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Spectral theorems for generalized Weyl nodes with impurities in a magnetic field
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We prove a few spectral theorems for the density of states of a Weyl node with arbitrary topology.
We show that the density of extended states of a Weyl node with random impurity potentials remains
gapless in the presence of a magnetic field. Therefore, a magnetic field precludes Anderson localization
in Weyl semimetals, when internode transitions are suppressed for smooth enough potentials. We also
provide a rigorous quantum mechanical proof of the chiral magnetic effect for arbitrary topology of a
Weyl node.
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Introduction. Weyl semimetals, where certain band cross-
ing points feature a topological character which is similar
to relativistic massless fermions, provide us with an in-
teresting bridge between condensed-matter and high-energy
physics. While relativistic Weyl fermions [1] obey the con-
straints from Lorentz invariance, e.g., the alignment of spin
and momentum, the quasiparticles in Weyl semimetals are
not encumbered with such restrictions and can possess more
diverse topological character [2,3]. Some of the most in-
teresting physics stemming from nontrivial topology, such
as chiral anomaly [4,5] and chiral transport phenomena
[6–8], therefore find themselves naturally generalized in Weyl
semimetals; a notable example is the chiral magnetic effect
[9–12].

In condensed-matter systems, impurities due to imper-
fect lattices are common, and how they affect the spectral
and transport properties of Weyl nodes has been a subject
of great interest. It has been proposed that as the impurity
strength increases, there is a quantum phase transition from
the semimetal to the diffusive metal phases [13], where the
density of states at the nodal point becomes nonzero [14–20]
and a non-Fermi-liquid behavior emerges [21]. However, it
was also pointed out that the rare region effects could make
the transition a crossover instead [22–26] (see Refs. [27–30]
for the current status of the issue). For a Dirac semimetal, i.e.,
two degenerate Weyl points with opposite topology, a further
increase of impurity was shown to cause a three-dimensional
(3D) Anderson metal-insulator transition [31]. Whether there
is a similar transition, when each Weyl node is separated in
momentum space and internode couplings are suppressed for
smooth potentials, is an interesting question [32–34]. Obvi-
ously, the topology of the Weyl node is at the heart of these
questions.

In this work, we hope to shed light on these questions by
studying the spectral property of a single Weyl node with
impurities in a nonzero external magnetic field. A nontrivial
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interplay of nodal topology and magnetic field is well known
in the physics of chiral anomaly and the chiral magnetic effect
[35,36], which offers a promising way to study the fate of
topology in the presence of impurities.

The main spectral theorem and its consequences. We first
derive the main spectral theorem that our subsequent dis-
cussions will rely upon. We consider a system described by
a noninteracting quasiparticle, which carries a charge q for
electromagnetic interactions with an external vector potential
A. We assume that the energy spectrum of the quasiparticle
is described by a one-particle Hamiltonian Ĥ (π), where π =
p − qA is the gauge-invariant momentum. This includes the
lattice models where A appears as Wilson lines in the hop-
ping matrix and p is the lattice momentum. We also assume
the thermodynamic limit of a large volume, V → ∞. This
means that we are focusing on the bulk spectral properties
and ignoring boundary conditions. Therefore, our subsequent
discussions and results apply only to the bulk properties of the
system.

The primary object we consider is the spectral density in
energy, weighted by the current operator, e.g., along the z
direction,

ρJ (ε) ≡ lim
V →∞

1

V
Tr[Ĵzδ(Ĥ − ε)], (1)

where the current operator is defined by Ĵz = − ∂Ĥ (A)
∂Az

= q ∂Ĥ
∂ p̂z

,
with a constant, auxiliary value of the z component of the
vector potential A, and δ(x) is the Dirac’s delta function or any
smooth function that is sufficiently narrow around x = 0 with
unit area. Our subsequent results do not depend on the details
of the shape of this function. Because of δ(Ĥ − ε), only the
energy eigenstates with the eigenvalues close to ε contribute
to ρJ (ε). This ensures that ρJ (ε) is finite and well defined,
even in the case where the spectrum of Ĥ has no lower or
upper bounds in energy. Since it can be shown, in general, that
〈Ĵz〉 = 0 for a bound state, ρJ (ε) captures only the unbound
extended states in the continuum.
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Our main theorem is that ρJ (ε) is a constant, independent
of ε:

