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We introduce a novel gauge-invariant, quantized interband index in two-dimensional (2D) multiband systems.
It provides a bulk topological classification of a submanifold of parameter space (e.g., an electron valley in a
Brillouin zone), and therefore overcomes difficulties in characterizing topology of submanifolds. We confirm its
topological nature by numerically demonstrating a one-to-one correspondence to the valley Chern number in k · p
models (e.g., gapped Dirac fermion model) and the first Chern number in lattice models (e.g., Haldane model).
Furthermore, we derive a band-resolved topological charge and demonstrate that it can be used to investigate the
nature of edge states due to band inversion in valley systems like multilayer graphene.
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Introduction. Topological and geometric effects are be-
ing heavily investigated in contemporary condensed matter
physics. For an adiabatic evolution along a closed loop in a
2D parameter space, the geometric part of the final electronic
eigenstate’s phase is U(1) gauge-invariant (modulo 2π ). This
Berry phase contribution depends solely on the geometry of
the parameter space [1]. The corresponding Berry curvature
is a geometrically local quantity, which when summed over
the entire 2D-space manifold, may yield topological quantities
such as the first Chern number [2–4]. In solid state physics, the
Berry phase also plays vital roles in topology-related phenom-
ena, and applications including electric polarization, orbital
magnetism, adiabatic charge pumping, various types of Hall
effects, and edge state engineering [5,6].

Despite these advancements, the understanding of the mul-
tilevel topology of parameter-space submanifolds is arguably
still under development. This Letter will focus on k-space
submanifolds in the vicinity of band edges at high-symmetry
points (or so-called valleys) [7]. These valley degrees of
freedom play key roles in future electronics and quantum
information science, as quasiparticles residing in the valleys
may carry information much like charge and spin [7–27]. The
associated topology is currently studied using the valley Chern
number. This is usually calculated using a loop integral of
the Berry connection (a method that is arguably restrictive
due to requiring a nonsingular gauge) or by integrating Berry
curvature, in the vicinity of a valley [5]. Generally, both k · p
and lattice models have proven useful in the study of topolog-
ical phenomena of valleys. However, in k · p models, the area
of Berry curvature integration required to obtain quantized
valley Chern number is infinite (or equivalently, requires an
infinitesimally small band gap [5,7,22]). On the other hand, in
lattice models, there is no general quantized character to de-
scribe valley topology when the Berry curvature is not peaked
at the valley; at least not without low-energy expansions or
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additional synthetic dimensions [6,28]. In addition, relating
existing bulk indices to edge modes by the bulk-edge corre-
spondence often requires summing the valley Chern number
over all filled bands [5], and/or downfolding multiband
Hamiltonians into simpler models [29–31]. This may cause a
loss of information on the topological origin of edge states.
For example, if the edge state arises from inverting a pair
of bands among many bands, such band-resolved information
would be missing in the valley Chern number description.

In this Letter, we introduce a new topological index �,
and the interband frequency; a correction term that keeps �

quantized. Our approach gives us a meaningful topological
valley index using a finite k-space integration, in both k · p and
lattice models. We also present a band-resolved topological
charge �, that identifies orbitals associated with band inver-
sions without downfolding multiband Hamiltonians.

Interband index in 2D. Consider the time-independent
Schrödinger equation for an N-level nondegenerate Hamil-
tonian H (k) over 2D parameter space k: H (k) |m(k)〉 =
Em(k) |m(k)〉 (m = 1, 2, . . . , N ), where |m〉 are orthonormal
instantaneous eigenstates with eigenvalues Em(k). For an adia-
batic evolution along a closed k-space loop ∂M, we define the
interband index �k, following the definition of the interlevel
character in Ref. [32]:

2π�mn = ��mn −
∮

∂M
d arg 〈m | ∇kn〉 · êτ , (1)

Above, we used the definitions: k = (kx, ky); d is the total
derivative with respect to kx and ky; ∇k = (∂kx , ∂ky ); êτ =
k̇/|k̇| is the unit tangential operator at a point on the loop
∂M [see Fig. 1(b)]; k̇ = dk(λ)/ dλ for some λ that param-
eterizes the loop k = (kx(λ), ky(λ)); and ��mn = �m − �n,
where �m = ∫

