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Optically induced delocalization of electrons bound by attractive potentials
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Within the Floquet theory of periodically driven quantum systems, we demonstrate that a circularly polarized
off-resonant electromagnetic field can destroy the electron states bound by three-dimensional attractive poten-
tials. As a consequence, the optically induced delocalization of bound electrons appears. The effect arises from
the changing of topological structure of a potential landscape under a circularly polarized off-resonant electro-
magnetic field which turns simply connected potentials into doubly connected ones. Possible manifestations of
the effect are discussed for conduction electrons in condensed-matter structures.
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Controlling electronic properties of condensed-matter
structures by a high-frequency off-resonant electromagnetic
field, which is based on the Floquet theory of periodically
driven quantum systems, has become an established re-
search area [1–12]. The off-resonant field cannot be absorbed
by electrons and only dresses them, modifying electronic
properties. Such a dressing results in many field-induced
phenomena in various condensed-matter structures, including
semiconductor quantum wells [13–15], quantum rings [16],
quantum dots [17], topological insulators [18–21], carbon
nanotubes [22], graphene and related two-dimensional mate-
rials [23–29], etc. Since all solids contain a lot of attractive
potentials of various natures, there is a need to study electronic
behavior in such a potential landscape under a high-frequency
off-resonant electromagnetic field. In many previous studies
on the subject, it was demonstrated both experimentally and
theoretically that such a field shifts the energy levels of elec-
trons bound by attractive potentials due to the dynamical Stark
effect (see, e.g., Refs. [30,31]). However, the effect of the
field on the existence of the bound states still awaits detailed
analysis. Solving this quantum-mechanical problem within
the conventional Floquet theory, we found that a strong circu-
larly polarized electromagnetic field can delocalize electrons
bound by attractive potentials. This Letter is dedicated to the
theoretical analysis of the mentioned all-optical mechanism of
electron delocalization, which can manifest itself in various
electronic systems.

Let us consider a potential well with the potential en-
ergy U (R), where R = (x, y, z) is the radius vector, which
is irradiated by a circularly polarized electromagnetic wave
propagating along the z axis [see Fig. 1(a)]. Assuming that
the wave length much exceeds the well size a, the interaction
between an electron in the well and the wave can be described
within the dipole approximation. Then the electron Hamilto-
nian reads

Ĥe = [p̂ − eA(t )/c]2

2me
+ U (R), (1)

*Oleg.Kibis@nstu.ru

where

A(t ) = (Ax, Ay, Az ) = [cE/ω](sin ωt, cos ωt, 0) (2)

is the vector potential of the circularly polarized field, ω

is the wave frequency assumed to be far from all resonant
frequencies of the electron, E is the electric field amplitude
of the wave, p̂ = ( p̂x, p̂y, p̂z ) is the momentum operator, me is
the electron mass, and e = −|e| is the electron charge. Let us
apply the Kramers-Henneberger unitary transformation,

Û (t ) = exp

{
i

h̄

∫ t [
e

mec
A(t ′)p̂ − e2

2mec2
A2(t ′)

]
dt ′

}
, (3)

which removes the coupling of the momentum p̂ to the vector
potential A(t ) in the Hamiltonian (1) and transfers the time
dependence from the kinetic energy of the electron to its
potential energy [32,33]. Then the transformed Hamiltonian
(1) reads

Ĥ = Û†(t )ĤeÛ (t ) − ih̄Û†(t )∂t Û (t )

= p̂2

2me
+ U [R − R0(t )], (4)

where the radius vector R0(t ) = (r0 cos ωt, −r0 sin ωt, 0) de-
scribes the classical circular trajectory of electron movement
under the circularly polarized field (2), and

r0 = |e|E
meω2

(5)

is the radius of the trajectory [34]. Since the Hamiltonian
(4) involves the only field-dependent parameter (5), this ra-
dius r0 will be used in the problems analyzed below as a
parameter describing the strength of electron-field interaction.
Expanding the oscillating potential in the Hamiltonian (4) into
a Fourier series, the Hamiltonian can be rewritten as

Ĥ = p̂2

2me
+ U0(r) +

[ ∞∑
n=1

Un(r)einωt + c. c.