Theorem 1 : ρJ (ε) = CJ (const). (2)

We prove the theorem by showing that ∂
∂ε

ρJ (ε) = 0, under
reasonable assumption of finiteness of the density of states in
an energy interval under consideration,

ρ(ε) ≡ lim
V →∞

1

V
Tr[δ(Ĥ − ε)]. (3)

We have ∂
∂ε

ρJ (ε) = − limV →∞ 1
V Tr[Ĵzδ

′(Ĥ − ε)] and, us-

ing the definition of Ĵz = − ∂Ĥ
∂Az

, we arrive at ∂
∂ε

ρJ (ε) =
∂

∂Az
ρ(ε, A), where the dependence on A is implicit in the

Hamiltonian Ĥ (π̂). We now utilize the following observa-
tion: for any eigenstate ψ (x) of energy ε of the Hamiltonian
Ĥ (π̂), the state eiα·x)/h̄ψ (x) with a constant α is an eigen-
state of the Hamiltonian Ĥ (π̂ − α) with the same energy.
This corresponds to a shift of A → A + α/q, which implies
that the spectrum of Ĥ , and hence the spectral density ρ(ε),
remains invariant under a constant shift of A. This proves that
∂
∂ε

ρJ (ε) = ∂
∂Az

ρ(ε, A) = 0.
Although the theorem and its proof are simple, the impli-

cations are rich. Suppose that the quasiparticles are fermions,
the system has a chemical potential μ at zero temperature,
and all eigenstates of energy ε � μ are occupied. The current
density, i.e., the current per unit volume, of the system is then
given by jz = ∫ μ

−∞ ρJ (ε)dε, which can be shown by

jz = 1

V

∑
α

〈ψα|Ĵz|ψα〉�(μ − εα ), (4)

where |ψα〉 are the energy eigenstates with energy εα , labeled
by α, and the fact that ρJ (ε) can be written as

ρJ (ε) = 1

V

∑
α

〈ψα|Ĵz|ψα〉δ(εα − ε). (5)

The theorem then implies that jz = CJ
∫ μ

−∞ dε, which is infi-
nite, unless CJ = 0.

Although the appearance of infinity for jz looks trouble-
some, it is in fact expected for the following reason. Suppose
the spectrum of Ĥ has an upper or lower bound. If ε is outside
of these bounds, there is no state to contribute to ρJ (ε), and
ρJ (ε) = 0 for such ε. The theorem then implies that ρJ (ε) = 0
for all ε, i.e., CJ = 0. Therefore, a nonvanishing CJ is possi-
ble only if the spectrum has no upper or lower bounds. An
example that we will discuss in more detail later is provided
by the spectrum of a relativistic Weyl fermion. We will also
consider an exception to the statement, when the density of
states ρ(ε) is allowed to possess a nonintegrable singularity
in ε. The necessity of an unbounded spectrum for nonvan-
ishing ρJ (ε) can also be understood by considering N (ε) ≡
limV →∞ 1

V Tr[�(ε − Ĥ )], where �(x) is the step function,
which counts the number of states whose energy is less than ε.
The similar steps as above show ρJ (ε) = ∂

∂Az
N (ε) = 0 since

the energy spectrum, and hence N (ε), do not depend on Az.
What saves a nonvanishing ρJ (ε) for the unbounded spectrum
is that N (ε) is infinite and ill defined.

The above discussion leads to the following corollary of the
theorem, which is an alternative proof of the Bloch’s theorem

[37,38]: The system with a lower bound in spectrum has
no persistent current in any thermodynamic ensemble. The
proof relies on the fact that any thermodynamic ensemble
is defined by the occupation number of one-particle states,
which depends only on its energy eigenvalue ε. For example,
a grand-canonical ensemble of temperature T and chemical
potential μ gives the current density,

jz = 1

V

∑
α

〈ψα|Ĵz|ψα〉nF (εα ) =
∫ ∞

−∞
nF (ε)ρJ (ε)dε, (6)

where nF (x) = (1 + e(x−μ)/(kBT ) )−1. A lower bound on the
spectrum implies CJ = 0, i.e., ρJ (ε) = 0 for all ε.

