
PHYSICAL REVIEW B 108, L081101 (2023)
Letter

Spin-dependent gain and loss in photonic quantum spin Hall systems
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Topological phases are greatly enriched by including non-Hermiticity. While most works focus on the topol-
ogy of the eigenvalues and eigenstates, how topologically nontrivial non-Hermitian systems behave in dynamics
has only drawn limited attention. Here, we consider a breathing honeycomb lattice known to emulate the quantum
spin Hall effect and exhibit higher-order corner modes. We find that nonreciprocal intracell couplings introduce
gain in one pseudospin subspace while introducing loss with the same magnitude in the other. In addition,
nonreciprocal intracell couplings can also suppress the spin mixture of the edge modes at the boundaries and
delocalize the higher-order corner mode. Our findings deepen the understanding of non-Hermitian topological
phases and bring in the spin degree of freedom in manipulating the dynamics in non-Hermitian systems.
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Non-Hermitian systems [1–6] exhibit a wide range of
counterintuitive phenomena that have widespread and pro-
found applications in a variety of fields, such as photonics
[7–11], acoustics [12–14], circuits [15,16], etc. [17,18]. Non-
Hermitian periodic systems have two types of band gaps, i.e.,
point gaps and line gaps [19,20], and have more symme-
tries than Hermitian systems [21,22]. Thus, in principle, they
should exhibit much more complex topological structures.
The topological invariants of non-Hermitian systems have
been defined with their eigenvalues [23,24] and eigenstates
[14,24–29]. Currently, the vast majority of works focus on
the topology of static systems. In contrast, the consequence
induced by the nontrivial topology of periodic non-Hermitian
systems in dynamics has only drawn limited attention [28,30].
Such dynamics are complicated since the eigenvalues are gen-
erally complex; thus the contributions of different eigenstates
can vary significantly during their evolution. On the other
hand, the dynamics of non-Hermitian systems consisting of a
few resonators have already been known to lead to phenomena
such as mode selections [8–11,31–34] and chiral states trans-
fer [35–42]. How non-Hermitian periodic systems behave in
dynamics thus deserves more attention.

The spin degree of freedom is a critical integrant of
the quantum spin Hall (QSH) effect [43–46]. The band
connection between time-reversal symmetry (TRS) enforced
Kramers pairs of spin 1/2 system leads to the Z2 classification
for the QSH effect [43–46]. If TRS is broken by spontaneous
magnetization, the quantum anomalous Hall (QAH) effect
can appear where only one (pseudo)spin subspace is topo-
logically nontrivial [47–50]. Non-Hermitian effects such as
gain and loss can also break TRS. Their impacts on the QSH
effect remain largely unexplored [51,52]. For instance, will
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there also be QAH-like effects in the presence of (pseudo-
)spin-dependent gain and loss, and how will they behave in
dynamics? Note here that (pseudo-)spin-dependent gain and
loss do not necessarily break the TRS of the whole system as
TRS relates one spin with gain to another spin with loss, and
the system can still preserve TRS.

Here, we consider a breathing honeycomb lattice known
to emulate the QSH effect [53–57] and exhibit higher-order
corner modes [58,59] for classical waves. We keep the C6

symmetry and introduce nonreciprocal intracell couplings as
non-Hermitian terms. Such a system preserves TRS, and the
eigenvalues are real or come in complex conjugate pairs.
We show that the nonreciprocal intracell couplings exhibit
gain for one pseudospin subspace and loss with the same
magnitude for the other. Thus, in the long-time limit, only
one pseudospin subspace survives in dynamics and, similar
to the QAH, only one helical edge state channel is preserved.
Effectively, this system exhibits one-way edge states without
breaking TRS or using spin-polarized sources. We also find
that the spin mixture of the edge modes at the boundaries can
be suppressed by the nonreciprocal couplings. In addition, the
symmetry protected zero energy higher-order corner modes of
a finite system can be completely delocalized.

We start with the BHZ model [43], which can be written as
a direct sum of two spin subspaces as HBHZ(k) = ∑

s ⊕Hs(k).
Here Hs(k) = εkI + (M + Bk2)σz + A(kxσx + skyσy) and
s = ±1 for two spins. M and B are real numbers,
and A is purely imaginary such that TRS is preserved
Hs=1(k) = H∗

s=−1(−k). If MB < 0, the BHZ Hamiltonian
has a nontrivial topology and exhibits as a QSH system. As
shown in Ref. [47], doping with magnetic atoms introduces a
spin-dependent term sGσz. When G > M, the band is inverted
in one of the spin subspaces which leads to a QAH phase.
Hence, with the increase of G, one of the spin edge channels
merges into the bulk with only one remaining spin edge
channel as shown schematically in the upper panel of Fig. 1.
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FIG. 1. Sketch shows two approaches to generate spin-polarized
one-way edge states starting from a QSH phase. The upper panel
shows that under the TRS breaking, the gap of one spin is inverted,
and the corresponding edge state channel merges into the bulk,
ending in a QAH phase. The lower panel shows that when spin-
dependent gain/loss is added, the edge state channel of one spin is
amplified, and the other is attenuated, exhibiting a QAH-like phase
in the dynamics.