]
, (6)
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where

Un(R) = 1

2π

∫ π

−π

U [R − R0(t )]e−inωt d (ωt ) (7)

is the harmonics of the Fourier expansion. The Hamiltonian
(6) is still physically equal to the initial Hamiltonian (1). Next,
we need to make some approximations. Within the conven-
tional Floquet theory of periodically driven quantum systems,
one can introduce the unitary transformation Û0(t ) = eiŜ(t ),
which transforms the periodically time-dependent Hamilto-
nian (6) into the effective stationary Hamiltonian

Ĥeff = Û0(t )†ĤÛ0(t ) − ih̄Û†
0 (t )∂t Û0(t ). (8)

There is the known method to find the transformation operator
Ŝ(t ) in the case of a high-frequency field. Namely, both the
operator Ŝ(t ) and the stationary Hamiltonian (8) can be found
as a 1/ω expansion (the Floquet-Magnus expansion) [3–6],
which leads to the effective stationary Hamiltonian

Ĥeff = Ĥ0 +
∞∑

n=1

[Ĥn, Ĥ−n]

nh̄ω
+ o

(
1

ω

)
. (9)

In the high-frequency limit, one can restrict the expansion (9)
by its main term

Ĥ0 = p̂2

2me
+ U0(R), (10)

which we consider in the following.
It should be noted that the effective stationary potential

U0(R) in the Hamiltonian (10) has a clear physical meaning.
In the labor reference frame, a free electron rotates along
a circular trajectory with the radius (5) under the circularly
polarized field (2). The unitary transformation (3) corresponds
to the transition from the labor reference frame to the rest
frame of the rotating electron, where the potential well rotates
along the circular trajectory with the field frequency. If the
frequency is high enough, the electron “feels” only the rotat-
ing potential U [R − R0(t )] averaged over the rotation period
2π/ω, which is described by the stationary potential U0(R).

Let us consider the three-dimensional spherically symmet-
ric attractive potential

U (R) = U (R) (11)

of the size a, which significantly differs from 0 only for R <

a (a short-range potential well). Then the effective potential
reads

U0(R) = 1

2π

∫ π

−π

U [R − R0(t )]d (ωt )

= 1

2π

∫ π

−π

U (ρ)d (ωt ), (12)

where

ρ =
√

(r − r0)2 + z2 + 4
[
(r − r0)r0 + r2

0

]
sin2(ωt/2)

is the radius vector length in the coordinate system associated
with the rotating potential, and r = (x, y) is the plane-radius
vector. In what follows, we restrict the consideration for the
case of the large radius (5) which meets the condition

r0 � a. (13)

FIG. 1. Sketch of the system under consideration: (a) The po-
tential well of radius a irradiated by the circularly polarized
electromagnetic wave (EMW) with the frequency ω and the electric
field amplitude E . (b) The spherically symmetric potential well (1)
transformed by the irradiation into the toroidal potential well (2),
where r0 is the radius of classical electron trajectory in the wave.

Since the rotating potential U [R − R0(t )] significantly differs
from 0 only within the coordinate range |r − r0| < a, the
potential (12) under the condition (13) can be rewritten as

U0(r′) = 1

2π

∫ π

−π

U
(√

(r′)2 + 4r2
0 sin2(ωt/2)

)
d (ωt ), (14)

where r′ =
√

(r − r0)2 + z2 is the radial coordinate of a torus
with the radius r0. Thus, the spherically symmetric potential
well (11) rotating along a circular trajectory of the large radius
(5) turns into the effective toroidal potential well (14) pictured
schematically in Fig. 1(b).