When the spectrum has no bounds, and CJ �= 0, a proper
way to proceed is to first define the ground state (or vac-
uum state) of the system, e.g., the state at T = μ = 0 where
all one-particle states of ε � 0 are occupied, and the cur-
rent density jz is measured with respect to the value of the
ground state. This gives, for example, in the grand-canonical
ensemble, jz = ∫ ∞

−∞[nF (ε) − �(−ε)]ρJ (ε)dε = CJμ, which
is linear in μ and, more interestingly, independent of T . This
leads to the following corollary: A persistent current in the
grand-canonical ensemble, if it is nonvanishing, is strictly
linear in μ and independent of T . The theorem and its con-
sequences do not assume any details of the Hamiltonian or
external conditions.

The theorem implies a strong robustness of ρJ (ε) under
any reasonable perturbation. Since ρJ (ε) = CJ is independent
of ε, the constant CJ is a property of the one-particle states
with arbitrarily large energy ε, and therefore its value is robust
under any perturbation that could affect only the states with a
finite ε. This is a nontrivial conclusion since a perturbation in
general may affect the states of small ε in significant ways,
e.g., the density of states and the current expectation values
will be substantially modified for small ε. Yet, we find that
ρJ (ε) should remain the same for all energy ε since it should
be the same for ε → ∞. We will establish this robustness
more rigorously in the following discussions.

A toy example. To illustrate the theorem and its conse-
quences in a simple example, we consider a one-dimensional
system described by the Hamiltonian

Ĥ = f ( p̂z ) + V0(z) ≡ Ĥ0 + V0(z), (7)

where f ( p̂z ) is an arbitrary function on the momentum op-
erator p̂z = −ih̄∂z, and V0(z) is a potential. Let us ignore
the potential for a moment and consider the spectrum of
Ĥ0, which is parametrized by the momentum eigenvalue
pz of the eigenstate ψpz (z) = e−ipzz/h̄, i.e., ε(pz ) = f (pz ).
The density of states in momentum space is L

2π h̄ d pz, where
L is the size of the system. Then, the density of states
in energy is ρ(ε) ≡ 1

L Tr[δ(Ĥ0 − ε)] = 1
2π h̄

∫
d pzδ[ f (pz ) −

ε] = 1
2π h̄

∑
α

1
| f ′(pα )| , where pα are the solutions of f (pα ) =

ε. The current operator is Ĵz = q f ′( p̂z ), and our current
weighted spectral density is ρJ (ε) = 1

L Tr[Ĵzδ(Ĥ0 − ε)] =
q

2π h̄

∑
α

f ′(pα )
| f ′(pα )| . Although ρ(ε) depends on both ε and the

shape of f (pz ), it is easy to see that ρJ (ε), which counts the
number of signed crossings of the curve f (pz ) at energy ε,
is constant in ε. It coincides with a well-known topological
index of the one-dimensional Hamiltonian.
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When the potential is present, pz is no longer a good
quantum number. The problem is still exactly solvable if Ĥ0 =
p̂z. The energy eigenstates are ψε(z) = e

i
h̄ [pzz−∫ z

z0
V0(z′ )dz′], with

the spectrum ε(pz ) = pz. The current operator is an identity
Ĵz = q ∂Ĥ

∂ p̂z
= q, and we find ρJ (ε) = q

2π h̄ , which is constant,
independent of the potential V0(z). For a general f (pz ) with-
out bounds, i.e., | f (pz )| → ∞ as pz → ±∞, we can find
the eigenstates of large energy in the eikonal approximation,
ψpz (z) ∼ e

i
h̄ [pzz+φ(z)], where φ(z) = − 1

f ′(pz )

