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Sublattice interference promotes pair density wave order in kagome metals
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Motivated by the observation of a pair density wave (PDW) in the kagome metal CsV3Sb5, we consider the
fate of electrons near a p-type Van Hove singularity (vHS) of the kagome lattice with on-site Hubbard U and the
nearest-neighbor repulsion V . We study the effect of such interactions on Fermi surface “patches” at the vHS.
We show how a feature unique to the kagome lattice known as sublattice interference crucially affects the form
of the interactions among the patches. The renormalization group (RG) flow of such interactions results in a
regime where the nearest-neighbor interaction V exceeds the on-site repulsion U . We identify this condition as
being favorable for the formation of charge-density-wave (CDW) and PDW orders. In the weak-coupling limit,
we find a complex CDW order as the leading instability, which breaks time-reversal symmetry. Beyond RG, we
perform a Hartree-Fock study to a V -only model and find the pair-density-wave order indeed sets in at some
intermediate coupling.
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Introduction. Spins and electrons on the kagome lattice
[Fig. 1(a)] have long been studied due to their potential for
exhibiting a panoply of exotic phases of matter. Insulating
kagome compounds, for instance, are among the most promi-
nent candidate spin liquid materials [1], and insulating phases
with nontrivial topology have also been studied on the kagome
lattice [2–4]. With the discovery of a family of kagome metals
AV3Sb5 (A = K, Cs, Rb), a new wave of excitement has
been elicited by the prospects for intriguing density wave and
superconducting ground states in these systems [5–7].

Among the more fascinating observed phenomena in these
kagome metals include new Bragg-like peaks inside the super-
conducting phase [8], a hallmark of an exotic superconducting
order known as a pair density wave (PDW) [9–24] PDWs are
superconductors with an order parameter that varies period-
ically in space. Additionally, fascinating effects have been
discovered in the superconducting fluctuation spectrum, in-
cluding nearly condensed excited states with charge 4e, 6e
superconducting fluctuations [25]. These observations call for
a greater theoretical scrutiny, and invite us to make predictions
for electronic phases of kagome metals.

In this Letter, motivated by these recent developments,
we address the issue of whether the PDW superconducting
phase can in principle arise on the kagome lattice. Since
such superconductivity requires analysis of the intermediate
coupling problem, robust pairing mechanisms for PDW for-
mation have only recently been uncovered [26]. One key
requirement for PDW order is the presence of strong-repulsive
interactions with somewhat suppressed on-site interactions.
While this is rather unusual in most solids, we show here that
this requirement is met when the chemical potential crosses
a so-called p-type (for “pure”) Van Hove singularity (vHS)
[27–30] [see Fig. 1(b)]. In an important theoretical study,

one of us showed [27] that precisely at such a p-type vHS,
there is the phenomena of sublattice interference (SI)—where
each of the three distinct sublattices has nonzero support
only on one of the three distinct vH points. To show this
SI crucially determines the low-energy effective interactions
in the system, we construct a renormalization group (RG)
theory based on the p-type vHS and show that the on-site
repulsion runs towards weak coupling, while nearest-neighbor
interactions grow under the RG. This peculiarity results in a
rich phase diagram including time-reversal symmetry break-
ing charge-density-wave (CDW) orders and various uniform
superconductivity in the weak-coupling limit; while in the
strong-coupling regime it makes the kagome system poised to
exhibit the PDW order. While more experiments are needed
to characterize precisely the normal state in this system, our
analysis already establishes that the kagome motif once again
provides us with an avenue towards an exotic phase of matter,
in this case the PDW superconductor.

SI and the triviality of Hubbard U. To determine the
fate of effective interactions at p-type Van Hove filling, we
utilize parquet RG methods and restrict attention to Fermi
surface “patches” in the neighborhood of the distinct Van
Hove points [31,32] (similar RG analysis with twofold of
Van Hove singularities is considered in Ref. [33]). Defin-
ing the fermion destruction operators in patch α as ψα , we
encode real-space 4-fermion interactions as intra- and in-
terpatch couplings after Fourier transformation. In a crystal
with time-reversal and/or inversion symmetry, such interac-
tions take the form HI = g1ψ