Next, let us find electron states bound by the toroidal po-
tential (14). The wave functions of the bound states can be
written in the cylindrical coordinates (z, r, ϕ) as �m(z, r)eimϕ ,
with m = 0,±1,±2, . . ., where �m(z, r) is the eigenfunction
of the Schrödinger equation

h̄2

2me

[
∂2

∂r2
+ 1

r

∂

∂r
− m2

r2
+ ∂2

∂z2
+ εm

]
�0(z, r)

= U0(r′)�m(z, r), (15)

and εm is the energy of the bound state. At the current stage of
consideration, let us omit the second term in the square brack-
ets of Eq. (15). Physically, such an approximation corresponds
to neglecting the curvature of the toroidal potential well. The
approximation is correct if the torus radius r0 is large enough,
which we justify below. Under this approximation, the three-
dimensional Schrödinger equation (15) for the ground bound
state (m = 0) reduces to the following two-dimensional equa-
tion:

− h̄2

2me

[
∂2

∂x′2 + ∂2

∂y′2

]
�0(r′) + U0(r′)�0(r′) = ε0�0(r′),

(16)

where x′ = r − r0 and y′ = z are the new coordinates, and
r′ = (x′, y′) is the radius vector. Next, let us introduce the
polar coordinates (r′, θ ), where the radial coordinate is r′ =√

x′2 + y′2 =
√

(r − r0)2 + z2 and the azimuthal coordinate
is θ (z, r) = arctan(x′/y′) = arctan([r − r0]/z). Then eigen-
functions of the Schrödinger problem (16) can be written
as �0(r′) = ψm′ (r′)eim′θ (z,r), with m′ = 0,±1,±2, . . ., where

L081107-2



OPTICALLY INDUCED DELOCALIZATION OF ELECTRONS … PHYSICAL REVIEW B 108, L081107 (2023)

the wave function corresponding to the ground bound state
(m′ = 0) satisfies the equation

− h̄2

2me

[
∂2

∂r′2 + 1

r′
∂

∂r′

]
ψ0(r′) + U0(r′)ψ0(r′) = ε0ψ0(r′).

(17)

Since the depth of the toroidal potential well (14) decreases
with increasing the torus radius r0, it is shallow under the
condition (13). The solution of Eq. (17) for such a shallow
two-dimensional well is well known. Following Landau and
Lifshitz [35], Eq. (17) yields the ground bound state with the
binding energy

|ε0| ∼ h̄2

mea2
exp

[
− h̄2

me

∣∣∣∣
∫ ∞

0
U0(r′)r′ dr′

∣∣∣∣
−1

]
(18)

and the wave function ψ0(r′), which is approximately equal
to a constant inside the potential well U0(r′) and decreases
outside the well as the Hankel function H0(iκ0r′), where
κ0 =

√
2me|ε0|/h̄2 � 1/a is the inverse localization scale of

the bound state. Substituting the found wave function ψ0(r′)
into Eq. (15), one can see that the omitted second term in
the square brackets contributes with the smallness ∼1/κ0r0

if κr0 � 1. Thus, Eq. (18) correctly describes the bound state
under the condition

κ0r0 � 1. (19)

The exponential decreasing of the binding energy (18) with
increasing the radius (5) suggests that the bound states of the
toroidal well (14) disappear at some critical value of the radius
r0 beyond applicability of the condition (19). To prove this
guess, the exact Schrödinger equation (15) should be solved
accurately as follows.

Since the toroidal potential well (14) is shallow under the
condition (13), it can contain only bound states whose local-
ization scale much exceeds the potential scale, κ0a � 1. Then
one can make the following replacement on the right-hand
side of Eq. (15),

U0(r′)�m(z, r) → U0(r′)�m(0, r0).