∫ z
z0

V0(z′)dz′, and
the spectrum is ε(pz ) = f (pz ) which defines pz given ε. The
small parameter for the approximation is V0(z)/ f (pz ) → 0
as pz → ∞, and the approximation becomes exact in the
ε → ∞ limit. The current operator is Ĵ = q f ′( p̂z ), with the
expectation value 〈ψpz |Ĵz|ψpz 〉 = q f ′(pz ), up to the same cor-
rections of V0(z)/ f (pz ) → 0 in the eikonal limit. We then find
that ρJ (ε) is given by the same expression, q

2π h̄

∑
α

f ′(pα )
| f ′(pα )| ,

as ε → ∞, and hence for all ε according to our theorem,
irrespective of the potential V0(z).

As a corollary, our result proves the absence of Anderson
localization in one-dimensional systems if the kinetic operator
dispersion relation behaves at large momentum as f (pz ) ∼
p2n+1

z , where n = 0, 1, 2, . . . , since we have ρJ (ε) = q
2π h̄ �= 0,

which implies the absence of a gap in the spectrum of ex-
tended states with random potentials. In particular, the n = 0
case corresponds to a relativistic 1D Weyl node.

Discussion on a counter example. In this short digression,
we discuss the following counter example in one-dimensions:
Ĥ = ε0 tanh( p̂z ), where ε0 is a constant. For the interval |ε| <

ε0, the spectrum is a monotonically increasing function of pz

and we have ρJ (ε) = q
2π h̄ , while outside of the interval, no

states exist and ρJ (ε) = 0. What causes the discontinuity in
ρJ (ε) across ε = ±ε0 is the infinite number of states accumu-
lated around the energy ±ε0. The density of states is ρ(ε) =

1
2π h̄ tanh′[tanh−1(ε/ε0 )]

= 1
2π h̄[1−(ε/ε0 )2] , which is nonintegrable at

±ε0. The theorem applies only when the density of states is
a finite function in the energy interval of interest.

In the following, we discuss our main application of The-
orem 1; we will compute the constant CJ = ρJ (ε) for a Weyl
node of arbitrary topology in the presence of a magnetic field
and impurities.

A clean Weyl node in a magnetic field. Let us first ignore im-
purities temporarily, and compute CJ for a clean Weyl node in
the presence of a magnetic field. Our main technique is based
on the following observation: since ρJ (ε) = CJ is independent
of ε, we can express CJ by

CJ = 1√
πM

∫ ∞

−∞
dε ρJ (ε)e− ε2

M2 = 1√
πM

1

V
Tr

(
Ĵze

− Ĥ2

M2

)
,

(8)
for any M > 0. The M → 0 limit reproduces the definition
of ρJ (ε), while the M → ∞ limit is similar to the common
strategy in the proof of the index theorems.

Before considering the most general form of a Weyl node,
let us consider a concrete example of the simplest (relativistic)
Weyl Hamiltonian in the presence of a constant magnetic field
B = Bẑ, where ẑ is the unit vector in the z direction,

Ĥ = σ · π̂ = σx p̂x + σy( p̂y − qBx) + σz p̂z, (9)

where σi are the Pauli matrices, and we work in the Landau
gauge A = (0, Bx, 0). In this case, we are able to compute
the right-hand side of Eq. (8) exactly for any M to find
that it is, indeed, M independent, which demonstrates the
validity of our Theorem 1. We have Ĥ2 = Ĥ0 + ĤI , where
Ĥ0 = ( p̂x )2 + ( p̂y − qBx)2 + ( p̂z )2 and ĤI = −h̄qBσz. Since
Ĵz = qσz, Eq. (8) becomes

CJ = q√
πM

1

V
Tr

(
σze

− 1
M2 (Ĥ0−qh̄Bσz )). (10)

To evaluate this, first note that h̄qBσz commutes with Ĥ0 and

that e
qh̄Bσz

M2 = cosh( qh̄B
M2 ) + σz sinh( qh̄B

M2 ). Taking the spin trace,
we obtain

CJ = q√
πM

2 sinh
( qh̄B

M2

)
V

Tr
(
e− Ĥ0

M2
)
. (11)

