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Spin diffusion in a perturbed isotropic Heisenberg spin chain
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The isotropic Heisenberg chain represents a particular case of an integrable many-body system exhibiting
superdiffusive spin transport at finite temperatures. Here, we show that this model has distinct properties also at
finite magnetization m �= 0, even upon introducing the SU(2) invariant perturbations. Specifically, we observe
nonmonotonic dependence of the diffusion constant D0(�) on the spin anisotropy �, with a pronounced max-
imum at � = 1. The latter dependence remains true also in the zero magnetization sector, with superdiffusion
at � = 1 that is remarkably stable against isotropic perturbation (at least in finite-size systems), consistent with
recent experiments with cold atoms.
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Introduction. The integrable quantum many-body lat-
tice models and their anomalous finite-temperature T > 0
transport properties have long been the subject of theoret-
ical investigations [1]. In this context, the one-dimensional
isotropic Heisenberg model has been paradigmatic. In spite
of its exact solvability [2], understanding the plethora of
anomalous transport properties continues to posit a challenge,
especially concerning the observed anomalous superdiffusive
spin transport at T > 0 emerging at the junction of the gap-
less regime at � < 1, implying finite spin stiffness D(T >

0) > 0 [3–5] featuring ballistic spin transport [6–8], and
gapped regime for � > 1 with vanishing D(T > 0) = 0 and
finite (dissipationless) diffusion constant D0 < ∞ [9]. While
postulated earlier [10], the superdiffusion of the isotropic
� = 1 point with Kardar-Parisi-Zhang (KPZ) dynamical scal-
ing exponent z = 3/2 has been recently established both
numerically [9,11–13] and analytically within the general-
ized hydrodynamics (GHD) [14–18]. It is worth noting that
isotropic Heisenberg chains can be approximately realized in
spin-chain materials [19,20] (possessing very large thermal
conductivity owing to nearly conserved energy current [21]),
as well as in cold-atom optical lattices [22–24].

The understanding of the effects of (even weak) inte-
grability breaking perturbations (IBPs) remains particularly
challenging [25–27]. In connection with the dc spin conduc-
tivity σ0 and related spin diffusion D0, the role of the uniform
(preserving translational symmetry) perturbative term gH ′
has been addressed numerically within the easy-plane regime
� < 1 [28–31]. It was proposed, via perturbation-theory ar-
guments, that at high T and weak g � 1 the dc conductivity
scales as ∝ 1/g2, but in general exhibiting multiple relax-
ation times [31] related to the different conserved quantities
involved in the current relaxation. On the other hand, in the
easy-axis � > 1 regime, the role of IBPs is unusual [32,33]
due to finite, anomalous/dissipationless diffusion even in the
integrable model. The spin transport in the perturbed isotropic
Heisenberg model seems to be even richer. In particular, due

to the SU(2) spin symmetry, the isotropic perturbations that
preserve such symmetry are expected to have different (even
singular) effect on spin transport [24,34,35], in contrast to
anisotropic ones [30].

In this Letter, we show that the distinctive transport prop-
erties of the isotropic Heisenberg model are, at high T ,
not exclusive to the integrable (i.e., unperturbed) model or
to vanishing magnetization density m = 0, but are instead
seen also at finite m > 0 and finite isotropic perturbation
strengths. We present numerical evidence for the following:
(i) In the m = 0 sector for � = 1, superdiffusive transport
is extremely robust to the isotropic perturbations of even
moderate strength g, exhibiting superdiffusive scaling of the
diffusion constant D0 ∼ Lζ with 0 < ζ < 1/2 for system
sizes up to L = 100. (ii) For isotropic perturbations at � = 1,
the diffusion constant D0(�) features a peak at � = 1 in all
magnetization sectors. In contrast, the anisotropic IBPs lead
to a monotonic dependence D0(�). Away from � ≈ 1 and
m = 0, in both cases, the results appear close to the standard
perturbation theory D0 ∝ 1/g2 scaling, while for � = 1 the
g dependence of our results is less conclusive. (iii) In the
unperturbed isotropic spin chain, the high-T spin stiffness,
measured in the units of static spin susceptibility, reveals
a roughly linear dependence D∗(m) 
 2|m| across a broad
range of densities m � 0.3 that have gone unnoticed so far.
This dependence eventually crosses over to the nonanalytic
behavior D∗(m) 
 m2 ln(1/|m|) at small m, which is hard
to observe numerically. Finite magnetization results are ob-
tained with the microcanonical Lanczos method (MCLM) on
systems up to L = 36 sites. However, the most challenging
regime appears in the vicinity of critical point m = 0,� =
1. Here, we employ the time-evolving block decimation
(TEBD) technique for boundary-driven open systems with up
to L = 100 sites to establish the nonequilibrium steady state
(NESS).