†
αψ

†
βψαψβ + g2ψ

†
αψ

†
βψβψα +

g3ψ
†
αψ†

αψβψβ + g4ψ
†
αψ†

αψαψα where α �= β and the momen-
tum summation and a spin configuration σσ ′σ ′σ is assumed.
Patch models have been applied to the square lattice [34],
the honeycomb lattice [35,36], and moiré systems [21,37,38]
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FIG. 1. Sublattice interference in the kagome lattice. (a) Each
unit cell has α = A, B, C different sublattice sites. (b) Band struc-
ture of the tight-binding model. We focus on the middle band,
highlighted with red color, which exhibits a p-type Van Hove singu-
larity. (c) For this band, the transformation matrix uα (k), defined as
cα (k) = uα (k)ψα (k) where cα and ψα are lattice and band fermions
respectively, has a modulated distribution in the Brillouin zone.

to capture interaction-driven electronic orders. In both cases,
all the gi’s are set by the largest Hubbard on-site interaction
HU = U

∑
i ni↑ni↓.

However, adopting the same strategy on the kagome lattice
near a p-type vHS, one finds that the Hubbard interaction
U contributes only to the g4. This is due to SI: Near a p-
type vHS, each of the three sublattices (A,B,C) has nonzero
support only on one of the three distinct Van Hove points
(Mα, α = A, B,C), which is visible through the sublattice
weight in Fig. 1(c). The SI does not result from fine tuning,
as it exists even if longer range hoppings are considered [39].
Thus, when only HU is present for electrons near a p-type
vHS, g1 = g2 = g3 = 0, and g4 = U/t . With this choice of
bare couplings, g4 weakens under RG flow, eventually reach-
ing a trivial fixed point with g∗

4 = 0 [39]. Thus, due to SI, the
repulsive Hubbard U is irrelevant in the RG sense near the
p-type vHS of the kagome lattice[40].

Extended interactions and the six-patch theory. Due to
the apparent irrelevance of U , it is necessary to include at
least nearest-neighbor interactions. The most important such
term is the nearest-neighbor density-density repulsion HV =
V

∑
〈i j〉 nin j . With both HU and HV , the three-patch model

described above is no longer adequate since nearest-neighbor
interactions contain momentum dependence, which differen-
tiates the patches at ±Mα . Therefore, we need to consider the
full six-patch theory, for which there are 16 different symme-
try allowed interactions in total, as shown in Fig. 2(a). Here we
adopt the convention used in Ref. [37] and define the patch
fermions as ψα+ = ψ (k → Mα ) and ψα− = ψ (k → −Mα ).
The interactions in this six-patch model can be written as

HI =
4∑

i, j=1

∑

{α j ,τ j }
gi jψ

†
α1τ1

ψ†
α2τ2

ψα3τ3ψα4τ4 , (1)

with gi j being the dimensionless interaction strengths. Mo-
mentum conservation constrains the indices as follows: The
patch indices satisfy α1 = α3 �= α2 = α4 for i = 1, α1 = α4 �=

(a)

(b)

(c)

FIG. 2. (a) All symmetry allowed interactions in the six-patch
model. (b) RG flow for the interactions and the order parameter
vertex � with the SI effect. We set U (0) = 0.8t and V (0) = 0.3t
and starting from some intermediate energy scale we have V 
 U .
The resulting weak-coupling instabilities are degenerate complex
CDW− and imaginary SDW+/−. (c) The same RG flow but without
SI effect. In this case all the gi j,0 are set by the largest Hubbard U ,
and there does not exist a constant map U,V , and gi j (y). The leading
weak-coupling instability is the d-wave SC [35,36].

α2 = α3 for i = 2, α1 = α2 �= α3 = α4 for i = 3, and α1 =
α2 = α3 = α4 for i = 4. The “valley” indices τi = ±, labeling
whether the patch is at Mα or −Mα , obey the same rule
associated with j. That is, τ1 = τ3 �= τ2 = τ4 for j = 1, et
cetera. Once again, SI crucially influences the initial con-
ditions of the RG flows. A straightforward calculation [39]
shows that U contributes only to g4 j—a direct generalization
of the three-patch theory—while V only contributes to g2 j ,

g4 j,0 = U

t
; g22,0 = g24,0 = −g21,0 = −g23,0 = 2V

t
. (2)

The subscript 0 above denotes bare interactions before run-
ning RG. From microscopics, it is natural to expect that U
(and therefore g4 j,0) should be the largest.