To evaluate the remaining trace in position-momentum space,
we note that Ĥ0 is the classical Landau-level problem for a
relativistic scalar particle. The eigenfunctions are given by
|ψn,py,pz 〉 = e

i
h̄ (pyy+pzz)|φn,py〉, where |φn,py〉 are the 2D Lan-

dau wave functions and the eigenvalues are En,pz = 2qh̄B(n +
1/2 ) + p2

z , with the degeneracy per unit transverse area g⊥ =
qB

2π h̄ . From these, we obtain

Tr
(
e− Ĥ0

M2
) = qV B

(2π h̄)2

∫ +∞

−∞
d pze

− p2
z

M2

∞∑
n=0

e− 2qh̄B
M2 (n+ 1

2 ), (12)

which is evaluated to be qV B
√

πM
(2π h̄)2

1
2 sinh(qh̄B/M2 ) . Using this in

Eq. (11), we indeed find the M-independent result,

CJ = q2B/(2π h̄)2. (13)

We now consider the most general form of a Weyl node in
the presence of a constant magnetic field B = Bẑ,

Ĥ = F(π̂) · σ, (14)

where F(π̂) is an arbitrary vector valued function in π̂. We
will use Eq. (8) in the M → ∞ limit to compute CJ since it
is not possible to solve the eigenvalue problem exactly. Us-
ing [π̂x, π̂y] = ih̄qB and σ iσ j = δi j + iεi jkσ k , we have Ĥ2 =
F2(π̂) − h̄qB( ∂F

∂πx
× ∂F

∂πy
) · σ ≡ Ĥ0 + ĤI . In obtaining this, we

neglected the terms arising from position-momentum commu-
tators since those terms possess less powers of momentum
than the above leading term. As we will see, a finite con-
tribution in the M → ∞ limit comes only from the p → ∞
region, and the terms with less powers of momentum become
irrelevant compared to the leading term. Following similar
steps in the proofs of the index theorems, we invoke the heat
kernel expansion,

e− Ĥ2

M2 = e− Ĥ0
M2

(
1 − 1

M2

∫ 1

0
dt et Ĥ0

M2 ĤI e
−t Ĥ0

M2

)
+ O

(
1

M4

)
.

(15)
Since Ĵz = q( ∂F

∂ p̂z
) · σ, the first nonvanishing trace in spin

space appears with the second term in the expansion, and we
find

CJ = 2h̄q2B√
πM3

1

V
Tr

[
e− F2 (π̂)

M2

(
∂F
∂π̂x

× ∂F
∂π̂y

)
· ∂F
∂ p̂z

]
, (16)
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FIG. 1. A schematic example of spectral curves, ε(n)(pz ).

up to subleading corrections from position-momentum com-
mutators. We then evaluate the remaining trace in momentum
basis, and in the large-M limit, the trace is dominated by
large momentum p, for which π can be replaced by p up to
subleading corrections, and we arrive at

CJ = 2h̄q2B√
πM3

∫
d3 p

(2π h̄)3
e− F2 (p)

M2

(
∂F
∂ px

× ∂F
∂ py

)
· ∂F
∂ pz

. (17)

Noting that ( ∂F
∂ px

× ∂F
∂ py

) · ∂F
∂ pz

is the signed Jacobian for the
map p → F(p), which allows us to perform a change of
variables p → F(p) in the above integration, we find

CJ = 2h̄q2B√
πM3

NF

∫
d3F

(2π h̄)3
e−F2/M2 = q2B

(2π h̄)2
NF , (18)

where NF ∈ π2(S2) = Z is the signed winding number of
the map p → F(p) at asymptotic infinity, S2

∞ → S2
∞, which

defines the topology of the Weyl node with the Hamiltonian
Ĥ = F( p̂) · σ [39]. The integer NF counts the flux of the
Berry’s curvature on a Fermi surface around the Weyl node
and also appears in the chiral anomaly relation near the Weyl
node. NF is essentially the number of times the F space at
infinity is covered in the map p → F(p). As an example,
NF = N for F± = (p±)N and Fz = pz, where F± = Fx ± iFy

and p± = px ± ipy. Only the asymptotic region of S2
∞ at

infinity in both p and F spaces matters since the surviving
contribution in the M → ∞ limit comes only from this region,
as seen in the F integration in Eq. (18).

