero
down to the lowest frequencies, hence, �̃pg is a pseudogap
rather than a true gap].

We see that the pseudogap behavior does emerge within the
one-loop approximation, however, the coupling λth must ex-
ceed λc = O(1). This raises the question whether the one-loop
result stands once we include higher-order terms. Examples
of higher-order diagrams for �(khs, ω) are shown in Fig. 2.
They include noncrossed diagrams [Fig. 2(a)], which account
for the renormalization of the internal fermionic line, and
crossed diagrams [Fig. 2(b)], which represent vertex correc-
tions. Besides, the chemical potential μ is different from
μ0 = εkhs and is obtained self-consistently from the condition
on the fermionic density. Below, we incorporate the change

in the chemical potential into ω → ω̄ = ω + δμ, where
δμ = μ − εkhs = μ − μ0.

As a first step, let us keep only noncrossed higher-loop
diagrams, i.e., neglect vertex corrections. The fully dressed
self-energy is given by the same one-loop diagram as in the
perturbation theory but with the fully dressed propagator of
an intermediate fermion. This is the SCOLT. The retarded
Green’s function is Gsc(khs, w̄)−1 = vF ξ−1X (sc stands for
self-consistent), where w̄ = ω̄/vF ξ−1, and X = X (w̄) is the
solution of

X = w̄ − λth
ln(X + √

X 2 + 1)√
X 2 + 1

+ iλth
π

2
√

X 2 + 1
. (3)

Expanding at small w̄, we find [see the Supplemental Material
(SM) in Ref. [40] for details], X = aw̄ + ib(1 − cw̄2) + · · · ,
where a b, and c are functions of λth, and the dots stand for
terms of higher order in w̄. The spectral function A(khs, w̄) ∝
1/[b2 + w̄2(a2 − b2c)]. The pseudogap emerges when the
prefactor for w̄2 is negative, i.e., when a2 < b2c. We expanded
analytically in w̄2 and found that this does not happen at
any value of λth: the quasiparticle peak broadens as λth in-
creases, but remains centered at ω = 0. At large λth, when
�̃pg > vF ξ−1, the spectral function has a semicircular form

Asc(khs, ω̄) =
√

4�̃2
pg − ω̄2/(2π�̃2

pg) at 2�̃pg > ω̄ > vF ξ−1

[14] and remains smooth at ω < vF ξ−1 as we verified. This

FIG. 2. Noncrossed (a) and crossed (b) two-loop irreducible
diagrams.
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FIG. 3. (a) Spectral function Afull (khs, ω̄) and (b) spectral inten-
sity I full (khs, ω) for the SU(2) symmetric model [see Eqs. (7)]. The
horizontal axis is ω̄ = ω + δμ in (a) and ω in (b), both in units of√

2�̃pg.

spectral function describes incoherent excitations extending
up to 2�̃pg, and its maximum remains at ω = 0 [41].

We next include the crossed diagrams. We compute the
full self-energy directly, by extending perturbation theory to
infinite order [42]. The computations again simplify at large
λth where we can use Eq. (2). Using it for all diagrams, we
find that at each loop order, the crossed and the noncrossed
diagrams are of the same order, and each set forms a series
in G(0)(khs + Q, ω̄)G(0)(khs, ω̄)�̃2

pg. This allows one to keep
only one diagram at a given loop order m and multiply it by
the proper combinatoric factor Dm. For the SU(2)-symmetric
problem, Dm = (2m + 1)!! [16,22]. The full Green’s function
is then Gfull (khs, ω̄) = G(0)(khs, ω̄)C(ω̄), where

C(ω̄) =
∑

m

(2m + 1)!!
[
�̃2

pgG(0)(khs, ω̄)G(0)(khs + Q, ω̄)
]m

.

