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Thermal and optical conductivity in the Holstein model at half filling and finite temperature in the
Luttinger-liquid and charge-density-wave regime
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Electron-phonon interactions play a key role in many branches of solid-state physics. Here, our focus is on the
transport properties of one-dimensional systems, and we apply efficient real-time matrix-product state methods
to compute the optical and thermal conductivities of Holstein chains at finite temperatures and filling. We validate
our approach by comparison with analytical results applicable to single polarons valid in the small polaron limit.
Our work provides a systematic study of contributions to the thermal conductivity at finite frequencies and
elucidates differences in the spectrum compared to the optical conductivity, covering both the Luttinger-liquid
and charge-density-wave regimes. Finally, we demonstrate that our approach is capable of extracting the DC
conductivities as well. Beyond this first application, several future extensions seem feasible, such as the inclusion
of dispersive phonons, different types of local electron-phonon coupling, and a systematic study of drag effects
in this electron-phonon coupled system.

DOI: 10.1103/PhysRevB.108.L081114

Introduction. Computing the transport properties of
strongly correlated quantum many-body systems with rigor-
ous approaches remains a key challenge in condensed matter
theory. This applies even to one-dimensional (1D) systems,
as soon as multiple local degrees of freedom are involved,
even though powerful analytical and numerical methods are
often applicable [1,2]. For instance, phonons are ubiquitous in
a solid-state environment and provide an obvious relaxation
channel for charge carriers. In practically all materials, the
thermal current has a contribution from phonons, possibly
accompanied by electronic [3] or spin-excitation transport [4].

Methodological developments could be utilized in sev-
eral experimentally relevant contexts. One example concerns
quasi-1D materials that undergo a Peierls transition (see, e.g.,
Refs. [5,6], or interfaces and heterostructures of materials
involving small-polaron physics, such as manganites [7,8]).
Second, for 1D quantum magnets, a fully quantum treatment
of phonons and their role in transport problems would be
desirable, complementing a body of analytical work [9–15].
Third, the thermal transport of correlated materials suggested
for next-generation solar cells [16] poses another interesting
challenge.

Common theoretical approaches to capture transport in
electron-phonon coupled systems include Boltzmann theory
(see, e.g., Refs. [12,14,17,18]), dynamical mean-field theory
in higher dimensions [19–21], and in some cases also quantum
Monte Carlo (QMC) simulations [22–26]. Applying matrix-
product-states [27] (MPS) methods has the advantage that
both inhomogeneous and frustrated systems can be treated
and dynamical information can be obtained from a single
time evolution. The main challenges consist in first, an effi-
cient treatment of the phonon degrees of freedom and second,
for time-dependent approaches, in reaching sufficiently long
times. We here report the successful application of an MPS

algorithm using local basis optimization (LBO) [28–33] of
the phonon state space combined with finite-temperature tech-
niques [34–41] and state-of-the-art time-evolution schemes
[42] to obtain the optical and thermal conductivity of the
paradigmatic Holstein chain at a finite electronic filling, with
a focus on finite-frequency properties.

We stress that there is significant information in the finite-
frequency data, for both charge and thermal transport. For
example, optical conductivity data obtained from absorption
spectra has been used to verify the presence of small polarons
in manganites [43–45]. Optical spectroscopy was also used
to study the formation of a charge-density-wave (CDW) gap
when the temperature is lowered (see, e.g., Ref. [6]). Further-
more, the development of methods such as the 3ω method [46]
and time-domain and frequency-domain thermoreflectance
[47,48] enhanced the demand for accurate theoretical descrip-
tions of the physical processes that contribute to the thermal
conductivity.

The Holstein model captures local electron-phonon inter-
actions [49] with optical phonons. While seemingly simple,
the complexity induced by this interaction has made it an
interesting model for studying both polaron and CDW for-
mation [50–54]. For example, the Holstein polaron and the
finite-filling optical conductivities have been actively inves-
tigated in, e.g., Refs. [19,21,33,55–63], and the polaronic
contribution to energy transport in the Holstein model was
investigated via a Green’s function approach in the static limit
in Ref. [64]. In Ref. [65], Weber et al. used a QMC method to
study the compressibility, specific heat, and spectral functions
for a variety of parameters in the one-dimensional Holstein
chain.