We can interpret the above result in the following inter-
esting way. In the Landau gauge, the eigenstates of Ĥ can
be written as ψ (x) = ψ (n)

pz
[x − py/(qB)]e

i
h̄ (pyy+pzz), with good

quantum numbers (py, pz ). The eigenvalue equation takes
the form Ĥpzψ

(n)
pz

(x) = ε(n)(pz )ψ (n)
pz

(x), where Ĥpz = F(πx →
p̂x, πy → −qBx, πz → pz ) · σ is a Hamiltonian in the one-
dimensional space of x, parametrized by pz, and p̂x = −ih̄∂x.
The non-negative integer n is the discrete label for the spectral
curves, ε(n)(pz ), as a function of the continuous parameter
pz, which may well be called the generalized Landau levels.
The energy spectrum does not depend on py, and we have the
usual density of states per unit transverse area, g⊥ = qB

2π h̄ . A
typical shape of the spectral curves is depicted in Fig. 1. Us-
ing the Feynman-Hellmann theorem, the current expectation

value is 〈ψ (n)
pz

|Ĵz|ψ (n)
pz

〉 = q〈ψ (n)
pz

| ∂Ĥpz

∂ pz
|ψ (n)

pz
〉 = q ∂ε(n) (pz )

∂ pz
, which

implies that for each n, the contribution to ρJ (ε) is equal
to that from a one-dimensional problem with a Hamiltonian

Ĥn ≡ ε(n)( p̂z ), i.e., q
2π h̄

∑
α

ε′
(n) (pα )

|ε′
(n) (pα )| , that we discussed as a toy

example. A nonvanishing contribution comes only from the
curves with no lower or upper bounds in energy, which we
may call the generalized zero modes. We then conclude that
ρJ (ε) = g⊥ q

2π h̄ N0 = q2B
(2π h̄)2 N0, where N0 is the signed total

number of zero modes of the Hamiltonian Ĥpz , which is a
topological property of Ĥpz . Our result for CJ then proves the
relation N0 = NF .

For a special case of

Ĥ = F⊥(π̂⊥) · σ⊥ + p̂zσz, (19)

where (π̂⊥, σ⊥) have only the transverse components in (x, y)
directions, we have Ĥ2 = D̂2

⊥ + p̂2
z , where D̂⊥ ≡ F⊥(π̂⊥) ·

σ⊥ is a generalized Dirac operator in two dimensions. Our
expression for CJ then factorizes as

CJ = 1√
πM

1

V
Tr(Ĵze

−Ĥ2/M2
) = q

2π h̄

1

V⊥
Tr(σze

−D̂2
⊥/M2

),

(20)
where we performed the trace over the z dimension, and
the last trace is defined only in the transverse two dimen-
sions. Noting that {D̂⊥, σz}+ = 0, the trace coincides with
the Atiyah-Singer index of the Dirac operator D̂⊥. Our result
then gives a generalized version of the Atiyah-Singer index
theorem,

Index(D̂⊥) = qB

2π h̄
NFV⊥ = q

2π h̄
NF

∫
R2

⊥

F2, (21)

where NF ∈ π1(S1) = Z is the winding number of the map
p⊥ → F⊥(p⊥) at asymptotic infinity, i.e., S1

∞ → S1
∞, which

defines the topology of the Dirac operator D̂⊥.
Application to the chiral magnetic effect. Our result implies

that in the system described by a Hamiltonian Ĥ = F(π̂) · σ,
there is a nonvanishing current density along the direction of
the magnetic field in the grand-canonical ensemble,

jz = CJμ = q2B

(2π h̄)2
NFμ, (22)

which is the chiral magnetic effect and is generalized to arbi-
trary topological number NF . As shown in Ref. [39], the same
topological number also appears in the chiral anomaly rela-
tion, ∂μ jμ = q3

(2π h̄)2 NF (E · B), where jμ is the charge current
density in relativistic notation. This affirms the connection
between the chiral magnetic effect and chiral anomaly in the
most general case of topology.

