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Chiral symmetry (CS) in energy bands appears as perfectly symmetric antibonding and bonding pairs of
energy levels. It has only been observed in a few classes of models when bipartite hopping occurs among their
pairwise bases. We find that nonbipartite kagome and pyrochlore lattices can host CS when strong spin-orbit
coupling is introduced. Unfortunately, the model exhibits an intricate frustrated hopping accompanied by spin
rotation with no apparent sign of realizing CS. However, by making use of a local gauge transformation
that properly rotates the spin quantization axis site-dependently, complex hopping among up- and down-spin
electrons is untangled to bipartite-hopping ones. The clue to find such a transformation and to construct a chiral
operator is given by the gauge invariant Wilson loop operator on a triangular unit. The framework allows us to
disclose the symmetry and structures of spin-textured CS wave functions and energy bands.
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Introduction. Electronic phases of matter are very of-
ten discussed and tabulated in terms of symmetries. Space
group symmetries combined with time-reversal symmetry
(TRS) classify the electronic band structures and the possi-
ble choices of symmetry-broken phases [1,2]. Whereas, the
periodic table developed for topological insulators (TIs) and
superconductors has revealed that the symmetries that pro-
tect and distinguish them are not the spatial ones but are
TRS, particle-hole symmetry (PHS), and chiral symmetry
(CS) [3,4]. The three symmetries generate a total of ten sym-
metry classes, which are further extended to include spatial
symmetries [5].

The CS is identified as a diphycercal energy spectrum and
is present when TRS and PHS are both broken or both unbro-
ken. It helps to elucidate the nature of topological phases [6].
For example, the winding number in the Su-Schrieffer-Heeger
model [7–9] is defined using the CS operator, and the number
of singular zero-mode Landau levels and the bulk-edge cor-
respondence of graphene [10–12] are understood using CS. It
explains the Dirac points or semimetals of bilayer graphene
[13–15]. A more important physical consequence of CS is to
support the zero-energy flat bands in twisted bilayer graphene
or its analog [16–20], which is the possible source of corre-
lated superconductivity [21,22].

Despite its importance, CS is observed only in restricted
classes of models; the bipartite lattice model [23–25], the
Bogoliubov–de Gennes (BdG) Hamiltonian with TRS and
conserved magnetization, and the quantum chromodynam-
ics models [26]. How this symmetry could emerge in wider
classes of physical systems is an important question. Here, we
discover that the noninteracting fermions on a nonbipartite
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lattice with strong spin-orbit coupling (SOC) can host CS
bands. We further prove that the gauge invariant Wilson loop
operator [27] serves as a detector of CS, and using the Wilson
loop operator, obtain an explicit form of the chiral operator.

Chiral symmetry. Without loss of generality, the low-
energy effective Hamiltonian in momentum space is described
by the quadratic Hamiltonian given as H = ∑

k c†
kH(k)ck,

where c†
k = (c†

k1↑, c†
k1↓, . . . , c†

kn↑, c†
kn↓) are the set of creation

operators of a Bloch electron with spin (↑,↓) and wave
vector k on the sublattice index l = (1, 2, . . . , n), and the
Bloch Hamiltonian H(k) is the 2n×2n Hermitian matrix. If
the energy bands ±Em(k) obtained by diagonalizing H(k) are
symmetric about the central zero-energy level, there should
exist a chiral operator � that satisfies �H(k)�† = −H(k). In
the basis that makes � diagonal, the operators are represented
as

� =
(

I 0
0 −I

)
, H(k) =

(
0 D(k)

D†(k) 0

)
, (1)

where D(k) is the n1×n2 matrix in general, and there are
at least |n1 − n2| zero modes, while for our Hamiltonian,
n1 = n2 = n. The eigenvectors of � with eigenvalues ±1
take the form (αm(k), 0)T and (0,βm(k))T . Since they satisfy
D(k)βm(k) = Em(k)αm(k) and D†(k)αm(k) = Em(k)βm(k),
the energy eigenstates of H(k) for ±Em(k) are their bonding
or antibonding states given as

|ψ±m(k)〉 ∝
(

αm(k)
0

)
±

(
0

βm(k)