In this Letter, we compute the real part of the optical
and thermal conductivity of the Holstein model at half filling
and at finite temperatures in both the Luttinger-liquid (LL)
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and CDW regime. We elucidate the difference between the
two regimes and study the frequency dependence starting
from the well-controlled limit of small polarons. We demon-
strate that our approach also allows for extracting the DC
optical conductivity.

Model. The spinless Holstein model [49] describes spinless
fermions propagating with a hopping amplitude t0, interacting
with local harmonic oscillators with a frequency ω0. The
electron-phonon coupling strength is given by γ . The Hamil-
tonian for an L-site system with open boundary conditions and
h̄ = 1 reads

Ĥ = − t0

L−1∑
j=1

(ĉ†
j ĉ j+1 + H.c.)

+
L∑

j=1

[
ω0n̂b

j + γ

(
n̂ j − 1

2

)
X̂ j

]
, (1)

with ĉ†
j (b̂†

j ) being the electron (bosonic) creation operator,

and ĉ j (b̂ j ) the corresponding annihilation operator. Further,
X̂ j = b̂†

j + b̂ j and n̂ j = ĉ†
j ĉ j , n̂b

j = b̂†
j b̂ j . We truncate the local

phonon Hilbert space by allowing for at maximum M phonons
per site and optimize the local state space using LBO (see
the Supplemental Material [66]). We choose representative
parameter sets in the CDW and in the LL regime of the model:
γ /t0 = √

1.6, ω0/t0 = 0.4, and M = 40 (CDW regime) and
γ /t0 = 1, ω0/t0 = 1, and M = 20 (LL regime). We choose
the chemical potential such that the system is particle-hole
symmetric.

Our main objective is to calculate the charge and energy-
transport coefficients, each related to a conserved charge
Q̂ = ∑L

i=1 q̂i with [Ĥ, Q̂] = 0. To obtain the frequency depen-
dency of the conductivities, we evaluate Kubo formulas [1,67–
69]. To that end, we calculate the time-dependent current-
current correlation functions:

CQ(t ) = 〈ĴQ(t )ĴQ(0)〉T , (2)

where the subindex T indicates a thermal expectation value
in the canonical ensemble at temperature T . Furthermore,
we use the label Q = E (C) for the energy (charge) current.
The charge current for the Holstein model is

ĴC = it0

L−1∑
i=1

(ĉ†
j ĉ j+1 − ĉ†

j+1ĉ j ), (3)

and the energy current becomes [70]

ĴE = ĴE
e + ĴE

e-ph, (4)

with the two contributions

ĴE
e = it2

0

L−1∑
j=2

(ĉ†
j−1ĉ j+1 − ĉ†

j+1c j−1), (5)

ĴE
e-ph = −it0γ

L∑
j=2

(ĉ†
j−1ĉ j − ĉ†

j ĉ j−1)(b̂ j + b̂†
j ). (6)

The Fourier-transformed correlation function is

C̃Q(ω) =
∫ ∞

−∞
eiωt f (t )CQ(t )dt, (7)

with Gaussian broadening f (t ) = e−|t |2η. Lastly, we obtain the
transport coefficient LQ(ω) = L′

Q(ω) + iL′′
Q(ω), whose real

part is given by

L′
Q(ω) = 1 − e−ω/T

2ωT α
C̃Q(ω), (8)

where α = 0 (1) for the optical (thermal) conductivity,
L′

C (ω) ≡ σ ′(ω) [L′
E (ω) ≡ κ ′(ω)]. Due to our choice of chem-

ical potential, the thermoelectric coupling between energy and
charge current vanishes, and hence the thermal current can be
replaced by the energy current. Our calculation is canonical in
the sector that would dominate at chemical potential μ = 0.