Model. We study the S = 1/2 XXZ Heisenberg spin
chain with general anisotropy � adding the IBP of the
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strength g,

H = J
∑
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] + gJH ′. (1)

We deal with the IBPs, which (at least partly) conserve the
translational symmetry of the model, and concentrate on the
case of the staggered exchange,

H ′
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)
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The H ′
I perturbation at � = 1 preserves the SU(2) symmetry

and we will refer to it as the isotropic IBP. On the other
hand, the H ′

II perturbation breaks this symmetry. We con-
sider Hamiltonians that conserve total magnetization, namely
sz

tot = mL, where |m| � 1/2 is the magnetization density of
the system, and the spin current operator is given by js =
(J/2)

∑
i[1 + g(−1)i](iS+

i+1S−
i + H.c.). We use J = 1 as the

unit of energy and analyze finite systems with L sites, either
closed with periodic boundary conditions (PBCs) or open with
boundary driving.

Perturbed Heisenberg chain—finite magnetization. We first
consider the high-T dynamical conductivity σ̃ (ω) = T σ (ω)
of a perturbed system with PBCs and fixed magnetization
sz

tot = Lm, focusing here on the intermediate m = 1/4. We
evaluate σ̃ (ω) using the MCLM [36–38] by employing a large
number of Lanczos steps, i.e., here typically ML = 20 000 for
systems up to L = 36 with Nst � 107 basis states. This allows
for frequency resolution δω ≈ 10−3, important to resolve also
the large dc σ̃0 = σ̃ (ω → 0) emerging due to long relaxation
times τ � 1. Consequently, the dc diffusion constant can be
extracted assuming the generalized Einstein relation, D0 =
σ̃0/(T χ0), χ0 = (1/π )

∫
σ (ω)dω = (1/4 − m2)/T , which is

valid in perturbed/normal systems [33]. Note that the diffu-
sion D0 is a well defined concept even at T → ∞, unlike
conductivity σ0 = σ (ω → 0) ∝ 1/T .

(I) Isotropic IBP: Results for the diffusion constant D0

in the presence of H ′
I perturbation at magnetization density

m = 1/4 as the function of the anisotropy � are presented in
Figs. 1(a) and 1(b). Most strikingly, as shown in Fig. 1(a),
D0 reveals a pronounced peak at isotropic point � = 1 with
high value D0 � 1 even at substantial g = 0.3. The results
are reliable despite the very large D0, also implying a narrow
peak in dynamical σ̃ (ω), as evidenced by analyzing systems
of different numerical complexity L = 24–36. Dependence on
the perturbation strength g is quite consistent with expected
standard D0 ∝ 1/g2; see Fig. 1(b). In addition, in Figs. 1(c)
and 1(d), we present the frequency ω dependence of the
integrated conductivity, I (ω) = (1/π )

∫ ω

0 σ (ω′)dω′, obtained
with help of the exact diagonalization (ED) and MCLM. The
diffusion constant can be alternatively extracted as the slope
of the latter, i.e., I (ω → 0) ∝ D0ω. As evident from the pre-
sented results, although D0 = σ̃0/(T χ0) differ slightly from
the slope of I (ω), the overall agreement is perfect.In Fig. 2 we
present the variation of D0(�) for a range of magnetization
densities m = [0, 6]/28, at a moderate IBP strength g = 0.2,
as obtained via MCLM in canonical ensembles at L = 28. The
H ′

I perturbation, in the vicinity of the isotropic point � = 1,
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FIG. 1. Diffusion constant D0 vs anisotropy � at fixed magneti-
zation density m = 1/4 for H ′