Applying the Fourier transformation to the wave functions of
the bound states,

�m(z, r) =
∫ ∞

−∞

dq

2π
eiqzψm(q, r), (20)

we arrive from Eq. (15) at the Schrödinger equation in the q
representation,[

∂2

∂r2
+ 1

r

∂

∂r
−

(
κ

2
m + q2 + m2

r2

)]
ψm(q, r)

= 2me

h̄2 u(q, r)�m(0, r0), (21)

where κm =
√

2me|εm|/h̄2 is the inverse localization scale
of the bound state with the energy εm, and u(q, r) =∫ ∞
−∞ dz e−iqzU0(r′) is the Fourier image of the potential (14)

along the z axis. The localized eigenfunctions of Eq. (21),

which turn into 0 at r → ∞, can be written as

ψm(q, r) =
{

A(q)Im
(
r
√

κ
2
m + q2

)
, r0 − r � a,

B(q)Km
(
r
√

κ
2
m + q2

)
, r − r0 � a,

(22)

where Im(x) and Km(x) are the modified Bessel functions of
the first and second kind (the Infeld and MacDonald functions,
respectively), whereas A(q) and B(q) are some coefficients.
To join the two solutions (22), one can apply the known
approach to solve the Schrödinger problem with a shallow
potential well [35]. Namely, let us introduce the two points
r = r0 ± r̄, which satisfy the condition a � r̄ � 1/κm. Then
the continuity conditions for the wave function (22) at these
two points yield the following equalities:

A(q)Im
(
r0

√
κ

2
m + q2

) = �m(0, r0),

B(q)Km
(
r0

√
κ

2
m + q2

) = �m(0, r0). (23)

Integrating Eq. (21) between these two points over r, one can
obtain another equality,

B(q)K ′
m

(
r0

√
κ

2
m + q2

) − A(q)I ′
m

(
r0

√
κ

2
m + q2

)
= 2me

h̄2

�m(0, r0)√
κ

2
m + q2

∫ r0+r̄

r0−r̄
u(q, r)dr

≈ 2me

h̄2

�m(0, r0)√
κ

2
m + q2

∫ ∞

0
u(q, r)dr, (24)

where I ′
m(x) ≡ dIm(x)/dx and K ′

m(x) ≡ dKm(x)/dx. As a re-
sult, we arrive at the algebraic system of the two equations,
which yields[

A(q)
B(q)

]
= −

[
Km

(
r0

√
κ

2
m + q2

)
Im

(
r0

√
κ

2
m + q2

) ]

× �(0, r0)

D(q)
√

κ
2
m + q2

2meu0(q)

h̄2 , (25)

where

D(q) = I ′
m

(
r0

√
κ

2
m + q2

)
Km

(
r0

√
κ

2
m + q2

)
−K ′

m

(
r0

√
κ

2
m + q2

)
Im

(
r0

√
κ

2
m + q2

)
(26)

is the determinant of the system, and

u0(q) =
∫ ∞

−∞
dz

∫ ∞

0
dr e−iqzU0(r′) (27)

is the Fourier image of the potential (14) along the z axis
averaged in the (x, y) plane. Applying the known relations
for the modified Bessel functions, 2K ′

m(x) = −[Km+1(x) +
Km−1(x)], 2I ′

m(x) = Im+1(x) + Im−1(x), and Im(x)Km+1(x) +
Im+1(x)Km(x) = 1/x, the determinant (26) reads D(q) =
[r0

√
κ

2
m + q2]−1. Then Eqs. (20)–(27) yield the wave function

�m(z, r) = − �m(0, r0)
2mer0

h̄2

∫ ∞

−∞

dq

2π
eiqzu0(q)

×
{

Im
(
r
√

κ
2
m + q2

)
Km

(
r0

√
κ

2
m + q2

)
, r � r0,

Km
(
r
√

κ
2
m + q2

)
Im

(
r0

√
κ

2
m + q2

)
, r � r0,

(28)
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where the constant �m(0, r0) can be found from the normal-
ization condition, 2π

∫ ∞
0 rdr

∫ ∞
−∞ dz |�m(z, r)|2 = 1. Substi-

tuting z = 0 and r = r0 into Eq. (28), we arrive at the integral
equation defining the energy spectrum of the bound states,∫ ∞