Non-Hermitian terms such as gain and loss are known to
break TRS. However, with a proper combination of gain and
loss in different spin subspaces, TRS can be preserved. As an
example, we consider the non-Hermitian term

HNH = isg, (1)

which is gain for one spin and loss for the other. Adding
HNH to the BHZ model still preserves the time-reversal sym-
metry, i.e., Hs=1(k) = H∗

s=−1(−k). However, the eigenvalues
now possess an imaginary component ±isg. Hence, the states
in one spin channel increase exponentially while those in
the other decrease exponentially. In the long-time limit, only
states in one spin channel persist, as shown in the lower panel
of Fig. 1.

To show the effect of this non-Hermitian term more ex-
plicitly, we consider the breathing honeycomb lattice [53–58],
as shown in Fig. 2(a). Each primitive cell has six atoms, and
we introduce nonreciprocal couplings for clockwise (CW) and
counterclockwise (CCW) intracell hopping. The tight-binding
Hamiltonian of this non-Hermitian breathing honeycomb lat-
tice reads

HNBH =
∑

〈i, j〉CW

(t1 + dt )a†
i a j +

∑
〈i, j〉CCW

(t1 − dt )a†
i a j

+
∑
〈i, j〉

t2a†
i a j + H.c., (2)

where 〈i, j〉CW/CCW represents the nearest intracell hopping
and 〈i, j〉 denotes the nearest intercell hopping. When dt = 0,
such a system is known to possess pseudospin Kramers pairs
at the Г point, and the effective Hamiltonian near the Г point
is the same as the BHZ model [53]. With a proper boundary
truncation, that system exhibits helical edge states for both
spins. In addition, if that system is finite, it can also possess
symmetry-protected higher-order corner modes [58,59]. Be-
fore proceeding further, we analyze the symmetry possessed
by HNBH. First, it has TRS since HNBH = H∗

NBH. Correspond-
ingly, we have HNBH(k) = H∗

NBH(−k), where HNBH(k) is the
corresponding Hamiltonian in the momentum space. HNBH

FIG. 2. (a) The tight-binding model. The black dashed lines out-
line the primitive cells. The intracell couplings are nonreciprocal
with t1 + dt and t1−dt for the CW and CCW directions, respectively,
and the intercell coupling is t2. (b) The real and imaginary parts of
the band structure along high-symmetric directions of the Brillouin
zone (BZ). Here the red dashed line, and the blue line correspond
to dt = 0 and dt = 0.2, respectively. (c) Projection of the energy
spectrum for states in the BZ. The black dashed line marks the line
gap. In (b) and (c), we keep t1 = 0.5 and t2 = 1.

also has sublattice symmetry (SLS) SHNBHS−1 = −HNBH,
where S is a 6 × 6 matrix with Si j = δi j (−1)i−1. SLS does
not reverse the wave vector. TRS and SLS together lead to a
particle-hole symmetry (PHS†) CH∗(k)C−1 = −H (−k) with
C = T S. In addition, HNBH also has a crystalline symmetry
C6 and thus should exhibit a more complex structure than the
38-fold classification in Ref. [21].

Figure 2(b) shows the real and imaginary parts of the band
structure along the high symmetric directions in the Brillouin
zone, where the dashed red lines represent the Hermitian
case, i.e., dt = 0, and the solid blue lines are for dt = 0.2.
Compared with the Hermitian case, the real parts of the middle
four bands for dt = 0.2 degenerate in pairs near the Г and K
points, and the corresponding imaginary parts are opposite.
This feature is protected by the combination of the C2 sym-
metry and TRS, which requires C2T H (k)(C2T )−1 = H∗(k).
This combined symmetry C2T requires that the eigenvalues of
HNBH(k) are either purely real or come in complex conjugate
pairs. This fact can also be seen from the energy spectrum in
Fig. 2(c), which is mirror symmetric with respect to the axis
Im(E ) = 0. In addition, combined with the PHS†, the energy
spectrum is also mirror symmetric with respect to Re(E ) = 0.
If �t ≡ t1 − t2 = 0, the bands are degenerate at the Г point,
and hence the tips of the bow-shape spectra in Fig. 2(c) touch
on the Re(E ) = 0 line with the specific location determined
by dt . Otherwise, if �t �= 0, there is always a line gap [19–21]
at Re(E ) = 0 as denoted by the black dashed line in Fig. 2(c).