∂M Aμ
m dλμ − ∫∫

M Fm dλμ dλν. For brevity,
we henceforth drop the differential elements dλμ. �m is the
number of Berry singularities in level |m〉: It is the difference
between the the line integral of the standard Berry connection
Aμ

m = i 〈m| ∂
∂λμ

m〉 along ∂M, and the area integral of the
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FIG. 1. (a) 2D k-space Brillouin torus for a two-level system.
The counterclockwise closed loop is ∂M, and defines the shaded
region of the torus as M, by convention. For a k-space loop pa-
rameterized by λ, the adiabatic evolution is given by H (λ) ≡ H (k).
(b) For k constrained to ∂M, the tangential vector �eτ (k) at a point is
denoted in red. K and K ′ are high-symmetry points. (c) Two energy
levels of the dispersion E in the vicinity of the K ′ valley. The red
arrow schematically illustrates how the gray k-space loop’s radius r
is increased in (d). (d) Berry curvature area integrals of upper and
lower bands, integral of interband frequency, and the interband index
in Eq. (2) as we vary the size of k loops using r.

Berry curvature Fm = ∂
∂λμ

Aν
m − ∂

∂λν
Aμ

m over the region M
specified by the loop. So, �m could be interpreted as the
quantized “amount” by which Stokes’ theorem fails. Then,
�� is the net number of Berry singularities between the levels
considered. Notice that in the case without gauge singularities,
�m reduces to 0 as

∫
∂M Aμ

m = ∫∫
M Fm.

Following the derivation in Sec. A of Ref. [33], �mn may
be written as

2π�mn =
∫∫

M
Fn −

∫∫
M

Fm −
∮

∂M
Im

〈m|Ḧ |n〉
〈m|Ḣ |n〉

−
∮

∂M

∑
q �=m,n

1

Enq

(
2−Enm

Eqm

)
Im

〈m|Ḣ |q〉〈q|Ḣ |n〉
〈m|Ḣ |n〉 .

(2)

The overhead dots represent derivation with respect to pa-
rameter λ. All terms in Eq. (2) are gauge-independent,
and so, potentially observable. The first two terms in the
right-hand side of Eq. (2) make the difference between the
Berry curvature integrals. The third boundary term includes
〈m|Ḧ |n〉/〈m|Ḣ |n〉, which we call the interband frequency,
since it resembles the ratio of an accelerationlike quantity

to a velocitylike quantity. Since k → ∞ implies the loop
parameter (e.g., time) λ → ∞, we intuit that the frequency
(∝ 1/λ) → 0. We show later in Fig. 1(d) that as k → ∞, this
correction term also tends to 0 in our numerical calculations
on two-band models. To our knowledge, the interband fre-
quency is new to the literature. Due to its dependence on the
tangential vector êτ , a unique vector field may be defined only
after a loop is chosen. This makes the individual terms in the
interband frequency ratio differ from existing quantities in the
literature (such as the interband acceleration in second order
nonlinear responses [34,35]).

The physical significance of the interband index thus be-
comes clear: it is a quantized topological character for a
submanifold of 2D parameter space that depicts the difference
between the Berry phases of a pair of bands, corrected by the
interband frequency and other terms. Next, we demonstrate
the physical meaning and applications of the interband index
in k · p and lattice models.

Application to the gapped Dirac fermion model and Hal-
dane model. We first calculate � and compare it with existing
topological characterizations of k · p models. While we use
the gapped Dirac fermion model for illustration, our results
hold for the other systems we tested (Sec. C of Ref. [33]).
Effective models often follow from low-energy expansions
about a high-symmetry point or band extremum P, and can
describe important band inversions leading to chiral edge
states [6,9,10,12,17,18,22–24]. However, being subspaces of
the complete Hilbert space, these models may not have a
closed k-space manifold (e.g., 2D Brillouin torus). One sig-
nificant example is the electron valley degree of freedom. The
conventional valley Chern number ν̄P is usually given by the
k-space integral of the Berry curvature Fm of filled bands in
the vicinity of a valley centered at P, integrated to infinity:

ν̄P =
∑

i∈filled

∫∫
k→∞

Fi ≡
∑

i∈filled

C̄P
i . (3)

Above, C̄P
i is the valley Chern number at P per band |i〉,

and the overhead bar indicates that we used the conventional
definition of (3) in contrast to the new definition that we
will discuss next. Topological quantities like ν̄P are only
approximately quantized, unless the range of the integral in
k is infinite. However, using � instead of ν̄P Eq. (3) gives
manifestly quantized integers using a finite loop about P. This
property may be considered advantageous since we do not
need an infinite area of integration. Indeed, the relation to
topology becomes clear when we show that the interband
index is twice the valley Chern number, i.e., � = 2ν̄P in
two-band k · p models.