−∞

dq

2π
Km

(
r0

√
κ

2
m + q2

)
Im

(
r0

√
κ

2
m + q2

)
u0(q) = − h̄2

2mer0
,

(29)

where the index m = 0 corresponds to the ground bound state.
To solve Eq. (29) analytically, there is a need to make

some approximations. First, it should be noted that the Fourier
image (27) for any short-range potential of the size a can be
written approximately as

u0(q) ≈
{

u0(0), |q| � 1/a,

0, |q| > 1/a,
(30)

where

u0(0) =
∫ ∞

−∞
dz

∫ ∞

0
dr U0(r′) =

∫ ∞

−∞
dy′

∫ ∞

−r0

dx′ U0(r′)

≈ 2π

∫ ∞

0
U0(r′)r′dr′. (31)

Second, let us assume the condition (19) to be satisfied. Then,
using the known asymptotic expressions for the modified
Bessel functions at their large arguments and evaluating the
integral in Eq. (29) with the logarithmic accuracy, we arrive
from Eqs. (29)–(31), with m = 0, at the transcendental equa-
tion

ln

[
1 +

√
1 + (κ0a)2

κ0a

]
= h̄2

2me

∣∣∣∣
∫ ∞

0
U0(r′)r′ dr′

∣∣∣∣
−1

. (32)

This equation yields the binding energy of the ground bound
state ε0, which, as expected, exactly coincides with the energy
(18) derived above from the approximate Schrödinger equa-
tions (16) and (17) under the same condition (19).

The Floquet function, which is the eigenfunction of the
periodically time-dependent Hamiltonian (1) and describes
the found bound state (18) in the labor reference frame, reads

F0(R, t ) = e−iε0t/h̄ Û (t )�0(z, r). (33)

It should be noted that the term (e2/2mec2)A2(t ′) in the unitary
transformation (3) leads only to the energy shift of all elec-
tron states by the energy of electron rotation under the field,
E2/2meω

2. Therefore, it does not affect electronic properties
and can be omitted. As a result, the unitary transformation
Û (t ) in Eq. (33) yields only the coordinate replacements x →
x + r0 cos ωt and y → y − r0 sin ωt in the wave function (28)
with m = 0.

It follows from Eqs. (29)–(31) that bound states in the
toroidal well (14) disappear for r0 � ρ0, where the critical
radius r0 = ρ0 corresponds to the zero binding energy of the
ground bound state (κ0 = 0) and is defined by the integral
equation∫ ρ0/a

0
K0(x)I0(x) dx = h̄2

4me

∣∣∣∣
∫ ∞

0
U0(r′)r′ dr′

∣∣∣∣
−1

r0=ρ0

. (34)

As a consequence, the field-induced delocalization of elec-
trons bound by the potential (11) appears if the field (2) is
strong enough to satisfy the condition r0 � ρ0.

The theory presented above was developed for the potential
well (11) of the most general form. To proceed, one needs to
apply this theory to some model potential. For definiteness, let
us consider the Gaussian potential well

U (R) = −|V | exp(−R2/a2). (35)

It always contains bound electron states under the condition
|V | > h̄2/mea2, which is assumed to be satisfied. Substituting
the potential (35) into Eq. (12) and evaluating the integral
there with the saddle-point method, we arrive at the effective
potential

U0(r′) = − |V |a
2
√

πr0
exp(−r′2/a2), (36)

which contains the ground bound state with the binding en-
ergy (18)

|ε0| ∼ h̄2

mea2
exp

[
−4

√
π h̄2r0

me|V |a3

]
, (37)

under the condition (19). One can see that both the depth of
the toroidal potential well (36) and the binding energy (37) de-
crease with increasing the ratio r0/a according to the general
theory developed above. To complete the analysis, the integral
equation (29) with the toroidal potential (36) was solved nu-
merically. It follows from the solving that the binding energy
of the ground bound state decreases with increasing r0 [see
Fig. 2(a)] and turns into 0 at the critical radius r0 = ρ0, which
is plotted in Fig. 2(b) as a function of the well depth |V |.