I perturbation at strength g = 0.3, as
obtained for different system sizes via ED (L = 24) and MCLM
(L = 28–36). (b) D0 vs � for isotropic (full lines) and anisotropic
(dashed lines) g = 0.15–0.3, obtained via MCLM for L = 36.
(c), (d) Integrated optical conductivity I (ω) for (c) � = 1 and
(d) � = 1.1 as the function of the rescaled frequencies by the square
of the perturbation strength ω/g2. Dashed (solid) line depicts L = 20
(L = 36) ED (MCLM) data.

reveals a striking variation of D0(m) with magnetization. Im-
portantly, for all m > 0 we observe a nonmonotonic D0(�),
developing a peak around � = 1.

(II) Anisotropic H ′
II IBP: In Fig. 1(b) and Fig. 2 (inset), we

display the effect of the anisotropic IBP H ′
II, which behaves

regularly in several respects: (i) Around � ≈ 1, the variation
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FIG. 2. Diffusion constant D0 vs anisotropy �, as calculated via
MCLM in ensembles with magnetization densities m = [0, 6]/28
and g = 0.2 for H ′

I (main panel) and H ′
II (left inset) perturbation,

respectively. Right inset: Comparison of canonical m = 0 and grand
canonical results.
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with � is smooth and monotonically decreasing without any
specific feature at � = 1. (ii) D0 value is much smaller, at
least at � ≈ 1. (iii) The scaling with D0 ∝ 1/g2 can be ac-
curately followed for all the considered values of g, Fig. 1(c).
(iv) The above points are true for all considered magnetization
sectors m; see inset of Fig. 2.

Perturbed Heisenberg chain—zero magnetization. Our
closed-system MCLM analysis indicates that the canonical
m = 0 results at accessible system sizes L � 28 do not match
with the corresponding grand canonical average (see inset
of Fig. 2 and [39]). This remains true even for substantial
g ≈ 0.3 and is most pronounced for isotropic IBPs. As a
consequence, the analysis of the spin transport in the vicinity
of m = 0 and � = 1 requires special attention, and previous
studies have already reported that this regime is particularly
sensitive to finite size/time effects [34]. To achieve larger L,
we study open Heisenberg chains via the TEBD technique for
vectorized density matrices [40,41], where the spin current
is driven via boundary Lindblad operators L1 = √

1 + μS−
1 ,

L2 = √
1 − μS+

1 , L3 = √
1 − μS−

L , L4 = √
1 + μS+

L with a
small spin bias μ. In such setup, for diffusive systems, the
magnetization profile in NESS is linear; while for superdif-
fusive, the same resembles tr(Sz

i ρss) ≈ μ

π
arcsin(−1 + 2 i−1

L−1 )
[9,39]. We extract the spin diffusion constant via D0 =
− jss/∇sz, where ∇sz is the magnetization gradient extracted
from a finite fraction f of the central spin profile and jss is the
NESS current [9,39].

(I) Isotropic IBP: For the isotropic H ′
I IBP at � = 1, an ap-

proximately linear bulk spin profile nonetheless retains some
curvature reminiscent of the unperturbed profile for finite L
[9,39]. This already indicates that for the isotropic IBP at
� = 1, at considered system sizes L � 100, there is still no
restoration of normal diffusive transport. The diffusion con-
stant is extracted using f = 0.2.