Since C2T also connects the two pseudospins, if the eigen-
value of one pseudospin of H (k) has a positive imaginary
part, the eigenvalue of the other pseudospin should exhibit a
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negative imaginary part with the same magnitude. This point
can be seen clearly with the effective Hamiltonian near the Г

point when considering only the middle four bands [60–63],

Heff (k)

=
[

i
√

3dt + �t + 1
4 t2k2 − 1

2 ik−t2
1
2 ik+t2 i

√
3dt − �t − 1

4 t2k2

]

⊕
[−i

√
3dt + �t + 1

4 t2k2 − 1
2 ik+t2

1
2 ik−t2 −i

√
3dt − �t − 1

4 t2k2

]
.

(3)

Here k± = kx ± iky, k2 = k2
x + k2

y , and we already block
diagonalize the Hamiltonian into the pseudospin subspaces
[53]. The Hermitian part of Heff is identical to the BHZ model,
while the non-Hermitian part exhibits the same form as HNH in
Eq. (1). HNH here only shifts the eigenvalues of the pseudospin
subspaces along the imaginary axis. Thus, the topology of
Heff is unchanged with the topological transition point still at
�t = 0. We show in Supplemental Material Sec. I [64] that
the projected band structures support this statement.

A nontrivial bulk topology indicates the presence of helical
edge modes. However, since the pseudospins here are defined
under the C6 symmetry which is broken at the boundary,
there is unavoidable pseudospin flipping, and thus an edge
state gap opens. Figure 3(a) shows the semi-infinite lattice
with an armchair boundary, where the red and blue arrows
denote the propagating direction of pseudospins with gain
and loss, respectively. Figure 3(b) shows the real parts of
the projected band structures at dt = 0.05 (left panel) and
dt = 0.2 (right panel). The color of the edge mode denotes
the pseudospin component, i.e., whether it is CW or CCW.
When dt is small, there is an edge state gap opened at the
Г point, as inherited from the Hermitian case. With the in-
crease of dt , this gap gradually closed. The edge modes at
the Г point actually exhibit a PT transition [1], as shown
in Fig. 3(c), where we show the real and imaginary parts
of the edge state energies at the Г point. The PT transition

point is at dtc = (
√

t2
2 + 8t1t2 − 2t1 − t2)/2 (see the proof in

Supplemental Material Sec. II [64]). After the transition point,
there is no spin mixture at the Г point. Figure 3(d) shows the
complex energy spectra for dt = 0.05 (left panel), dt = dtc
(middle panel), and dt = 0.2 (right panel). Here the edge
modes are also colored by their pseudospin components. It is
clear that CW edge modes always have Im(E ) > 0 and CCW
edge modes have Im(E ) < 0. In addition, edge modes form
two loops in the complex energy plane before the transition.
These two loops touch at the transition point and eventu-
ally merge into a large loop after the transition. In addition,
the energy spectra in Fig. 3(d) do not collapse compared to
the spectra obtained with the periodic boundary condition in
Fig. 2(c), indicating the absence of the nonreciprocal skin
effect [6,26,29].

Previous studies show the presence of a symmetry-
protected zero-energy corner mode at the 120° corner of a
finite lattice [43]. Such a corner mode exists inside the gap
formed by the two edge modes in Fig. 3(b). When the gap
of the edge modes is closed by the nonreciprocal intracell
couplings, the corner mode should also be delocalized. We

FIG. 3. (a) A supercell used for calculating the edge mode dis-
persion along the armchair boundary. The solid red (dashed blue)
arrow indicates that the CW (CCW) boundary mode is amplified (de-
caying) in time. (b) The real part of the projected band structures for
two different dt , with dt = 0.05 on the left and dt = 0.2 on the right.
The gap between the edge modes (colored) is closed at Re(E ) = 0
with increasing dt . (c) The edge modes at the � point exhibit a
PT transition with the increasing of dt . (d) The energy spectra of
the projected band structures at dt = 0.05 (left), dt = dtc = 0.118
(middle), and dt = 0.2 (right). The edge modes inside the band gap
are colored with the chirality index. The CW modes are all above
Im(E ) = 0, while CCW modes are all below Im(E ) = 0. In (b)–(d),
we set t1 = 0.5, t2 = 1, and the transition point is at dtc = 0.118.