)
, (2)

where � interchanges them. The reason why we find a CS in
the bipartite and BdG systems is that due to the equivalence of
two sublattices or the superconducting pairs, the Bloch basis
is trivially classified into two equivalent bipartite groups. In
our system, the CS is invisible since the nonbipartite lattice
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FIG. 1. (a) Kagome and pyrochlore lattices. The rotation axis ν̂i j of the SU(2) gauge field is perpendicular to the bond and to the
perpendicular bisector that crosses the center of the triangle/hexagon for the kagome/pyrochlore, and its direction depends on the order j → i.
(b) Chiral symmetric band structures are shown at θ = θ1 = ±π/3 and ±π for the kagome lattice and θ2 = 2 arctan

√
2, θ3 = −2 arctan(1/

√
2)

for the pyrochlore lattice, where λ/t0 = tan(θ/2). (c) Schematic illustration of the original representation [Eq. (3)] with up/down spins and the
transformed one with white/black circles. The latter has a bipartite-hopping structure on a triangle. (d) The Wilson loop operator rotates the
spins when hopping around the Ci, jk loop by � about the n̂i, jk axis. (e) � for the kagome and pyrochlore lattices. At the CS points, θ1, θ2, θ3,
we find � = π .

and the SOC mixes the up- and down-spin electrons between
neighboring sites in a nontrivial manner where even a spin is
no longer a good quantum number. We finally find that the
local gauge transformation can untangle such a complexity
and gives a proper basis set that is divided into bipartite
groups.

SOC Hamiltonian on a nonbipartite lattice. We consider
a tight-binding Hamiltonian defined on the kagome and py-
rochlore lattices given as

H = −t
∑
〈i, j〉

c†
i Ui jc j + H.c., (3)

where ci = (ci↑, ci↓)T is the annihilation operator of an elec-
tron at site i, and the summation is taken over the neighboring
pairs of sites 〈i, j〉. σ = (σx, σy, σz ) are Pauli matrices and the
hopping amplitude is set to unity, t = 1. When the electron
hops from site j to the nearby site i, its spin rotates by angle
θ about the ν̂i j axis, which is expressed by the SU(2) gauge
field Ui j = exp[−i θ

2 ν̂i j · σ], where ν̂ ji = −ν̂i j and Uji = U †
i j .

The unit vector ν̂i j is determined by the lattice symmetry,
and points to the direction perpendicular to the plane for
the kagome lattice [28], while points in different directions
perpendicular to the bond i- j for the pyrochlore lattice [29]
[see Fig. 1(a) and Supplemental Sec. I [30]]. Our lattice has
an inversion symmetry, but our theory is applied to cases of
broken inversion symmetry. The origin of the SU(2) gauge
field is the SOC [31–34]; In 4d and 5d electron systems, the
interplay of strong atomic SOC and the crystal field enforces
the reconstruction of energy levels on each site, and often the
Kramers doublets labeled by the spin index σ form valence
bands [35–38]. The d5 pyrochlore oxides such as A2Ir2O7

[39–42] and Lu2Rh2O7 [43] have such doublets. In addition,
A2Os2O7 [44,45] and CsW2O6 [46] of different valences but
in a trigonal crystal field belong to this category [37,47]. Since
the spin momentum σ is a combination of orbital angular mo-

mentum and electron-spin momentum, the electrons can hop
between orbitals having different spins as iλc†

iα (ν̂i j · σ)αβc jβ .
By combining this term with the ordinary hopping term

−t0c†
iαc jα , the form Eq. (3) is obtained as t =

√
t2
0 + λ2 and

θ = 2 arctan(λ/t0). In Supplemental Sec. II [30], we derive
θ microscopically using realistic values of the material data
of Cd2Os2O7, CsW2O6, and Pr2Ir2O7 and find that they can
afford CS.