For the isotropic IBP at � = 1, Fig. 3(a) presents the esti-
mated system-size dependence of D0(L) by fitting D0 ∼ Lζ ,
with exponent ζ plotted in the inset. Recall that ζ is related
to the dynamical exponent z by ζ = 2 − z [9,11]. In the un-
perturbed case g = 0, we get ζ = 0.46, complying with the
analytically expected KPZ superdiffusion with ζ = 1/2. The
surprising observation is that also for systems with isotropic
IBPs, we find a robust signature of superdiffusion, albeit with
a smaller exponent ζ , 0.27 < ζ < 0.37 (but far away from
the diffusive ζ = 0). Our results agree with previous numeri-
cal results [34,35] that reported z = 3/2 scaling for isotropic
IBPs from the short-time dynamics. Similarly, the recent finite
size/time measurements in a cold-atom experiment [24] gave
an estimate 1.7 < z < 1.9 in weakly perturbed systems. We
note that we do not anticipate these intermediate 0 < ζ < 1/2
exponents to match the true universal exponent ζ ; they might
be a transient effect, a consequence of finite systems (in
our case) or times (in experimental setup), and the fraction
f to estimate the bulk magnetization gradient.Curiously, the
NESS current for the whole regime obeys jss ∼ L−γ , γ ≈ 0.5,
consistent with KPZ scaling z = 3/2. While this aspect de-
serves further investigations, the main conclusion remains that
superdiffusion is exceptionally robust against perturbations
respecting the SU(2) symmetry, and the expected onset of
diffusion would require much larger system sizes (in NESS
formalism) and times (for closed systems).
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FIG. 3. (a) Scaling of NESS diffusion constant vs L for H ′
I per-

turbation at various perturbation strengths g = 0.15–0.4, including
the unperturbed result g = 0, fitted with the power laws D0 ∝ Lζ

with different ζ = [0.24–0.5]. In the inset, fitted ζ for different g
are shown for � = 1.0 and � = 0.9. (b) Diffusion constant D0 vs �

for H ′
I perturbation of different strength g = 0.15–0.4, obtained via

NESS method for sizes L = 30, 60.

In Fig. 3(b) we display dependence D0(�) for L = 30, 60
and different strengths g = 0.2, 0.3, 0.4 of H ′

I perturbation. At
stronger IBPs g = 0.3, 0.4, we observe a peak in the diffusion
constant D0 at � = 1, similarly as in ED calculations at finite
magnetization densities m > 0, Fig. 2 and [39]. Although at
weaker strength g = 0.2 the peak of D0(�) moves inside
the � < 1 regime, comparing the data for L = 30, 60 makes
it apparent that results are only well converged (with the
system size) away from � ≈ 1. For this purpose, we repeat
the system-size analysis also for � = 0.9. Apparently, the H ′

I
perturbation promotes anomalous D0 ∼ Lζ0.9 scaling also for
� = 0.9, but with ζ0.9 < ζ ; see inset of Fig. 3(a). This ex-
plains that with increasing L, D0(� = 0.9) grows slower than
D0(� = 1.0) and the � ≈ 0.9 peak for g = 0.2 is only a finite
size effect, while we expect the true thermodynamic peak at
� = 1. Similarly, we believe that the � < 1 peak at canonical
and grand canonical result for the closed system at m = 0,
inset of Fig. 2, is likewise an artifact of small system sizes. To
ensure ballistic scaling at g = 0, ζ0.9 could either cross over to
ζ0.9 → 1 at small g or show a discontinuous jump at g = 0.

(II) Anisotropic H ′
II IBP: For the anisotropic IBP and � =

1, NESS yields the linear magnetization profile, which is a
characteristic of diffusive transport [9,39]. Far away from
� = 1, e.g., at � = 0.5, we observe the expected IBP strength
scaling D0 ∝ 1/g2 [39]. For � = 1.0, our results show normal
1/L finite size corrections; however, we cannot access small
enough IBP strengths g, and consequently large enough L, to
reveal the anticipated D0 ∝ 1/g2/3 scaling [30]; for g and L
parameters considered, we see no asymptotic scaling with g
yet [39].

Spin stiffness at finite magnetization m > 0. We finally dis-
cuss certain interesting properties of the unperturbed system
at finite magnetization that have so far gone undetected. The
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FIG. 4. (a) Normalized spin stiffness D∗ vs magnetization
density m obtained from (i) extrapolated L → ∞ ED data [39] (solid
black points), (ii) tDMRG result Ref. [43] (open black points), and
(iii) GHD exact calculation (orange line). Simple linear relation
D∗ = 2|m| (green solid line) at large magnetization and D∗(m) =
6.19m2 ln(1/|m|) (green dashed line) at small magnetization is also
presented.