prove in Supplemental Material Sec. II [64] that dtc is also
the delocalization transition point of the zero-energy higher-
order corner state if there is only one corner mode inside
a semi-infinite system (see Fig. S2). The situation becomes
more complex for a finite system with more than one corner
mode. These corner modes interact with each other or with
the boundary modes and become delocalized before dt = dtc.
Figure 4(a) shows one typical situation where we consider
a finite parallelogram shape system with two 120 ° corners
and two 60° corners. The left panel of Fig. 4(a) shows the
real parts of the energy spectra as we increase dt . For illus-
tration, we also provide the inverse participation ratio IPR =∑

i |ψi|4/(
∑

i |ψi|2)
2

in color for the middle four bands. The
right panel of Fig. 4(a) shows the amplitude distribution of
three typical states [positions marked in the left panel of
Fig. 4(a)]. When dt = 0.05 (marked by the triangle), the
localization length of the corner mode becomes different
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FIG. 4. (a) The real part of the spectra versus dt for a finite
parallelogram shape system (shown in the right panel) with four
armchair boundaries. IPRs of the middle four modes are given in
color. The right panel shows the field amplitude distributions of three
representative states (marked in the left panel). The blue dashed line
marks dt = dtc = 0.118. (b) The corresponding energy spectra at
dt = 0.05 (left) and dt = 0.2 (right). All the states are colored with
their IPRs.

along the two boundary directions. At a critical value dt =
0.096, the corner mode coalesces with another mode, and
becomes a fully delocalized edge state thereafter, as shown
by the mode at the heart symbol. Such a transition happens
before dtc [the blue vertical dashed line in Fig. 4(a)]. Note
that this delocalization process is distinct from the hybrid
skin-topological effect [16,65–67] since the latter can either
increase or decrease the IPR of the corner states and morph
the corner states into an edge state or a bulk state. In con-
trast, the nonreciprocal coupling in HNBH can only morph the
higher-order corner mode into an edge state (see the proof in
Supplemental Material Sec. II [64]).

When the corner states are delocalized, the helical edge
modes extend over the whole complete gap region with
one pseudospin being amplified and the other decaying in
dynamics. Then even if the system is started with a non-spin-
polarized source inside the bulk band gap, the edge states with
only the amplified spin can survive. However, as shown in
Fig. 4(b), the imaginary parts of some bulk states are higher
than the edge modes under a uniform dt . These bulk states
will dominate in dynamics in the long-time limit even with
a very small noise, as discussed in PT symmetric lasers [8]
and nonadiabatic chiral states transfer [35–42]. To address this
issue, we only add nonreciprocal coupling for the unit cells on

FIG. 5. Dynamics of edge states. (a) The distribution of the non-
reciprocal intracell couplings, where dt = 0.2 for the red unit cells
and dt = 0 for the blue ones. The orange star marks the position
of the Gaussian point source S = exp(iω0t )exp[−(t − t0)2/T 2] used
for exciting the edge states. Here only one lattice site is excited.
(b)–(f) The relative amplitude distributions at different times. The
parameters used are t1 = 0.5, t2 = 1, ω0 = 0, t0 = 15, T = 15.
We also add a uniform global loss γ = −0.25 on every site. For
simplicity, we set h̄ = 1 in solving the time-dependent Schrödinger
equation.

the boundaries, as shown in Fig. 5(a), where dt = 0.2 for the
red region and dt = 0 otherwise. By doing so, the edge states
will have the highest Im(E) while the eigenspectra of the edge
states and corresponding eigenstates change little compared
to the case when nonreciprocal couplings are introduced on
the whole area (see the detailed discussion in Supplemental
Material Sec. III [64]). When the system is excited with a
non-spin-polarized Gaussian source with the center frequency
at ω0 = 0, we can still observe a one-way edge mode as
shown in Figs. 5(b)–5(f). The dynamics for systems with other
boundaries and defects are provided in Supplemental Material
Sec. III [64]. Thus, the nonreciprocal coupling can save us
from designing a dedicated spin polarized source and spin
flipping scatterings by purifying the spin in dynamics.

In this work, we investigate the effects introduced by
spin-dependent gain and loss using nonreciprocal couplings.
Though both spin subspaces are non-Hermitian, the whole
system is still time reversal invariant. With the increase of
nonreciprocal couplings, the edge mode gap introduced by the
spin mixture can be closed, and the zero-energy higher-order
corner modes become delocalized. In dynamics, only one
spin component can survive in the long-time limit; hence the
system behaves as a Chern-like insulator. The tight-binding
model we study here can be implemented within various
platforms such as circuits [15,68], acoustics [12], and active
mechanical systems [17,18], where nonreciprocal couplings
are easy to construct. In Supplemental Material Sec. IV [64],
we provide the detailed full-wave simulations of our model
using a circuit [69]. Our work provides an intuitive exam-
ple that the dynamics of a system can be different from the
prediction from the static topological invariant. Moreover, our
work offers a different direction to manipulate (pseudo)spin
degree of freedom and morph higher-order corner modes in
other condensed matters such as exciton polaritons [70–73].
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