SOC-induced chiral symmetry. As shown in Fig. 1(b),
the energy band structures εk,l of Eq. (3) have CS at θ1 =
±π/3,±π for the kagome lattice and θ2 = 2 arctan

√
2, θ3 =

−2 arctan(1/
√

2) for the pyrochlore lattice. To understand its
origin, we need to find the form of two groups of basis sets
that give ±1 eigenvalues of � [see Eq. (1)]. Such a basis set
is invisible since our lattices consist of triangles and in Eq. (3)
the up- and down-spin electrons mix via Ui j . We set our goal
to transform this basis set as in Fig. 1(c) to those having
a bipartite hopping shown in the white and black circles;
the white electron on site 1 hops to site 2 and to site 3 by
successively changing its color between white and black, and
comes back to site 1 as black. Going around the triangle twice,
the initial configuration is recovered. We obtain this picture in
the end by using the Wilson loop operator and constructing a
chiral operator.

Gauge invariants. We now define a parameter that detects
the CS. To do so, we need to characterize the nature of the
SU(2) gauge. However, the values of θ and ν̂i j in Ui j change
if we apply a typical local gauge transformation ci → Vici,
where Vi denotes the SU(2) rotation of the quantized axis at
site i. This change is only a matter of representation of the
Hamiltonian and the band structure remains unchanged, i.e.,
gauge invariant. The parameter detecting the CS should have a
one-to-one correspondence with the band structure and should
be gauge invariant. The trace of the Wilson loop operator is
known to be gauge invariant. The operator is constructed by
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the path-ordered product of the SU(2) gauge field along the
closed loop [27,28,34] Ci, jk : i → j → k → i [see Fig. 1(d)]
as

P(Ci, jk ) = UikUk jUji = exp

[
−i

�

2
n̂i, jk · σ

]
, (4)

where � and n̂i, jk are the rotation angle and rotation axis,
respectively, when the electron circles along the loop Ci, jk .
Figure 1(e) shows �, which is gauge invariant, as a function
of θ for the two lattices. By comparing it with the band
structures, we find that the CS is characterized by � = π .
For the kagome lattice, � and band structures are the same
between ±θ , but not for the pyrochlore lattice. This is because
ν̂i j is common to all bonds for the former and not for the latter,
and accordingly, the Ui j’s of different bonds are commuta-
tive/noncommutative for the former/latter, which we denote
the Abelian/non-Abelian case. We comment that these two
should be rigorously distinguished as such that there exists
a gauge that makes the SU(2) gauge fields commutative in the
Abelian case and there is no such gauge in the non-Abelian
case. If the definition of non-Abelian depends on the choice
of gauge [48], it does not give a particular difference from
the Abelian case about the gauge-invariant band structures or
topological properties (see Supplemental Sec. III [30]). When
� = 2π , the flat band is formed by the SOC in both lattices
[47]. Such a Wilson loop can be defined for different lengths
as far as it consists of an odd number of bonds.

For the non-Abelian case, there should be another gauge-
invariant quantity that distinguishes the positive and negative
θ , which is the scalar product n̂i, jk · n̂i,lm around site i defined
for different loops Ci, jk and Ci,lm. Although n̂i, jk is not gauge
invariant, their relative angle is invariant [see Fig. 1(d) and the
proof in Supplemental Sec. III A [30]] [27]. Using this fact,
we can classify the states into four cases, which we call trivial,
collinear, coplanar, and noncoplanar cases. For the trivial case,
� = 0, 2π , the axis n̂i, jk is not defined since P(Ci, jk ) ∝ I . For
� 	= 0, 2π , if all n̂i, jk with different jk’s for the same i are
parallel we call it collinear, or if they are in the same plane we
call it coplanar, and otherwise, it is noncoplanar [see the inset
of Fig. 1(d)]. When the system is Abelian, it corresponds to
either a collinear or trivial case. The non-Abelian case can be
examined by comparing the two CS in Fig. 1(b): θ2 is collinear
and θ3 is coplanar.

Chiral operator. The general form of the local gauge trans-
formation is Vj = exp[−i ϕ j

2 m̂ j · σ], which rotates the spin
quantization axis at site j by an angle ϕ j about the axis m̂ j .
If one could find the particular form of Vj that fulfills

ViUi jV
†
j = −Ui j, (5)

one can construct a chiral operator satisfying �2 = +I as

� = i ⊕n
j=1 Vj, (6)

for which we immediately find �H(k)�† = −H(k). To find
such Vj we remind that the Wilson loop operator in Eq. (4)
is obtained by the product of three Ui j’s. Accordingly, the
chiral operation that changes the sign of Ui j’s will change
the sign of P(Ci, jk ). Since � = π at the CS point, the sign
change is attained by the conversion of the axis via Eq. (5) as
n̂i, jk → −n̂i, jk . Namely, we need to set ϕi = π and m̂i ⊥ n̂i, jk