CDW at weak coupling. We first investigate the weak-
coupling limit. In this case the fate of the fermions can be
described by the one loop RG equations of gi j , for which we
keep the most divergent “log squared” terms in perturbation
theory, i.e., the particle-hole bubble �

(0)
ph at momenta Mα and

the particle-particle bubble �(0)
pp at zero momentum, and set

the running parameter as the latter: y = �(0)
pp (0) [37,39]. With

this convention, the RG equations for the interactions take the
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form dgi j/dy = gmnRmn,kl gkl . It is easy to see that close to the
critical value yc all gi j behaves in a similar manner, namely
gi j = Gi j/(yc − y). If some Gi j is nonzero, the correspond-
ing gi j thus diverges at yc. A typical order parameter flows
as d	i/dy = d�i	i under renormalization, where d = 1 for
superconducting orders and d = d1 � 1

2 for density wave or-
ders, and �i is certain linear combination of gi j [39]. From this
we can integrate to obtain the behavior of the corresponding
susceptibility χi, which scales as χi ∼ (yc − y)γi . The lead-
ing instabilities will be those with the most negative γi, and
accordingly the most divergent �i. We mainly consider the
following weak-coupling instabilities:

	CDW± = 〈ψ†
α+ψβ+ ± ψ

†
α−ψβ−〉, 	SC = 〈 fαψα+ψα−〉,

	SDW± = 〈ψ†
α+σψβ+ ± ψ

†
α−σψβ−〉. (3)

Note that the form factor fα = ±1 in 	SC determines the
pairing symmetry. For the density wave orders, their real and
imaginary parts flow differently, so depending on whether
their imaginary parts are zero or not, the system could either
preserve or break the time-reversal symmetry.

In Fig. 2(b) we show the RG results in the presence of SI,
i.e., the initial values of gi j are set by Eq. (2). Interestingly, we
find that this map between lattice interactions and gi j persists
for all y < yc, and it is this constant map that enables us to
extract the RG flows for U and V . We see the U decays
as before, while V increases. The leading instability in this
case is the degenerate complex 	CDW− and imaginary 	SDW± .
The presence of imaginary parts for these density wave or-
ders indicate the time-reversal symmetry is broken [6,41–46],
which is due to the SI effect. For comparison, we also show in
Fig. 2(c) the RG analysis for the model but with no SI effect.
In this case, all gi j are set by the largest interaction U , and
the resulting weak-coupling instability is the d-wave uniform
superconductivity, consistent with Refs. [35,36].

PDW at intermediate coupling. Having established the way
different interactions get renormalized in the presence of the
SI effect, we now discuss how the PDW order can emerge
at some intermediate energy scale. Based on the observation
discussed above [see Fig. 2(b) for example], we consider an
effective model where only a large V is kept. Model simi-
lar to this has also been studied recently in Ref. [47]. We
consider a sufficiently large V , and perform a Hartree-Fock
mean-field study [48–52] for the corresponding orders [53].
Without loss of generality, we discuss the AB bond only, as
the other bonds follow via C3 rotation. On the AB bond, the
relevant interaction is 2V cos(q · α)ψ†

Aσ (k)ψ†
Bσ ′ (k′)ψBσ ′ (k′ +

q)ψAσ (k − q) where α = a1/2 and a1 is the vector connecting
two adjacent A and B sites [see Fig. 1(a)]. Whether this is
repulsive or attractive depends on the momentum transfer q.
In the Cooper channel, we can write it as 2V cos[(k + k′ − q) ·
α]ψ†

Aσ (k)ψ†
Bσ ′ (−k + q)ψBσ ′ (k′)ψAσ (−k′ + q), which is at-

tractive when cos[(k + k′ − q) · α] < 0. In the patch model
this condition is met when k is around MA, −k + q is around
−MB, and k′ is around −MA. The interaction then becomes
−2V ψ

†
Aψ

†
B̄
ψBψĀ. When V is large, we can use

ψ
†
Aψ

†
B̄
ψBψĀ ≈ 〈ψ†

Aψ
†
B̄
〉ψBψĀ + ψ

†
Aψ

†
B̄
〈ψBψĀ〉 (4)

for mean-field analysis, and the gap function, defined as 	Q ∼
〈ψBψĀ〉, is apparently a PDW order with momentum MC . We

note that due to the presence of SI, the uniform superconduc-
tivity is not a competing order in the large V model, since
such order couples to, e.g., ψ