(4)
Reexpressing the infinite sum as the integral,

C(ω̄) = 2√
π

∫ ∞

0
dt e−t t1/2

1 − ut
, (5)

where u = 2�̃2
pgG(0)(khs, ω̄)G(0)(khs + Q, ω̄) and evaluating

it, we obtain for a fermion at a hot spot,

C(ω̄) = C(z) = 2z2{[√πze−z2
Erfi(z) − 1] − i

√
πze−z2},

(6)
where z = ω̄/(�̃pg

√
2) and Erfi(z) is the imaginary error func-

tion. The spectral function is

Afull (khs, ω̄) = 1√
2π�̃pg

ω̄2

�̃2
pg

exp

[
− ω̄2

2�̃2
pg

]
. (7)

We plot the full spectral function in Fig. 3(a). We see that
it does display the pseudogap behavior. The form of the full
Afull (khs, ω̄) is rather similar to the one-loop result at λth �
1, and the value of the full pseudogap �pg is comparable to
�̃pg[43].

A complimentary way to understand the importance of
vertex corrections is to analyze the structure of the thermal
self-energy. The Dyson equation expresses it in terms of the
full Green’s function Gfull(khs + Q, ω̄) and the full vertex
�(khs, ω̄) as

�th(khs, ω̄) = 3�̃2
pgGfull (khs + Q, ω̄)�(khs, ω̄). (8)

In the SCOLT, �(khs, ω̄) = 1. Using Gfull = (G(0) − �)−1, we
find

�th(khs, ω̄) =
√

2�̃pg�̄(z), �̄(z) = z[C(z) − 1]

C(z)

�(khs, ω̄) = �(z) = 2

3
z2 C(z) − 1

C2(z)
. (9)

Because C(z) is complex, �̄(z) and �(z) are complex func-
tions of the frequency. The spectral function is Afull (khs, ω̄) =
Afull (z), where

Afull (z) =
(

− 1

π
√

2�̃pg

)
Im �̄(z)

[z − Re �̄(z)]2 + [Im �̄(z)]2
.

(10)
We plot real and imaginary parts of �̄(z) and �(z) in
Figs. 4(a) and 4(b). We see that Im �̄(z) is a rather
smooth function of z and is featureless around z = 1
where the spectral function has a pseudogap peak [see
Fig. 3(a)]. On more careful look, we find that the peak
in Afull (z) at z = 1 emerges because Re �̄(z) − z changes
sign very near z = 1 [see Fig. 4(a)]. Furthermore, Re �̄(z) =
{3/(2z)[Re C(z)Re �(z) − Im C(z)Im �(z)]}. We plot the two
parts of this expression separately in Fig. 4(c). We see that
near z = 1, Im C(z)Im �(z) � Re C(z)Re �(z). This implies
that the imaginary part of the vertex �(z) is crucial for the
pseudogap. One could not obtain the peak in Afull (z) if �(z)
was a constant, such as in the SCOLT.

We note in passing that this analysis is different from
the one in Refs. [27,28]. These authors analyzed the vertex
function on the Matsubara axis. The latter is complex at a
hot spot due to a finite δμ, which makes even G(0)(khs.ωm) =
1/(iωm + δμ) complex (Refs. [44–46]). In Fig. 4(d), we plot
the real and imaginary parts of �(ωm) for δμ = 0 (dashed
lines) and δμ = −0.8 (solid lines) in unit of

√
2�̃pg. We

see that Im �(zm) is finite for δμ 	= 0. The behavior of
Re �(zm), Im �(zm) for δμ = −0.8 is quite similar to the
vertex function extracted from the numerical analysis of the
self-energy in Refs. [27,28]. At the same time, our results
do not support the key point of Refs. [27,28] that the com-
plex structure of �(ωm) on the Matsubara axis is the key to
pseudogap development. Indeed, on the real axis, δμ shifts
the frequency ω to ω̄, but the two-peak pseudogap behavior
emerges independent of the value of δμ and would hold even
if δμ was zero [47]. A similar behavior of vertex function � in
real and imaginary frequencies has been observed in Ref. [48]
using dynamical mean-field theory.