distinctive feature of the unperturbed (g = 0) integrable spin
chains at finite magnetization is the ballistic spin transport
at T > 0, i.e., finite spin stiffness D in the spin conduc-
tivity σ (ω) = 2πDδ(ω) + σreg(ω). In a system with PBCs
and given sz

tot, the D(T � 1) can be evaluated using ED
by calculating all diagonal and degenerate matrix elements
T D = ∑

εn=εl
〈n| js|l〉2/(2LNst ), with Nst as the number of

many-body states. In the thermodynamic limit, the exact
computation of D is possible using the GHD formalism
[17,42]. We find it convenient to discuss the normalized
spin stiffness D∗ = D/χ0, with static spin susceptibility χ0 =
(1/4 − m2)/T providing the conductivity sum rule χ0 =
1
π

∫
σ (ω)dω.

We concentrate here on the most interesting isotropic point
� = 1, relegating the discussion of other regimes to [39]. In
Fig. 4, we show (i) ED results, with extrapolations to L → ∞,
(ii) tDMRG results from Ref. [43], and (iii) GHD exact results
[17,42], obtained as detailed in [39]. For large magnetiza-
tions, the observed approximate slope of 2|m| can be, from
the viewpoint of GHD, accurately captured by the contribu-
tions of magnons and two-magnon bound states [39]. Despite
larger bound states becoming increasingly important at lower
magnetization, it turns out, unexpectedly, that for m � 0.3,
contributions conspire to a nearly linear curve. As elaborated
in [39], upon approaching close to half filling (m = 0), the
behavior crosses over to the theoretically established [14,17]
anomalous nonanalytic scaling D∗(m) ∼ m2 ln(1/|m|), sig-
naling the onset of superdiffusion at m = 0. Despite different
order of limits (limL→∞ limt→∞), extrapolation of our ED
results within the accessible range is found in good agreement
with the tDMRG data and GHD. At lower magnetization
densities, tDMRG values fall on top of the GHD curve until
they also depart from it due to finite time limitations.

Conclusions. In this Letter, we show that the anomalous
behavior of transport in the isotropic Heisenberg chain is not

limited to the unperturbed (i.e., integrable) model or to zero
average magnetization m = 0 (zero external magnetic field),
but manifests itself over the entire range of m and at unexpect-
edly strong perturbations. For H ′

I perturbation that is isotropic
at � = 1, we observe anomalously large diffusion constants
at � = 1, with nonmonotonic dependence of D0(�) on �

for all magnetizations, and with the peak at � = 1 becoming
more pronounced at larger m. By contrast, anisotropic H ′

II
perturbations yield much smaller diffusion constants D0(�)
with monotonic � dependence around � ≈ 1.The observed
behavior is quite unusual, especially considering that in the
unperturbed isotropic chain D0 becomes singular as m → 0;
one would expect D0 to decay with increasing m. At the same
time, however, in the perturbed system D0 is also affected
by broadening effects associated with quasiparticles acquiring
finite lifetimes and thus decay of finite stiffness (i.e., Drude
peak) may play a more prominent role. We leave this aspect
as an open problem for future work.

The most challenging to discern is the behavior of the
perturbed Heisenberg chain at m = 0 and � = 1. Here, the
anisotropic perturbation suppresses the superdiffusion and
leads to finite D0 well converged with system size. Contrarily,
for the isotropic perturbation, even the largest open-system
NESS results conform with a superdiffusive scaling with L,
D0 ∼ Lζ , with exponent ζ ∈ [0.25, 0.4] decreasing with in-
creasing perturbation strength g. The intriguing conclusion
of our findings is that for finite systems, certain features of
the unperturbed KPZ superdiffusion with ζ = 1/2 remain
fairly robust even for moderately strong isotropic perturba-
tions. Moreover, dynamical exponents in the range z = 2 −
ζ ∈ [1.6, 1.75] are quite consistent with recent experiments
on spin superdiffusion in cold-atom lattices, where the per-
turbation to the Heisenberg chain is added via the exchange
between neighboring chains [24]. We repeat, however, that we
do not claim these 0 < ζ < 1/2 exponents to be universal, and
they might be effected by transient effects.

We emphasize that similar dichotomy of anisotropic vs
isotropic perturbations is also observed in other examples,
e.g., the next-neighbor exchange, checked by us with MCLM
in closed systems.
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