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Poisson’s process in the propagation of magnetic domain wall
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We present here a statistical study of the transit time required for a magnetic domain wall to go through a small
laser spot focused on two-dimensional magnetic thin film. The domain wall velocity deduced this way is in good
agreement with the other ways used to measure this parameter, but the main fact is that the transit time is not a
reproducible parameter; we have observed a quite large distribution of this parameter. This distribution can be
explained assuming the movement to occur through jumps, whose probabilities are given by Poisson’s process.
The fitting of this distribution has enabled us to get the required number of jumps to reverse the magnetization of
the small area under the laser spot. This important parameter should lead to a better understanding of the creep

regime.
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Dynamic domain wall (DW) interfaces are the result of
complex interactions between disorder, elasticity, and ther-
mal fluctuations [1-9]. In the low velocity limit, it has been
successfully described by the creep theory, which can apply
to the propagation of any interface in a medium, such as the
boundaries of a crystal growing in a liquid, a fire front, or
the expansion of a magnetic domain [10,11]. Roughly, creep
theory can be described as stochastic successive jumps of the
interface in a disordered medium with many defects acting as
pinning points for the propagating interface. Due to thermal
activation, a pinning point can be overcome, generating a
jump to reach the next pinning points [11-13]. Creep theory
gives an average propagation velocity: indeed, the interface is
rough and the propagation length induced by a magnetic field
pulse is not the same along the interface. One has to do an
averaging along the interface to check the prediction of the
creep theory [7,8,12,14]. At last, most of the experiments rely
on a stroboscopic procedure, using a Kerr picture before and
after the pulse to view the position of the DW before and after
the magnetic field pulse. Using such a method, there is no
information about what is happening in real time.

The stroboscopic way is not the only way; there are a few
DW studies giving some clues about the real-time evolution.
Several ways have been used: checking the extraordinary Hall
effect on a wire at the position of a Hall cross [15-17], pulsed
lightning using a picosecond laser, which requires doing the
experiment many times and assumes it works each time the
same way [18], or monitoring the Kerr signal below a laser
spot focused on the sample [19-21]. But all these experiments
were made using nanowires, not full film, and the behavior
might not be a true intrinsic two-dimensional (2D) one.
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In this Letter, we report an experimental work of DW
movement with real-time detection in a true 2D magnetic film
of Ta(5 nm)/CoggFesoB2o(1.1 nm)/MgO(1 nm)/Ta(5 nm) film
with perpendicular anisotropy, already studied in a previous
paper [22,23]. A linearly polarized laser spot was focused on
the sample, and the reversal of the area under the spot was
detected in real time through the Kerr signal S(¢) [19,24].
The laser beam was arriving perpendicular to the substrate
and the configuration is a pure polar one, which probes only
the perpendicular component of the film. The laser spot was
approximately Gaussian, with a diameter of 2w, (1/¢® light
intensity), which could be set from 5 to 60 um by using an
additional lens between the laser and the objective lens. In the
following, most of the measurements were done with 6.5 pm.
The laser power was 4.5 mW to ensure negligible local heating
[23]. The time response of the detector was limited by an
amplifier with a bandwidth of 100 kHz, enabling us to view
the rise time as 2.4 ps (time period between 10% and 90% of
maximum amplitude).

Figure 1 shows the corresponding magneto optical Kerr
effect (MOKE) signal when a DW goes through the laser
spot driven by a 2.82-mT out of plane field. For a Gaussian
spot, assuming the DW to be a straight line moving at a
constant velocity, this signal is predicted to have the behavior
following the error function [19,25]:

S(t) =Aerf[k(t —ty)] + C, (1
where erf(x) is the error function:

erf(x) = %/Ox exp(—u?)du. 2

The transit time #, through the spot is defined as the time
required for the domain to move 2wy further. It can be deduced
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FIG. 1. Three typical cases for different transit times with spot
width 6.5 pm.

directly from the fitting parameter k according to
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Here, it is important to point out that our experiment enables
us to get the transit time of a one-shot experiment. So, we have
first checked if the transit time was reproducible from one
attempt to another, applying exactly the same magnetic field.
On a big scale, average velocity is quite well reproducible,
while on a small spot of diameter 6.5 pm, it is no longer true.
Figure 1 presents the results; we have kept only three typical
attempts, which gave an obviously different result, with transit
times of 17.6, 33.4, and 60 us. At this scale, we can see some
stochasticity in the process of the propagation. This interesting
phenomenon has already been found by some other authors
[20,21].