For illustration, consider the 2D gapped Dirac fermion
model [36–39], which has a k · p Hamiltonian with integer
winding number w:

H (k) =
(

� α|k|γ eiwφk

α|k|γ e−iwφk −�

)
, (4)

where the energy gap is 2�, and φk = tan−1(ky/kx ).1 The
energy dispersions for the upper (m) and lower (n) bands are

1While γ can take on arbitrary integral values in graphene multi-
layers [37], we note that in monolayer MoS2 and gapped topological
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respectively ±
√

�2 + α2|k|2γ . For a circular loop parameter-
ized as (kx, ky) = (r cos(λ), r sin(λ)) and centered at the K ′
point [see Fig. 1(c)], the first three integrals in Eq. (2) conspire
to give quantized �. The last term in Eq. (2) does not exist in
two-band models. As the area of integration approaches the
limit k → ∞, the third integral in Eq. (2) contributes less,
making � the difference in integrals of Fm and Fn. In the
k → ∞ limit, these two integrals are just C̄K

m and C̄K
n . We

demonstrate this in Fig. 1(d), where we used w = 3, � = 1,
γ = 1, and α = 1. See Sec. B of Ref. [33] for more on the
model’s Berry curvature.

To verify � = 2ν̄K ′
, consider the k → ∞ limit. The Berry

curvature sum rule
∑

i Fi = 0 gives Fn = −Fm for two-band
models. Since ν̄K ′ = ∫∫

Fn in this limit, the claim follows
from Eq. (2) since the interband frequency integral tends to 0.
Indeed, the figure shows

∫∫
Fn → −1.5 = ν̄K ′

. With � = −3,
we verify � = 2ν̄K ′

.
Next, we discuss � in lattice models. For demonstration,

we use Haldane’s two-band model for the quantum anomalous
Hall effect [36]. However, our results hold for all the models
tested in Sec. C of Ref. [33]. On a honeycomb lattice, its
Hamiltonian can be written in a Bloch state basis on two
sublattices A, B, using Pauli matrices σi. Below, t1 is the
nearest-neighbor hopping, t2 the amplitude of the complex
second-neighbor hopping, φ the phase accumulated by the
t2 hopping, and M the on-site energy between the A and B
sublattices. ai are displacements from a B site to its three
nearest-neighbor A sites, and bi are displacements for nearest-
neighbor sites in the same sublattices [40]:

H (k) = 2t2 cos φ

[∑
i

cos (k · bi)

]

+ t1

[∑
i

[cos (k · ai )σ1 + sin (k · ai)σ2]

]

+
[

M − 2t2 sin φ

(∑
i

sin (k · bi )

)]
σ3. (5)

This model can give topologically nontrivial first Chern num-
bers that may yield topologically-protected edge states [36].
The Chern number C = ∑

i∈filled

∫∫
k∈FBZ Fi (where FBZ ≡

first Brillouin zone) changes when the band gap closes and
reopens at the high-symmetry points (K or K ′), as shown in
Figs. 2(a) and 2(b). The physics at these valleys is therefore
significant, because their gap closings can change the topol-
ogy, and therefore edge state physics. However, unlike with
the Dirac fermion model, it is not easy to define an analo-
gous near-quantized topological quantity at valleys in lattice
models. This is because the Berry curvature is not necessarily
highly localized at P, and the area of the valley available for
integration is finite. Therefore quantities like ν̄P cannot often
be directly acquired from lattice models; at least not without
low-energy expansions.

surface states, α(|k|) ∝ |k| =
√

k2
x + k2

y (that is, γ = 1), and that in

biased bilayer graphene, α(|k|) ∝ |k|2 (γ = 2).

FIG. 2. (a) A phase diagram of the first Chern number C for
the Haldane model as a function of (M, φ). The topological phase
transitions occur by gap closures at K or K ′. (b) Conduction and
valence bands of the Haldane model for M/t2 = 3

√
3, φ = π/2,

and t1 = 4t2 = 1. The gap closure at K ′ corresponds to the phase
boundary marked with a cross × in (a). (c) �K (M/t2, φ) using a
fixed k-space loop of radius 0.2 around the K point (d) �K ′

(M/t2, φ).
Notice that �K (M/t2, φ) + �K ′

(M/t2, φ) = 2C(M/t2, φ), which is
exactly twice the expected phase diagram (a).