In real Weyl semimetals, as in all condensed-matter sys-
tems, the global spectrum has a lower bound, and our
Theorem 1 dictates that there is no net persistent current in
any thermodynamic ensembles. This is consistent with the
Nielsen-Ninomiya theorem that the summation of NF for
all Weyl nodes vanishes [40]. Instead, one may consider a
quasiequilibrium state, where each Weyl node, labeled by α,
with a nonvanishing NFα

, has its own effective chemical po-

tential μα , and jz = q2B
(2π h̄)2

∑
α NFα

μα may not vanish. These
quasiequilibrium states would make sense only if internode
transitions are slow enough.

A Weyl node with impurities and a magnetic field. In this
section, we explicitly examine whether CJ is robust under
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perturbations by considering several different perturbations
and showing that CJ is indeed independent of these pertur-
bations. Although these examples do not exhaust all possible
perturbations, we expect that CJ is independent of many other
reasonable perturbations. Here, we summarize the main ele-
ments and ideas of our proofs (see the Supplemental Material
[41] for full details).

We examined the Hamiltonians with the general form,
Ĥλ = σ · F(π̂) + λV̂ , where V̂ is the perturbation and λ is
a parameter which controls the magnitude of the perturba-
tion. The perturbations we consider have a general form
V̂ (x) = V0(x) + V (x) · σ, where V is a vector valued function
representing a spin-dependent potential and V0 is a spin-
independent potential. Recall that in the Landau gauge, we
have π̂ = ( p̂x, p̂y − qBx, p̂z ). The following cases have been
examined:

(1) Ĥ1λ = σ⊥ · F⊥(π̂⊥) + σz p̂z + λV̂ (x, y),

(2) Ĥ2λ = σ · π̂ + λV̂ (x, y, z),

(3) Ĥ3λ = [
σxπ̂

nx
x + σyπ̂

ny
y + σzπ̂

nz
z

] + λV0(x, y, z),

where the ni � 1 (i = x, y, z) in case (3) are positive integers.
Note that in case (1), V̂ (x, y) is independent of z, and the
momentum along the z direction, pz, is a good quantum num-
ber, which makes the proof particularly simple. This proof is
presented in Sec. 1 of the Supplemental Material [41].

Our main technique for the proofs is again the M → ∞
limit and the heat kernel expansion. As an example, here we
present an outline of the main analysis for case 2. We first
write Ĥ2

2λ = p̂2 + Ĥc where Ĥc = Ĥ2
2λ − p̂2, and do the heat

kernel expansion for CJ treating Ĥc/M2 as a perturbation.
Taking the trace in the momentum basis and using the fact that
in the large-M limit we can ignore position-momentum com-
mutators, the exponential term in the expression for CJ can

be Taylor expanded as e− p2

M2 e− Ĥc
M2 = e− p2

M2 (1 − Ĥc
M2 + Ĥ2

c
2!M4 +

· · · ). From this, we obtain CJ = ∑∞
m=0 CJm, where CJm is

given by

(−1)mq

M (2m+1)m!
√

π

1

V

∫
d3 p

(2π h̄)3

∫
d3xe− p2

M2 Trspin
(
σzĤ

m
c

)
. (23)

Since we are interested in the dependence of CJ on V̂ , we
only consider the terms that include V̂ . The terms with odd
powers of p drop out upon integration, and many terms vanish
by spin trace. After this, it is found that in the limit M → ∞,
the only terms that remain are CJ1 and CJ2. The V̂ -dependent
parts of these terms are nonzero; however, they cancel in the
sum CJ1 + CJ2 quite nontrivially, proving that CJ is indeed
independent of V̂ . Further details are given in Sec. II of the
Supplemental Material [41]. Similar steps are used to prove
that CJ is independent of V0 for case 3 (see Sec. III of the
Supplemental Material [41] for details).