From our time-dependent approach, the DC conductivities
can only be extracted if the current autocorrelations decay
sufficiently fast and within the accessible time range t � ttot

(see also [71,72] for examples for spin models). In those
cases (see below), we obtain the zero-frequency component
C̃Q(ω = 0) from Eq. (7). Aiming at finite temperatures, we
can expand e−ω/T ≈ 1 − ω

T + O[(ω/T )2]. Inserting this into
Eq. (8) gives

L′
Q,DC ≈ 1

2T α+1
C̃Q(0). (9)

In our procedure, a residual dependence of C̃Q(0) on the
artificial broadening η in Eq. (7) cannot be avoided, and
both η and ttot affect the accuracy of the results (see [66]
for a discussion of the convergence). In our work, we use
open boundary conditions and study nonintegrable systems
at finite temperatures. There, a finite-size Drude weight may
contribute at finite small frequencies [73].

Technically, the parameter εbond,ĴQ determines the bond
dimension of the MPS after the application of matrix-product
operators to the initial state. This step occurs before the real-
time evolution which is carried out using the single-site time-
dependent variational principle algorithm [74,75]. In the data
presented here, we use εbond,ĴQ = 10−9 and ttott0 = 19. All
calculations are done with the ITENSOR software library [76].

Results: LL regime. We work with L = 22 unless stated
otherwise, and the Fourier transformations are done with
η = 0.1/(4π ). In Fig. 1(a), we show the optical conduc-
tivity for the model at different temperatures. There, one
sees a dominant peak at low frequencies, which still has a
significant L and η dependence indicative of Drude-weight
contributions and/or slowly decaying current correlations
(not illustrated here). Other features seen in the data are
inherited from the single-polaron spectra [21,33,62]. Most
prominently, the single-phonon emission peak starts at ω ≈
ω0 (gray dashed vertical line). Furthermore, at large ω/t0, we
observe a temperature-independent decay.

Figure 1(b) shows the thermal conductivity for the same
parameters as Fig. 1(a). Here, a different picture emerges.
At low temperatures, the spectra exhibit a maximum at high
frequencies, ω/t0 ≈ 5, which then rapidly decreases. Since
the optical conductivity has practically decayed to zero at
these values of ω, the behavior of κ ′(ω) results from nonva-
nishing energy-current matrix elements at these energies not
present for the charge current. As these frequencies are larger
than both the free-fermion bandwidth 4t0 and the phonon
frequency, the spectral contribution can be attributed to mul-
tiphonon processes. As temperature increases, we observe
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FIG. 1. (a) Real part of the optical conductivity for the LL param-
eters at different temperatures. The arrow illustrates the one-phonon
emission peak. (b) Real part of the thermal conductivity for the same
parameters. The vertical line shows ω = ω0.

enhanced spectral weight at lower frequencies, corresponding
to a thermal activation of transitions. The thermal conductivity
also features a peak beginning at ω ≈ ω0, similar to the one-
phonon emission peak in the optical conductivity.

To better understand the origin of the different parts of the
thermal conductivity spectra, we compute the spectra asso-
ciated with ĴE

e-ph from Eq. (6). A comparison of the results

using the full current ĴE (solid lines) and ĴE
e-ph (dashed lines)

is illustrated for two different temperatures in Figs. 2(a) and
2(b). In both cases, the curves almost overlap at high frequen-
cies, implying that the high-frequency structures result from
the term in ĴE proportional to γ , that is, ĴE

e-ph. We attribute
this to the high-energy processes induced by the coupling
to the phonons, whereas the optical conductivity is limited
by the number of phonons present (at low T/t0, the spectra
are dominated by phonon-emission processes). We also see
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FIG. 2. (a) Real part of the thermal conductivity for the LL
regime at T/t0 = 0.2. (b) Same as (a) but at T/t0 = 0.4. The solid
lines are calculated using ĴE from Eq. (4) and the dashed lines using
ĴE