†
Aψ

†
A, which cannot be obtained

by decomposing Eq. (4).
Similarly, the on-site CDW does not arise since this order

parameter couples to, e.g., ψ
†
AψA, and effectively becomes the

chemical potential. However, the bond-charge-density wave
(bond CDW) order can indeed arise when V becomes strong
[54], and compete with PDW. This occurs also when cos(q ·
α) < 0 and the density interaction becomes −2V ψ

†
Aψ

†
B̄
ψBψĀ

with V > 0. We can, however, consider

−ψ
†
Aψ

†
B̄
ψBψĀ ≈ 〈ψ†

AψB〉ψ†
B̄
ψĀ + ψ

†
AψB〈ψ†

B̄
ψĀ〉 (5)

to absorb the minus sign and manifestly show it contains
strong repulsion in the particle-hole channel. Moreover, the
spin indices on the left-hand side of Eq. (5) can be in-
cluded explicitly, namely −ψ

†
Aαψ

†
B̄β

ψBγ ψĀδδαδδβγ , and using
the SU (2) identity δαδδβγ = (σαγ δβδ + σαγ σβδ )/2, it is easy
to see that the order parameter 	Q = 〈ψ†

AψB〉 represents a
bond CDW/SDW order, which are directly related to those
density waves that arise in the weak-coupling limit. In fact,
the degeneracy is an artifact of the oversimplification of the
patch model. Considering that the SDW order has to break
a global SU (2) symmetry, and upon taking the whole Fermi
surface into account, we assume for the time being that the
CDW order is more likely to occur than SDW. In the following
we thus constrain ourselves to CDW order competing with
PDW at large V .

To inspect the competition between PDW and CDW at
large V > 0, we can calculate the susceptibilities for both
of the two orders in random-phase-approximation (RPA).
The result is χPDW = �0

pp(Q)/[1 − 2V �0
pp(Q)] and χCDW =

�0
ph/[1 − 2V �0

ph(Q)]. Here the bare susceptibilities �0
pp > 0

and �ph > 0 are obtained using free fermion propagators.
The ordering condition is given when the denominators van-
ish. The problem is now reduced to comparing the strength
of the bare �(0)

pp and �
(0)
ph . Within the patch model, the

particle-particle and particle-hole bubbles can be obtained in
a straightforward way, and the results are [55]

�(0)
pp (Q) = 1

4
√

3π2t
ln

�

max{T, |μ|} ,

�
(0)
ph (Q) = 1

8
√

3π2t
ln

�

max{T, |μ|} ln
�

max{T, μ, |t ′|} , (6)

where μ = 0 at the Van Hove filling, and t ′ is the next-nearest-
neighbor hopping, which can spoil the Fermi surface nesting
in the particle-hole channel. In Fig. 3(a) we compare both �(0)

pp

and �
(0)
ph as a function of temperature T at μ − 0. We see that

the ln2 divergence of �
(0)
ph becomes dominant at small T for

the case of perfect nesting (t ′ = 0), while at larger T , �(0)
pp is

larger even with perfect nesting. The consequence is that in
the weak-coupling limit, one has to go to small T to see the
instability, where CDW wins over PDW. For large V , however,
a relatively smaller �(0)

pp or �
(0)
ph is enough to induce the

instability, which could be in the regime where �(0)
pp > �

(0)
ph

and PDW is the leading instability. Note that Eq. (6) is only a
crude estimation about the relative strength between �(0)

pp (Q)
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FIG. 3. (a) Comparison between �(0)
pp (Q) and �

(0)
ph (Q) as a func-

tion of temperature T . The fact that �(0)
pp (Q) > �

(0)
ph (Q) at larger T

indicates that PDW order may win over CDW order when interaction
is sufficiently strong. (b) The weak-coupling instabilities (at perfect
nesting) when other interactions such as J0 and K0 are taken into
account. (c) RG flows for the lattice interactions for U (0) = 0.8t and
V (0) = 0.3t and for various J0 and K0. In all cases there is a wide
range in energy scale where V is the largest.

and �
(0)
ph (Q). Away from the Van Hove filling (μ �= 0), we

expect that both bubbles are reduced, and therefore one needs
to reach smaller T in order to reach the instability. This results
in the schematic picture we show as the inset of Fig. 2(a).