(a)

(b) (c)

kagome pyrochlore (collinear) pyrochlore (coplanar)

spin

FIG. 2. (a) Vectors n̂i, jk and m̂ j on the kagome and pyrochlore
lattices with CS. Three or four sets of m̂ j are not independent,
but they can be rotated simultaneously in a plane perpendicular
to n̂i, jk (kagome, pyrochlore collinear) or made upside down (py-
rochlore coplanar). (b) All-in and all-out spin configurations forming
a chiral pair, corresponding to the white and black circled basis in
Fig. 1(c). (c) Relationships of four different energy eigenstates of the
pyrochlore bands (collinear-type CS) that interchange by the TRS,
PHS, and CS operations.

for all different Ci, jk’s around site i. It follows that m̂i can
be defined when and only when n̂i, jk’s on site i are either
collinear or coplanar. Note that m̂ j of different sites j are
not independent and determined sequentially to satisfy Ui j →
−Ui j (see Supplemental Sec. III B [30]). To summarize, the
chiral operator � that satisfies Eq. (1) can be constructed when
the Wilson loop operators satisfy (i) � = π , and (ii) n̂i, jk is
collinear or coplanar, where we can write down the explicit
form as iVj = i exp[−i π

2 m̂ j · σ] = m̂ j · σ.
Figure 2(a) shows an example of m̂ j for three different

CSs. Then, Eq. (6) indicates that in the basis that diagonal-
izes �, the up/down spin under the local quantization axis is
parallel/antiparallel to m̂ j . Because of the block off-diagonal
form of the Hamiltonian in Eq. (1), the electrons always turn
over their spins when hopping. Namely, the up/down-spin ba-
sis forms a fictitious bipartite connection which we discussed
in Fig. 1(c).

Emergent sublattice pseudospins. In the CS Hamilto-
nian Eq. (1), we find D†(k) 	= D(k) in general, but our
collinear case shows D†(k) = D(k) (Supplemental Sec. IV
[30]). Then, for ϕm(k) that satisfies D(k)ϕm(k) = Emϕm(k),
we find H(k) |ψ±m(k)〉 = ±Em |ψ±m(k)〉, with |ψ±m(k)〉 in
Eq. (2) having αm(k) = βm(k) = ϕm(k).

Here, m̂ j gives the quantization axis whose up/down repre-
sents the black/white circles of Fig. 1(c). In this construction,
the eigenstates of the Hamiltonian is the product of spin and
sublattice parts given as (1,±1) ⊗ ϕm(k), and the spin part
corresponds to the all-in and all-out spin configurations shown
in Fig. 2(b). The sublattice (orbital) degrees of freedom in
D(k) show some hidden symmetries; for the kagome lattice,
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TABLE I. The effect of perturbations on TRS, PHS, and CS. The
absence of symmetry is denoted as 0, and the presence of TRS or
PHS is denoted as ±1 according to 
2, �2 = ±I , and that of CS as 1.
The last column shows the symmetry class the Hamiltonian belongs
to [3].

Perturbation TRS PHS CS AZ class

Magnetic field 0 0 0/1 A/AIII
On-site potential −1 0 0 AII
Bond modulation −1 +1 1 DIII

D(k) = R(k) · S, where S is the spin-1 operator in the 3×3
matrix representation (see Supplemental Sec. IV [30]). The
eigenstate ϕm(k) of the sublattice degrees of freedom has three
states with S = 1, 0,−1. The energy bands carry the sublat-
tice pseudospins that point parallel/antiparallel to the SO(3)
vector R(k) whose direction varies with k, which reminds us
of a Rashba-Dresselhaus Hamiltonian [49,50]. Similar sublat-
tice pseudospins consisting of two spin-1/2’s are obtained for
the pyrochlore case [51].