e-ph from Eq. (6). The black dotted line shows calculations using ĴE

but with L = 20. The vertical line shows ω = ω0.
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FIG. 3. (a) Real part of the optical conductivity for the CDW
regime at different temperatures. (b) Real part of the thermal con-
ductivity for the same parameters. The symbols in (b) show the
thermal conductivity calculated using ĴE

e-ph from Eq. (6). We only plot
every 15th point of the ĴE

e-ph data for clarity. The dashed vertical line
illustrates ω = 2t0 and the dotted vertical line ω = 2EP. The inset in
(b) shows the data for T/t0 = 1.0 as a red solid line for ĴE and a
black dotted line for ĴE

e-ph.

that the resonance starting at ω/t0 = 1 can be completely
attributed to the ĴE

e-ph term. The black dashed line in Fig. 2 is
calculated with L = 20, and apart from very low frequencies,
the spectra are almost indistinguishable.

At small ω/t0, the spectra associated with ĴE and ĴE
e-ph start

to deviate from each other, which signals that ĴE
e starts to play

a more important role. This also becomes more prominent at
higher temperatures, and we attribute a significant portion of
the DC thermal conductivity to ĴE

e [66].
Results: CDW regime. We use L = 10 unless stated oth-

erwise, and the Fourier transformation is done with η =
0.4/(4π ). The corresponding optical conductivities are de-
picted in Fig. 3(a). For the polaron, it is well established
(see, e.g., Refs. [21,33,57,77,78]), that the optical conduc-
tivity spectra are close to an asymmetric Gaussian centered
around 2EP = 2γ 2/ω0. For the Holstein dimer (L = 2), this
can be interpreted as a transition from the lower to the ex-
cited Born-Oppenheimer (BO) surface [79,80] (BO surfaces
are shown in [66]) at a fixed phonon configuration; however,
the qualitative picture remains valid for larger systems as
well (see, e.g., Refs. [21,33,57]). Furthermore, a thermally
activated transition for the polaron occurs at ω ≈ 2t0 [57],
which can be explained using the BO surfaces as a transition
at 〈X̂1 − X̂2〉 ≈ 0.

In Fig. 3(a), we see that for the selected parameters, the
polaron properties carry over to half filling. The center of
the spectrum is close to 2EP (dotted gray lines) and the
thermally activated resonance is clearly visible (dashed line).
Note that this peak is also seen for classical phonons, stud-
ied in Ref. [61], and has been suggested to be related to
finite-temperature disorder physics of noninteracting elec-
trons. Furthermore, it was also discussed in the context of the
displaced Drude peak in Ref. [63].

The thermal conductivity calculated with ĴE
e-ph and ĴE is

shown in Fig. 3(b). The spectra look very similar to those of
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FIG. 4. (a) Time-dependent charge current-current correlation
functions for the CDW parameters at T/t0 = 1.0 and different system
sizes L. The inset shows the oscillations at times 15 � tt0 � 17 on
a smaller scale. The black dotted line in the inset shows the data
weighted with e−η(tt0 )2

with η = 0.4/(4π ). (b) DC optical conduc-
tivity calculated for the same parameters via Eq. (9). The error bars
are calculated by varying η (see the main text for details). The dotted
line is a fit of ρ−1

P from Eq. (10) to the data.

the optical conductivity, suggesting that they are dominated
by small-polaron physics. For the Holstein dimer, ĴE = ĴE

e-ph,
and in the semiclassical approach underlying the BO picture
where the phonon states are eigenstates of X̂i, one would
just expect a rescaled optical conductivity. Our data indicate
that the picture is qualitatively correct, but with some notable
differences. For example, the center of the spectra is shifted to
ω > 2EP, and the thermally activated resonance appears as a
shoulder peak at T/t0 = 1.0 [inset in Fig. 3(b)]. The data pre-
sented in this figure establish that the spectrum mainly results
from ĴE

e-ph (symbols) for all frequencies visible on the used
scale. Thus, the main features can be traced to Holstein-dimer
physics.