We have used this stochastic behavior as a tool to get some
information about the propagation process. First, we have
determined experimentally the distribution of transit time. For
one set of parameters, i.e., one value of the magnetic field, one
size of the spot and one position, we have performed the ex-
periment 100 times. A typical histogram of transit time arising
from a set of experiments has been plotted in Fig. 2. In Fig. 1,
the ratio signal over noise induces an error bar meaningfully
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FIG. 2. Histograms of transit time frequency distributions using
the Gaussian fit (green solid line) compared to the Poisson fit (red
solid line).

lower than the step of the histogram and it allows a reliable
histogram. Let us note that the size of the spot seems to be
already big enough to get similar properties at any position
on the sample. For the field of 1.90 mT, we have done the
experiment at four different positions: the four histograms
were identical within the error bars [see the Supplemental
Material (SM) to view these histograms] [23]. This is a quite
important result; it shows that the stochastic behavior is not
due to a few specific defects in one area, it is an intrinsic
property and, although quite small, the spot is already big
enough to get a distribution of defects similar at any location
on the sample. Note that, in Fig. 2, we have gathered alto-
gether the results obtained at the four positions for 1.90 mT
to get a better statistic; the four histograms can be seen in the
SM [23].

Then, to fit these histograms, we have used the following
model: (1) we have simplified things by assuming the mean-
ingful defects are identical, (2) the DW propagates by jumps
from one pinning defect to the next one, (3) the probability of
a jump to occur during a short time interval d¢ is proportional
to dt; this probability can be written as dt /t, with t being the
average waiting time between two jumps, and (4) the duration
of a jump is negligible as compared to the waiting time at the
pinning defects. As the density of defects is quite well defined,
the number of jumps required to pass through the laser spot
must be also well defined. As a result, the probability of
having a transit time of duration ¢ in the spot identifies the
probability of getting n jumps during ¢, where 7 is the required
number of jumps to go through the laser spot. This is Poisson’s
process, and this probability is given by [26]

Py = 1 <_1 "
"= e TP AT ) (

Note that P,(¢) is normalized. So, to fit the histograms, this
function has to be multiplied by the number N of sampling
done. Here, usually N = 1. In addition, the step time §7
between two successive channels of the histograms is always
small enough to have roughly a probability on one channel of
the histograms equal to P, (¢)8T . As a result, the function used
to fit the histograms was

J(#) = NP, (1)8T. &)

The result of the fit can be seen in Fig. 2. As a reference
the fit using the usual Gaussian function has also been shown.
Both fits are very satisfying, but Poison’s fit is slightly better;
it explains the slight asymmetry of the histogram. Here, it
must be added that, depending on the parameters (amplitude
of the applied field, size of the laser spot), we have made
more than 15 histograms (see the SM [23]): each time, an
asymmetry could be seen and Poisson’s fit appeared to be
slightly better than the Gaussian ones. So, the asymmetry is
meaningful and Poisson’s law seems to be a good model to
describe our experiment.

The small difference between Gaussian and Poisson can
be explained by the n values. Indeed, when r is bigger than
10, Poisson’s law is not very different from Gaussian’s law. In
fact, using a Gaussian fit instead of Poisson’s one, one can get
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FIG. 3. Number of jumps (n) extracted by Poisson distribution
fitting.

also the right parameters:

N
£y = (t —nt) ) ©)