We briefly comment on the chiral zero modes. The doubly
degenerate flat band [Fig. 1(b)] in our kagome lattice appears
trivially since n is odd and CS is present. In the well-known
case on a Lieb lattce [52] they appear since n1 	= n2 in Eq. (1).
For the pyrochlore lattice, the W and L point contacts for θ2

and the �-L nodal line for θ3 are the essential degeneracies
[53] protected by the CS and lattice symmetry (see Supple-
mental Sec. IV [30]).

Symmetries and perturbations. We see how TRS (time-
reversal operator 
), PHS (charge conjugation operator �),
and CS (�) in our system act together as � = �
. At
the chiral symmetric points, 
−1�
 = −�, which indicates
�2 = +I , and by combining it with 
2 = −I , our system
is found to belong to class DIII. In the collinear case, these
operators clarify the existence of the particle-hole pair [see
Fig. 2(c) for the pyrochlore lattice at θ = θ2]; �/� flips
only the true spin (on a local quantization axis)/the sub-
lattice pseudospin and interchanges the energy level ±Em

[54].
Another interest is how robust our CS is against the per-

turbations. Using the Wilson loop operator, we examine three
types of perturbations in Table I (see Supplemental Sec. V
[30]). Remarkably, the magnetic field (Zeeman terms) breaks
both TRS and PHS, but does not necessarily break the CS,
i.e., although CS is knit to spins it does not require spin-
conversion symmetry. This differs from graphene, where the
field generally preserves the CS [55,56]. The on-site potential
keeps the TRS but breaks PHS, and CS is always broken.
The bond modulation breaks the spatial inversion symmetry
and the band degeneracy is lifted, but since it breaks nei-
ther TRS nor PHS, the CS is preserved. Several examples
of band structures under these perturbations are shown in
Fig. 3(a).

We show in Fig. 3(b) the bands with on-site potentials
and the bond modulation obtained by taking the interkagome
plane direction as an open boundary. The CS state belonged
to class DIII transforms into class AII, where a strong TI is
expected [57]. Indeed, we see a clear indication of the edge
modes.

FIG. 3. (a) Band structures of the pyrochlore lattices when
we add to Eq. (3) the perturbations shown in Table I: mag-
netic field h = 1 in two different directions, on-site potentials
with (w1, w2, w3,w4) = (1, 1, 1, 0.4), bond modulations. Left/right
bands have non-CS/CS. In the upper-right CS band we show the
density plot of the magnetic moment showing clear spin split-
ting (red/blue are the up/down-spin moments). (b) Recalculated
bands with on-site potentials and bond modulation, taking the inter-
kagome-plane direction as an open boundary, where we find an edge
state, indicated in red lines since this case corresponds to the strong
TI in class AII. Distributions of edge modes in the open directions.
Up/down spins shown in cyan/brown belong to one mode. For the
other mode, the distribution of each spin is opposite.

In conclusion, we found a framework for generalizing chi-
ral symmetry; it can be straightforwardly extended to systems
of multiplet-based models and simulations [58]. The local
gauge transformation to a properly chosen site-dependent
“quantization axis” can untangle the complexity of the orig-
inal Hamiltonian, and the resultant basis sets can be divided
into subgroups that form a bipartite hopping structure. The
Wilson loop operator is useful to search for such a transfor-
mation.

The consequences of the CS in a SOC system can be
rich. For example in Fig. 3(a), the CS bands in a magnetic
field carry true magnetic moments that change their direction
with k. Unlike Rashba systems [49,50], these bands have
particle-hole symmetry that may yield unexpected transport
properties, similarly to the Mott-to-anomalous Hall phase that
makes use of the band inversion [59]. A more exotic platform
is the zero-energy flat bands in the kagome lattice [Fig. 1(b)].
Similarly to twisted bilayer graphene [16–19], they are pro-
tected by the underlying CS, but on top of that, the electrons
on our flat bands carry spatially varying polarized moments.
The CS-protected flat bands can further be engineered by
introducing site vacancies as another parameter [20]. Impor-
tantly, such electrons in the “strong correlation limit” are
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considered as the source of unconventional superconductiv-
ity [21,22], and this feature sustains even when the material
parameters slightly break the CS. In particle physics, one can
consider an analog of our SU(2) model and its consequences
in the lattice gauge theories to understand the gravitational
spin connection in curved space-time, where the SU(2) gauge
emerges by a local Lorentz transformation.
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