We next demonstrate that our data can be used to extract
DC quantities. In the main text, we focus on σ ′

DC, while results
for κ ′

DC are presented in [66]. We first demonstrate that for the
selected parameters, the time-dependent correlation function
quickly decays to zero [see Fig. 4(a)]. Some oscillations can
be seen at later times, but they decrease with system size, and
η is chosen such that the conductivity should be independent
thereof [the black dashed line in the inset in Fig. 4(a) shows
the correlation function weighted with e−η(tt0 )2

]. σ ′
DC is then

obtained as the zeroth component of the Fourier-transformed
charge current-current correlation function [see Eq. (9)].

In systems with small polarons, σ ′
DC increases due to

thermally activated hopping. As demonstrated in Fig. 4(b),
this picture remains valid at half filling. For small polarons,
an analytical expression for the resistivity can be derived
[81–83]:

ρP = ρ0Te(0.5EP−t0 )/T . (10)

In Fig. 4(b), we show σ ′
DC as a function of temperature. By

fitting the inverse of Eq. (10) with ρ0 as the fitting parameter
to our data, we obtain a very good agreement, and further
confirm the importance of small-polaron transport in the sys-

tem, even at half filling. At large temperatures, the residual
finite-size effects are consistent with the remaining L depen-
dence in the autocorrelators [see the inset of Fig. 4(a)]. Note
that the error bars in Fig. 4(b) result from comparing data with
η = 0.2/(4π ) and η = 0.6/(4π ) and taking the maximum
difference to the η = 0.4/(4π ) data at each point. By compar-
ison to state-of-the-art numerical results for one-dimensional
spin systems [71,72], we conclude that our method reaches
comparably low temperatures yet for much larger local Hilbert
spaces.

Conclusions. In this Letter, we studied the thermal and op-
tical conductivity for the Holstein model at finite temperature
and half filling in the Luttinger liquid and in the CDW regime.
Using state-of-the-art MPS time-evolution techniques and us-
ing LBO to efficiently deal with the phonons, we computed
the energy and charge current-current correlation functions.
From those functions, we extracted the finite-frequency
transport coefficients. Despite the enhanced complexity of
considering finite filling and the complicated energy-current
operator, we succeeded in obtaining results at low temper-
atures and investigated the role of different terms of the
energy-current operator in the two parameter regimes. In par-
ticular, our data reveal the importance of small polarons as
energy carriers for parameters with a CDW ground state at
these temperatures. We further provided an example where the
DC conductivity can be reliably obtained in the CDW regime
and we identified features in the spectra due to multiphonon
processes.

While the spectra of the optical and the thermal conductiv-
ity share some similarities, in particular, in the small-polaron
regime, there are also noteworthy differences. In the LL
regime, the thermal conductivity acquires a high-frequency
feature, not seen for σ ′(ω), that we attribute to multiphonon
processes. In the CDW regime, the thermal conductivity spec-
trum has a much larger amplitude, the center of the spectra
is shifted to higher frequencies, and the thermally activated
resonance can only be distinguished at higher T/t0. Still, the
resemblance to the optical conductivity can be understood
by looking at the energy-current operator in the dimer limit.
Moreover, we unveiled the contribution of small-polaron
physics to the optical conductivity (both at finite and zero
frequency) and, in particular, to the thermal conductivity in
the CDW regime.

One can directly identify several interesting extensions of
our work. First, one would want to systematically study the
DC conductivity starting from the limit γ = 0, accounting
also for a dispersion of the phonons and nonlinearity in the
phonon sector [84]. Second, the method can be applied to
other models as well. For instance, transport of a Heisen-
berg chain coupled to phonons has not been explored with
MPS methods (see [22,85] for related numerical studies). This
might provide new insights into experiments on Heisenberg-
chainlike systems [4,86]. A different direction would be to
extend the analysis to nonequilibrium quantities (see, e.g.,
Refs. [87–91]), which might require additional sophisticated
matrix-product-based schemes [92–99].

The data shown in this Letter are available as ancillary
files and can be found together with a link to the code used
at [100].
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