It should be noted that the spherically symmetric attractive
potential (11) is the simple model to demonstrate the dis-
cussed effect with the pen-and-paper calculations. Likewise,
there is no problem to analyze the effect for more realistic
potentials with numerical simulations. However, this simple
model is particularly able to describe accurately the physi-
cally important case of electrons bound by donor impurities
in semiconductor materials with isotropic conduction bands
(e.g., GaAs). Since the localization radius of bound electrons
greatly exceeds the crystal lattice spacing in such materials,
the Schrödinger equation for a bound electron can be writ-
ten in the conventional effective mass approximation, where
the attractive potential of a donor is spherically symmetric
(the screened Coulomb potential). To observe the discussed
effect in the bulk of a material, the screening length of a
high-frequency field should be large enough for the material.
Therefore, semiconductor materials with a low density of
conduction electrons (i.e., with the large screening length) are
preferable from an experimental viewpoint.

The small parameter of the series expansion (9) is the
ratio of the binding energy of an electron bound at an at-
tractive potential, |ε0|, and the photon energy h̄ω. Thus, the
developed theory is correct if this ratio satisfies the condition
|ε0|/h̄ω � 1. Since electrons bound by shallow impurities
in semiconductors have a binding energy of meV scale, the
high-frequency fields around (and above) the THz frequency
range can be used to induce the considered effect. Using
the size a ∼ 10 nm, which is typical for a shallow potential
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FIG. 2. Structure of bound states in the Gaussian potential well
of the size a. (a) Dependence of the binding energy of the ground
bound state, |ε0|, on the radius r0 for the different well depths |V |.
(b) Dependence of the critical radius r0 on the well depth |V |.

landscape in semiconductor materials, the critical value of
the radius (5) can be estimated as tens of nanometers. Then
it follows from Eq. (5), particularly, that the field with the
frequency ∼10 THz and the electric field amplitude E ∼ 102

V/µm—which is achievable in state-of-the-art experiments on
the Floquet engineering of condensed-matter structures (see,
e.g., Ref. [29])—is appropriate to observe the discussed effect.

Accomplishing the discussion, it should be noted that
a circularly polarized electromagnetic field changes the

topological structure of the quantum well, transforming the
simply connected spherical well (11) into the doubly con-
nected toroidal well (14). Such a topological phase transition
is accompanied by the crucial modification of electronic prop-
erties. As a main result, the doubly connected toroidal well
(14) loses the bound states which take place in the simply con-
nected spherical well (11). It should be noted that a linearly
polarized high-frequency field—in contrast to a circularly
polarized one—does not change the topological structure of
potentials. As a consequence, the approach developed above is
not applicable to describe the delocalization effect induced by
a linearly polarized field. Moreover, it is known that electron
states bound by an attractive Coulomb potential (hydrogen
atom) irradiated by a linearly polarized field remain localized
for any field amplitude and frequency [31]. Therefore, the
question about the possibility of the delocalization of bound
electrons under a linearly polarized field cannot be answered
in a general form. This problem is still open for discussion
and needs numerical simulations for a specific potential to be
solved properly.

In conclusion, it follows from the present analysis
that various attractive potentials—which are normally con-
tain bound electron states—can lose them under irradia-
tion by a circularly polarized off-resonant electromagnetic
field. As a consequence, the optically induced delocal-
ization of bound electrons appears. This effect arises
from the changing of topological structure of a poten-
tial landscape under a circularly polarized off-resonant
electromagnetic field and can manifest itself in various
electronic systems. Among them, conducting condensed-
matter structures should be noted especially. Normally, they
contain a lot of attractive potentials which capture elec-
trons. It follows from the present theory that a circularly
polarized field can delocalize captured electrons, result-
ing in increasing density of conduction electrons. As a
consequence, one can expect the experimentally observ-
able increasing conductivity under the circularly polarized
field.

The reported study was funded by the Russian Science
Foundation (Project No. 20-12-00001).
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