Other interactions. We note that other than U and V ,
further lattice interaction might be worth analyzing. For in-
stance, we can consider the bond singlet pair-hopping term,
for which, again taking AB bond as an example, the on-bond
contribution is J0

∑
i P†

AB(ri )PAB(ri ), where the pair opera-
tor at position ri is given by P†

AB(ri ) = c†
A↑(ri + α)c†

B↓(ri ) −
c†

A↓(ri + α)c†
B↑(ri ) and α = a1/2 is the vector connecting two

adjacent A and B sites. In fact, the J0 term just reads as
the exchange interaction. The site pair-hopping term such as
K0

∑
〈i j〉 P†

i Pj with P†
i = c†

i↑c†
i↓ is also possible. With the SI

effect, it is easy to realize that J0 contributes to both g1 j and
g2 j . In particular, g11(0) = g14(0) = −g12(0) = −g13(0) =
2J0, and −g21(0) = −g23(0) = g22(0) = g24(0) = 2V + 2J0.
The K0 term only contributes to g3 j : g31(0) = g32(0) =
−g33(0) = −g34(0) = 2K0. We expect that J0 and K0 are of

the same order, and both are orders of magnitudes smaller
than U and V [56–59]. In the presence of J0 and K0, both
of them increase under RG, leading to different orders in the
weak-coupling limit, which we present in Fig. 3(b). These
include s- and f -wave uniform SC, the real CDW order with
odd parity (CDW−). Interestingly, if we keep K0 = 0 there is
still a constant map between U,V, J0, and gi j for all y < yc,
and the weak-coupling instabilities are degenerate imaginary
	SDW± for J0 > 0, and a complex 	CDW− for J0 < 0 [see
the blue and purple line in Fig. 3(b)]. A finite K0 spoils the
constant map between lattice interactions and gi j at y near yc,
but at some intermediate y∗ < yc we can still approximately
determine the flow of U,V, J0, and K0. Figure 3(c) (see also
in [39]) shows that V can still be the largest at intermediate
energy scale for various cases, which justifies the applicability
of our effective V model discussed above. We close by noting
the possibility that when a sizable K0 is present initially, K0

could become comparable to V even at y < y∗. Since K0 is re-
lated to the formation of uniform SC, and the uniform pairing
susceptibility �(0)

pp (0) scales as ln2(�/T ), one could expect
that uniform SC may become leading order. However, in a
system with small K0(0) and thus can be accurately described
by the U -V model, our results are applicable.

Discussion. We have focused our analysis entirely on the
case of electrons subject to instantaneous repulsive interac-
tions on the kagome lattice near p-type Van Hove filling.
At the current level of understanding, it is not yet set-
tled to which extent the kagome metals AV3Sb5 (A = K,
Cs, Rb) are faithfully represented by this simplified model.
Previous attempts to improve on the microscopic rigor by
taking into account the multi-orbital nature at the Fermi
level [28,60], combined with the relevance of phononic
contributions [61], suggest the need for further analysis to
quantitatively approach the experimental setup in AV3Sb5,
and further experiments involving kagome metals are neces-
sary to validate the nature of the CDW observed at scales as
high as T ∼ 90 K . In particular, such order would of course
affect the reconstructed bands out of which the superconduc-
tivity ultimately develops. A coherent theory of such orders,
including the effects of phonons, will only be feasible once
the precise nature of the CDW order in this system is well
characterized.

Our analysis does, however, make a rare microscopically
founded statement about the realization of PDW in a physi-
cally sensible model, specifically in a kagome metal nearby a
p-type vHS with local and nearest-neighbor Coulomb repul-
sion. This is because SI crucially affects the renormalization
of repulsive interactions in kagome metals, and thus the ex-
tended repulsive forces are enhanced relative to the on-site
Hubbard repulsion. As a result, there is an increased tendency
towards PDW and bond CDW order, which we identified
without any need for a potentially biased mean-field analysis.
Further input from experiment is needed at this stage to bridge
the ideas described in this paper with the thus far concluded
phase diagram of kagome metals.
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