On a more careful look, we found that not all diagram-
matic series with both noncrossed and crossed diagrams lead
to pseudogap behavior. An example is the series with the
combinatoric factor Dm = (2m − 1)!!, which holds in certain
one-dimensional models [42] and two-dimensional models
on a triangular lattice [25]. These series yield Afull (khs, ω) ∝
exp[−ω̄2/(2�̃2

pg)], which is peaked at ω = 0. For a generic
Dm, the series can be represented as a continued fraction,

Gfull (khs, iωn) = 1

iωn − κ1�̃2
pg

iωn− κ2�̃2
pg

iωn− κ3�̃2
pg

iωn−···

. (11)
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FIG. 4. Panels (a) and (b): real and imaginary parts of the (a) normalized self-energy and (b) the vertex function as functions of
z = (ω + δμ)/(�̃pg

√
2) from Eq. (9). The spectral function has a peak at z ≈ 1, where Re �̄(z) crosses z. Panel (c): two components of

Re �̄(z): Rea = (3/2z) = C(z)Re �(z) and Reb = −(3/2z)Im C(z)Im �(z). Near z = 1, Re �̄(z) ≈ z ≈ −(3/2z)Im C(z)Im �(z). Panel (d):
Re �(zm ) and Im �(zm ) along the Matsubara axis at δμ = −0.8.

We find that for a set of models with κ j = κ (0) + κ (1) j, the
spectral function does not show pseudogap behavior. The
SCOLT is a member of this set with κ (0) = 1 and κ (1) = 0.
The case of κ (0)=0, κ (1)=1 corresponds to Dm=(2m − 1)!!.
We verified numerically that for each member of this set, an
infinitesimally small deviation δκ > 0 for odd j leads to pseu-
dogap formation (see Fig. 5). For the model with κ j = κ (1) j
we found analytically,

Aκ (khs, ω) ∝ |ω|δκ/κ (1)
e
− ω2

2κ (1)�̃2
pg . (12)

This spectral function has two peaks at |ω| = √
δκ �̃pg.

That SCOLT is the boundary case for the pseudogap forma-
tion can also be seen by analyzing a simple toy model [49,50]
in which the self-energy at large λ is given by

�toy(khs, ω) = �̃2
pg[αG(khs, ω) + (1 − α)G(0)(khs, ω)], (13)

where 0 � α � 1. This self-energy interpolates between
perturbative one-loop theory at α = 0 and SCOLT at
α = 1. The spectral function Atoy(khs, ω) is readily ob-
tained by solving the self-consistent equation for the
Green’s function G−1(khs, ω) = ω − �̃2

pg[αG(khs, ω) + (1 −
α)G(0)(khs, ω)] [see the SM for details]. For any α < 1, the
maximum of Atoy(khs, ω) is at a finite |ω| = �̃pg(1 − α)1/2,
at α = 1, it is at ω = 0. We again see that the SCOLT is the
boundary case for the pseudogap formation.

FIG. 5. Ilustration that the set of models with κ j = κ (0) + κ (1) j
[see Eq. (11)] are at the boundary of the pseudogap formaton. The
boundary models from the set are along the solid line. We verified
that the pseudogap emerges at infinitesimally small δk > 0 at odd j
(orange square).

Pseudogap from quantum fluctuations. We argued above
that thermal spin fluctuations give rise to pseudogap behavior
as a precursor to the (π, π ) ordered state. We now contrast this
behavior with the one at T = 0. We neglect superconductivity
and analyze whether quantum spin fluctuations can give rise
to the pseudogap.