However, � can again provide a quantized valley charac-
terization using a small loop centered at P. Figures 2(c) and
2(d) show “phase diagrams” analogous to Fig. 2(a) but show-
ing � for each valley. Clearly, when �K and �K ′

are summed
at each phase space (M/t2, φ) point in Figs. 2(c) and 2(d), we
recover Haldane’s phase diagram Fig. 2(a): �K + �K ′ = 2C.2

Hence, compared to the state of the art, we now have a tool
to analyze each valley in lattice models without using low-
energy expansions.

Band-resolved topological charge. The connections be-
tween the interband index and local topological characteristics
motivate us to define a band-resolved topological charge �P

for each P that would add up to the Chern number C. For
example, in the Haldane mode, we can define �K + �K ′ ≡
�K/2 + �K ′

/2 = C. This band-resolved topological charge
can be generalized to valley and multiband problems. This
allows us to not only calculate band-resolved and valley topo-
logical indices but also to identify the number and source of
edge states from inverting bulk bands without downfolding.

To make this multiband functionality apparent, we use
�mn [Eq. (1)] to define the novel generalized band-resolved
topological charge �

γ
i per band |i〉, of context γ (e.g., γ

could be P, such as K). For an N-level Hamiltonian, the N

2The factor of 2 is a peculiarity of two-band models that arises from
the Berry curvature sum rule

∑
i∈all bands Fi = 0, which guarantees us

that the Berry curvature at each k point of each band differs only by
a sign. Therefore the first two integrals in Eq. (2) simplify to a single
integral with a factor of 2 (i.e., either 2

∫
M Fn or −2

∫
M Fm).
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possible �
γ
i values may be found by solving the overdeter-

mined simultaneous equations:{
�γ

mn = �γ
n − �γ

m,
∑

i

�
γ
i = 0

}
. (6)

We choose N − 1 of the N (N − 1)/2 equations involving
�

γ
mn that make an appropriate linearly independent subset of

equations along with
∑

i �
γ

i = 0, which is a conservation
condition that resolves linear dependence. This conservation
condition is analogous to the Berry curvature sum rule: For
a complete basis, the topological charges should sum to 0.
Notice that since �

γ
mn is always an integer, it is reasonable

to expect �
γ

i to be rational.
Motivated by how ν̄P is a sum over filled bands [Eq. (3)],

we define:3

νγ =
∑

i∈filled

�
γ

i . (7)

We numerically find that �
γ
i and νγ are sufficient to calcu-

late the number of edge modes, without using conventional
topological quantities such as the Chern number and valley
Chern number. By the bulk-edge correspondence, the number
of edge modes b due to a domain boundary separating two
systems α and β is b = |T α − T β |, where T γ is some topolog-
ical character for context γ . For example, two adjacent Chern
insulators give b = |Cα − Cβ | [6]. Or, for a domain bound-
ary between two valleys,4 we have b = |νK − νK ′ | [Eq. (7)]
[26,27]. And if the boundary is due to two bulk systems with
different external potentials U1 and U2 at the same P, we
get b = |νP,U1 − νP,U2 | [26]. Our numerical results shown next
support these claims.

We first exemplify the quantities we introduced using the
gapped Dirac fermion model [Eq. (4)]. For the example in
Fig. 1(d), we use � = −3 and solve the simultaneous equa-
tions {−3 = �n − �m, �n + �m = 0} [Eq. (6)] to get �n =
−1.5 and �m = 1.5, which is consistent with the conventional
valley Chern number per band [Eq. (3) C̄K

n ≈ −1.5 and C̄K
m ≈

1.5; see Fig. 1(d)].
For a multiband example, consider the eight-band model

for gated bilayer graphene including Rashba spin-orbit cou-
pling (Ref. [26]; parameter values in Sec. F of Ref. [33]). As
the spin-orbit coupling parameter is tuned from λR = 0.2t to
0.4t , we expect a band inversion at the K valley [26], as in
Fig. 3(a). For these two values of λR, we present �i in Table I.

We map the �
λR
i in Table I to existing topological

quantities. First, we see that for each choice of λR,
C = νK + νK ′ = 0, due to �

λR,K
i = −�

λR,K ′
i . This is

consistent with the time-reversal symmetry of the model. We
note that the limit of each C̄P

i may not tend to the quantized �i

in N-band models with N > 2. To see this, we calculated C̄P
i

3Recall that we used an overhead bar ν̄P in Eq. (3) to denote
conventional definitions. νγ in Eq. (7) lacks an overhead bar to
differentiate our novel contribution, which is quantized as a rational
number.