The independence of CJ on the potential is a nontrivial
fact, if viewed naively in quantum mechanics. The constant
CJ as expressed in Eq. (8) is a complicated expression when
expanded as a power series of V̂ . To obtain the claimed result
requires precise cancellation of all terms containing V̂ . To ex-
plicitly demonstrate that these cancellations do indeed occur,
we considered the simple case where Ĥ1aλ = σ · π̂ + λV̂ (x, y)

and showed that the terms in CJ up to second order of V̂ do
cancel out exactly for any value of M. This nontrivial calcula-
tion is provided in Sec. IV of the Supplemental Material [41].

Implication for the spectral density. We discuss one im-
mediate consequence of our results on the spectral density
of a Weyl node in a magnetic field and impurities. We first
state the following spectral theorem for the Hamiltonians with
| ∂F(π̂)

∂ p̂z
| � C for all normalized states, where C is a nonzero

positive constant,

Theorem 2 : ρ(ε) � |CJ |/(qC), for all ε. (24)

An example is Ĥ0 = F⊥(π̂⊥) · σ⊥ + p̂zσz, where | ∂F(π̂)
∂ p̂z

| = 1.

The proof is based on |〈Ĵz〉| = q|〈 ∂F
∂ p̂z

· σ〉| � q〈| ∂F(π̂)
∂ p̂z

|〉 � qC,

and we have |ρJ (ε)| = 1
V |Tr[Ĵzδ(Ĥ − ε)]| � qC 1

V Tr[δ(Ĥ −
ε)] = qCρ(ε). The theorem implies that the energy spectrum
has no gap if ρJ (ε) = CJ is nonvanishing, which is the case
for a Weyl node in a magnetic field and impurities.

Discussion. Our result implies the absence of a bulk spec-
tral gap for a single Weyl node, as the impurity strength varies,
when an external magnetic field is present. Whether this be-
havior is smooth in the B → 0 limit or there is a discontinuity
at B = 0 is an interesting question to study. In real Weyl
semimetals, different Weyl nodes with opposite topological
numbers are separated in momentum space, and the internode
mixings can occur for sufficiently strong short-range poten-
tials, which could invalidate our conclusion based on a single
Weyl node. The robustness of CJ for a single Weyl node shows
that the chiral magnetic effect is not affected by any random
impurities, as long as internode transitions are suppressed.
This should ultimately be related to the robustness of chiral
anomaly [42,43] that is in effect near each Weyl node.

The same constant CJ is also responsible for the
chiral energy transfer along a magnetic field, T0z =∫ ∞
−∞ dε[ f (ε) − �(−ε)] 1

V Tr[v̂zĤδ(Ĥ − ε)] = 1
q

∫
dε[ f (ε) −

�(−ε)]ε 1
V Tr[Ĵzδ(Ĥ − ε)] = CJ

q

∫
dε[ f (ε) − �(−ε)]ε =

CJ
q ( μ2

2 + π2T 2

6 ) = qBNF
(2π h̄)2 ( μ2

2 + π2T 2

6 ), where we used Ĵz = qv̂z

with the velocity operator v̂z = ∂Ĥ
∂ pz

. The chiral energy transfer
is equivalent to the chiral vortical effect in time-reversal
invariant systems [44].

Our Theorem 1 is general enough to be applicable to
interacting multiparticle systems and quantum field theories
of charged particles, as it only relies upon gauge invariance.
Moreover, the idea can easily be generalized to produce many
similar versions. For example, for any gauge-invariant opera-
tor Ô which is independent of π̂z and commutes with Ĵz, the
weighted spectral density ρO(ε) = limV →∞ 1

V Tr[ÔĴzδ(Ĥ −
ε)] is independent of ε, and hence robust under perturbations.
It is an interesting speculation whether this line of thinking
might lead to a useful definition of topology for interacting
multiparticle systems, since these objects can be defined quite
generally independent of the presence of interactions among
multiparticles in the system.
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