We use the same model as before, but with the dynami-
cal spin propagator χ (q,�m) = χ0/[(�m/vs)2 + (q − Q)2 +
ξ−2 + γ |�m|], where vs is spin velocity and the last term is
the Landau damping with γ = (4/π sin θ )ḡ/v2

F , where θ is
the angle between Fermi velocities at khs and khs + Q [51].
We restrict with perturbative one-loop analysis as higher-loop
terms at T = 0 are at most O(1) relative to the one-loop term
[51]. The exact one-loop self-energy can be readily obtained
(see the SM for details), and its analysis shows that at small
λq = 3ḡ/(4πvF ξ−1), the spectral function Aq(khs, ω) nearly
vanishes at |ω| < vsξ

−1 and has a peak at |ω| � vsξ
−1. In

the opposite limit of large λq, the Landau damping term is
the strongest one in the spin propagator, and Aq(khs, ω) has
a broad peak centered at ω = 0. In both cases, the spectral
function also has a δ-functional peak at ω = 0 with overall
intensity proportional to the quasiparticle residue [39,52].
We analyzed the evolution of the spectral function with in-
creasing λq at various αv = vF /vs and found self-consistently
critical λcr

q , at which pseudogap behavior at T = 0 disap-
pears. We show the results in Fig. 6. For generic αv = O(1),

FIG. 6. Critical λq at different αv = vF /vs and θ = π/2, i.e.,
γ = 4ḡ/(πv2

F ). The spectral function shows pseudogap behavior
for λq < λcr

q . Red circles are λcr
q , extracted from the exact formula

for the one-loop self-energy, and dashed line in the linear fit by
λcr

q = 0.085 + cαv with the same prefactor for αv that we obtained
analytically in the αv � 1 limit (see the text).
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λcr
q = O(1), i.e., there is no pseudogap in the strong-coupling

regime. The situation changes when vs 
 vF , i.e., αv is
large. In this limit, we find analytically λcr

q = c αv , where
c ≈ (3 sin θ/16)

√
10/3. Still, at large enough ξ , λq > λcr

q ,
which implies that, near a QCP, the one-loop spectral func-
tion does not display pseudogap behavior at T = 0. In other
words, pseudogap behavior at T = 0 is not a precursor to
SDW [53].

Summary. Previous works have found that in a metal,
whose ground state is antiferromagnetically ordered with Q =
(π, π ) thermal magnetic fluctuations give rise to pseudogap
behavior in some temperature range above TN when the spec-
tral function of a hot fermion contains two peaks, separated
by roughly the same energy as in the antiferromagnetically
ordered state. This behavior has been obtained theoretically
by departing from free fermions in a paramagnet and eval-
uating the dressed fermionic Green’s function by summing
up infinite series of noncrossed and crossed diagrams for the
fermionic Green’s function. The crossed diagrams describe
vertex corrections. We show that keeping vertex corrections
is crucial as the combined contribution from noncrossed di-
agrams broadens the spectral function of a hot fermion, but
keeps its maximum at zero frequency. We argue, therefore,
that to capture the physics of a magnetic pseudogap, one
has to go beyond self-consistent one-loop theories, such as,
e.g., Eliashberg theory for superconductivity. This result is
relevant for the understanding of the observed reduction of
superconducting Tc when superconductivity comes out of a
pseudogap phase as within the Eliashberg theory thermal fluc-
tuations do not affect Tc. We expect that similar results hold
for incommensurate spin fluctuations.

We also analyzed the potential pseudogap behavior at T =
0 due to quantum fluctuations, assuming no superconductivity.
We found that pseudogap may exist at a finite correlation
length ξ and may even extend into the strong coupling regime.
Still, this pseudogap behavior is not the precursor to the or-
dered state but rather the consequence of the fact that when
spin fluctuations are weakly damped propagating massive
bosons, the spectral function of a hot fermion is strongly
reduced below the threshold set by the bosonic mass. We
found that sufficiently close to an antiferromagnetic QCP, the
spectral function of a hot fermion does not display pseudogap
behavior at T = 0. Combining this with the result of our
earlier work [30] that thermal fluctuations do not give rise
to pseudogap behavior when the ground state is not ordered,
we conclude that when the ground state is not magnetically
ordered, there is no magnetic pseudogap at any T due to
long-range magnetic fluctuations. A potential pseudogap due
to short-range fluctuations in a doped Mott insulator has been
analyzed in Ref. [54].
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