4The domain boundary could be between 1D strips separating a K
edge from a K ′ edge. Or within one Brillouin zone, when intervalley
scattering is suppressed [5].

FIG. 3. (a) Band diagram at the K point (kx, ky ) = (0, 0) for
the eight-band bilayer graphene model. At λR = 0.2t , the bands are
labeled EA, EB, . . . , EH as we go from −1 to +1 along the vertical
axis. As λR is varied from 0.2t to 0.4t , the bands ED and EE invert
at λR ≈ 0.33t . (b) (Top) Schematic of real-space nanoribbon with
a domain boundary in the x direction separating regions of two
different λR. The shaded area represents the calculated wave-function
density. (Bottom) Nanoribbon bands at kx = 0 along the ky direction.
(c) (Left) Bulk bands at kx = 0 for λR = 0.2t . (Right) Gaussian-
broadened overlap element between bulk and domain boundary band
wave functions | 〈φ|ψ〉 |2.

at valley K in the k → ∞ limit using Eq. (3). For λR = 0.2t ,
(C̄K

A , C̄K
B , C̄K

C , C̄K
D , . . . ) ≈ (−0.01, 0.99,−1.99,−0.99, . . . ).

We see that C̄A ≈ −0.01 → 0, which is different from
�A = −1/2. This mismatch arises from the last two
correction terms in Eq. (2), which do not necessarily tend to
0 in models with N > 2 bands.

However, a difference between indices may indicate the
number of edge states. Consider a valley problem with a do-
main boundary between K and K ′ for fixed λR at half-filling.
From Table I, we have b = |νK − νK ′ | = | − 1 − 1| = 2 for
λR = 0.4t , and b = | − 2 − 2| = 4 for λR = 0.2t . If we in-
stead take a domain boundary problem at K for the two λR

values, we get b = |ν0.4 − ν0.2| = | − 1 − (−2)| = 1 as the
number of edge modes due to the band inversion. These results
are consistent with Ref. [26].

TABLE I. �
λR
i for the K valley of the eight-band model for gated

bilayer graphene. At K ′, �
λR,K ′
i = −�

λR,K
i .

�A �B �C �D �E �F �G �H

�0.4
i − 1

2
1
2 − 3

2
1
2 − 1

2
3
2 − 1

2
1
2

�0.2
i − 1

2
1
2 − 3

2 − 1
2

1
2

3
2 − 1

2
1
2
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We also show that �i can identify the bulk bands and
orbitals causing edge states without explicitly tracking the
evolution of spectra [as done in Fig. 3(a)]. Since the only
indices that differ between λR = 0.4t and λR = 0.2t are �D

and �E , the orbitals causing edge states are from bands ED

and EE . To verify this, we further model a tight-binding
nanoribbon of 120 sites that is periodic in the y direction,
that has a domain boundary in the x direction at site i = 60,
as in Fig. 3(b) (top). We discretized the continuum model
Eq. (F1) in Sec. F of Ref. [33] to get a tight-binding model that
includes both valleys. Our calculations [41] show that edge
states accumulate at the domain boundary. We then calculated
the nanoribbon bands in Fig. 3(b) (bottom), which shows one
zero-energy edge state from each valley. Figure 3(c) shows
that these edge states are composed of orbitals from ED and
EE , evident from the large overlap between the zero-energy
edge state wave function |φ〉 and the bulk wave functions |ψ〉
of ED and EE (calculated in a homogeneous nanoribbon at
λR = 0.2t).

Conclusion and outlook. We introduced two gauge-
invariant quantities, the interband index �mn and
band-resolved topological charge �i. These quantized indices
offer novel characterizations of topologically significant
submanifolds in 2D k-space manifolds that are consistent
with existing topological characters such as the first and

valley Chern numbers. As demonstrated, the differences
between � values from different contexts may carry desired
physical meaning as the number of edge states. So, the
universality and significance of individual � warrant further
investigation, as does the interpretation of � and � for
loops not enclosing a single P (see Sec. E of Ref. [33]).
The non-Abelian version of the interlevel index provided
in Ref. [32] may be extended to treat degeneracies, and
deserves further work due to the prevalence of accidental
and symmetry-protected degeneracies in condensed matter
systems. In conclusion, these first-in-literature quantities, due
to their elegant quantized nature and broad applicability, are
prime candidates for deeper study.
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