2 (n— 1)t P 2(n — 1)72

Now, we come to the most interesting result: from these
fits, we can deduce how many jumps have to occur for the
DW to go through the laser spot. For a laser spot of diam-
eter 6.5 um, n has been plotted as a function of the applied
magnetic field in Fig. 3. In this range of field, within the error
bars, n does not change—it is around 11. So, one jump would
mean a reversal of an average area of 3 um?. Let us note that
one jump would imply a movement of some 1 pm, which is
much bigger than the Larkin length (usually around 100 nm
[8]). At the present time, it cannot yet be completely excluded
that one main jump is in fact an avalanche process, with many
smaller jumps occurring very quickly. However, elementary
movements are expected to be meaningfully bigger than the
Larkin length, and the jumps found out here might be ele-
mentary ones. Other references are pointing to such a size for
elementary jumps [11,27,28].

This result can be compared to propagation in nanowires:
for narrow nanowires of width below one or two micrometers,
some single pinning defects can stop completely the propaga-
tion of a DW [29]; some discrepancies in the creep law have
been found [30]. It agrees with the scale of one jump, as we
can expect problems to appear when the jump area covers the
full width of the wire.

The fact that » does not change on the whole range of field
has to be analyzed: indeed, when the magnetic field rises up,
one expects the Zeeman energy to override the potential bar-
rier keeping the DW pinned at the position of the defect. So,
we were expecting the number n to decrease with the increase
of the magnetic field amplitude. But, it did not. We think we
did not reach fields high enough to reach the possibility of
overriding any main defect potential. So, whatever the field
was, pinning occurred for each relevant defect and the number
of jumps was the same. Indeed, when looking at propagation
as a function of magnetic field (see Fig. 4), we can see that
even at the highest applied field, we are still in the creep
regime, which means pinning by defects is still working.

Linear fit
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FIG. 4. DW propagation velocity as a function of the applied
magnetic field, plotted to check the creep behavior.

To check our model, we have changed the size of the
spot. Within the error bars, the first result is the fact the
characteristic mean time t between two jumps does not really
change with the size of the spot for a given field, although the
diameter of the spot goes from 5 to 60 um. It seems consistent
with our model, as 7 is defined at a much lower scale. The
second parameter which can be checked in this experiment
is the number of jumps: it has been plotted in Fig. 5. As
the area of the spot increases, as expected, the number of
jumps increases. But, the dependency is not so easy to explain.
Indeed, in a Markovian process, one could have expected it
to increase linearly with the area of the spot, which means
the square of the diameter. Obviously, it is more complicated
(see DW pinning and depinning process observed with Kerr
microscopy in the SM) [23]. In fact, the first idea implying
the area might be wrong. Indeed, the length of the DW inside
the spot might be a relevant parameter for the probability of
getting one jump, as the number of possible jumps increases
with this parameter. So, the bigger the spot is, the bigger
should become the probability. Such an analysis requires first
some more data as well as some more thinking and it goes
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FIG. 5. The number of jumps as a function of probing area at
1.9 mT. Note that a point at zero has been added as there is no more
pinning point when the area goes to zero, which means no jump over
a defect to go through.
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beyond the aim of this Letter. But, according to this idea, the
number of possible jumps should increase linearly with the
diameter of the spot, and we have indeed a linear behavior up
to a diameter of 20 um (Fig. 5).

In conclusion, we have carried a real-time detection of
a magnetic DW transit in a small area defined by a laser
spot. Using the same magnetic field, the transit time was not
reproducible. To understand this stochasticity, we have studied
the distribution of transit time obtained on a statistic of 100
experiments. To fit the histograms, we have assumed a propa-
gation through stochastic jumps, ruled by a Poisson’s statistic.
We have got a very good agreement between experiments and
model. In particular, the model has been able to explain the
slight but systematic asymmetry of the histograms. As a result,

we could get an important parameter, which is the required
number of jumps of the DW to go through the spot: for a spot
of diameter 6.5 pum, the fitting shows that there are around 11
jumps. It means an average reversal of a 3-pm? area during
each jump. This is important information about the defects
ruling propagation in magnetic thin films and inducing the
creep behavior. Let us note that this kind of analysis can apply
to any creep experiment; it is a powerful tool to get a better
understanding of this phenomenon.
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