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Altermagnets are a new class of magnetic materials, which exhibit large spin splitting, but due to the combined
spin and real space group symmetry protection maintain zero net macroscopic magnetization. Such a characteris-
tic may prove them to be superior in applications in superconducting heterostructures and thus here we investigate
the Andreev reflection at the altermagnet/superconductor interface. We compare and contrast altermagnets to
other magnetic materials, revealing qualitative differences in the behavior of altermagnetic junction depending
on the Fermi surface orientation. We study the resonant states arising in setups with strong tunneling barriers
and show that sensitivity to nonmagnetic disorder is also dependent on the orientation. Our results provide a
building block for altermagnetic superconducting heterostructures such as Josephson π junctions with superior
properties.

DOI: 10.1103/PhysRevB.108.L060508

Introduction. The interplay between magnetism and super-
conductivity is the source of some of the most fascinating
phenomena in condensed matter physics [1–6]. In particular,
the exchange field and associated spin splitting can lead to
the emergence of spatially oscillating superconducting order
parameters of Fulde-Ferrell-Larkin-Ovchinnikov states [7,8]
or topological superconductivity with effective p + ip pairing
and the presence of Majorana zero modes [9–13]. Therefore,
understanding the behavior of the interface between the mag-
netic materials and superconductors is of utmost theoretical
and experimental interest.

At the microscopic level, the fundamental role in the
physics of the normal-superconductor interface is played by
the competition of the Andreev and normal reflection pro-
cesses [14–17]. When a spin-up electron traveling through a
material in normal state encounters a superconducting inter-
face, it can either undergo a normal reflection to a spin-up
electron, or an Andreev reflection to a spin-down hole, with
analogous process possible for the opposite spins as well.
In contrast to normal reflection, during the Andreev reflec-
tion, a Cooper pair with charge 2e is transferred into the
superconducting condensate, leading to the enhancement of
conductance compared to the normal state. The effect of such
processes on the transport properties of the junction can be un-
derstood through the elegant formalism of Blonder, Tinkham,
and Klapwijk (BTK) [18–20]. When time-reversal symmetry
is preserved and no spin-splitting occurs, quasiparticles of
both spin orientations are degenerate and thus their reflection
processes are equivalent. However, when a magnetic mate-
rial with broken time-reversal symmetry is introduced, this
equivalence is broken, leading to the suppression of Andreev
reflection for one spin direction, but not the other. This asym-
metry lies at the core of the novel properties of the magnetic
junctions [1–3].

So far, most of the magnetic-superconductor interfaces
used either ferromagnets [21–32], characterized by large,
macroscopic magnetization, or antiferromagnets [33–38] with
magnetic components compensated on a microscopic level.

However, recently a new class of magnetic materials with
large spin-splitting, but with zero net magnetization protected
by a combination of spin and real-space symmetries called
altermagnets was discovered and characterized [39–44]. As
altermagnets are expected to be abundant both in two and
three dimensional crystals, it is intriguing to explore new
features that could be unique to this new magnetic phase.
For example, the lack of net magnetization may prove to
be of a great benefit in the superconducting heterostructures
as the stray fields arising from the ferromagnetic materials
are largely detrimental to superconducting pairing and often
require external compensation and carefully designed exper-
iments [3]. One particular example of structure that would
benefit from this are Josephson π junctions [45,46], and
very recently, the presence of such a regime was proposed
in junctions with altermagnetic barriers [47–49]. Moreover,
very recently proposals for topological superconductivity in
proximitized altermagnets have been made [50,51]. These and
other possible advantages of altermagnets are encouraging to
explore their superconducting junctions in more depth.

In this work we investigate the transport properties of
the altermagnet/superconductor interface using the BTK for-
malism. Such interfaces are the basic building blocks for
understanding the interplay between superconductivity and
magnetism. We show that, depending on the orientation
of the spin-split altermagnet Fermi surface with regards to
the interface plane, transport properties can either resemble
qualitatively that of a ferromagnet with Andreev reflection
suppressed or retain the enhanced in-gap conductance char-
acteristic of a nonmagnetic junction. This is linked to the
different availability of electron and hole scattering states
of opposite spins for different Fermi surface orientations.
We then investigate the impact of a potential barrier at the
interface and within the altermagnet, revealing that, depend-
ing on the altermagnet orientation a host of resonant states
that enhance conductance can be present, with their energy
dependent on the barrier-interface distance. Finally, we also
investigate how these properties behave in the presence of
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nonmagnetic disorder, showing that altermagnet orientation
also affects the sensitivity of the junction transport prop-
erties to random impurities. These findings highlight the
attractiveness of applying altermagnets in novel magnetic su-
perconducting heterostructures.

Model. To characterize the normal and Andreev reflec-
tion processes at the altermagnet/superconductor (AM/SC)
interface we use the Bogoliubov–de Gennes Hamiltonian to
describe the electron and hole excitations of the system(

H (r) �(r)
�†(r) −H∗(r)

)
�(r) = E�(r), (1)

where �(r) = (u↑, u↓, v↑, v↓)T is the Nambu spinor with uσ

and vσ electron and hole components of spin σ , respectively.
We consider a two-dimensional (2D) system with the in-

terface separating the altermagnet and the superconductor at
x = 0. In such a case, the components of the Hamiltonian are
[39]

H (r) = HAM θ (−x) + HSC θ (x),

HAM = t0
(
k2

x + k2
y

) + (tJ1
(
k2

y − k2
x

) + 2tJ2kxky)σz − μ,

HSC = tSC
(
k2

x + k2
y

) − μSC, (2)

with momenta kx,y = −i∂x,y understood as the differential
operators in a given direction. We allow for the change of
both the effective mass and the chemical potential between the
altermagnet and the superconductor in the formulas, with such
a mismatch leading to the decrease in the transparency of the
interface, effectively forming a tunneling barrier. Introducing
such a step change at the interface requires additional care
when considering the exact form of the Hamiltonian expressed
in terms of differential operators [52,53], which is explored
in more detail in the Supplemental Material [54]. Including
both tJ1 and tJ2 terms in the altermagnetic phase enables us
to consider the two symmetric orientations of the spin-split
Fermi surface and investigate its impact on possible reflec-
tion processes. Such a formulation also enables considering
arbitrary orientations of the Fermi surface, with the rota-
tion angle determined through tJ1 cos(2θk ) + tJ2 sin(2θk ) =√

t2
J1 + t2

J2 cos(2θk + arctan[−tJ2/tJ1]) by the relative ratio
tJ2/tJ1, with θk being the polar angle in momentum space.
For the superconductor, we assume standard s-wave pairing
with �(r) = �iσyθ (x). For the purpose of comparison with
ferromagnetic junction, to introduce spin splitting we use an
exchange energy term in the normal state Hamiltonian HZ =
BZθ (−x)σz. We also consider the presence of a tunneling
barrier within the altermagnet or at the interface in a form of
delta function potential HB = UBδ(x + L), where L > 0 is the
barrier position and UB is its strength parameter.

We also consider the lattice counterpart of model (1) for
the purpose of numerical calculations, enabling both direct
comparison between the analytical and simulation results, as
well as studying the impact of random disorder. The model is
discretized on a square lattice with nearest and next nearest-
neighbor hoppings. In calculations with disorder, we model
it as random nonmagnetic potential chosen independently on
each lattice site from a uniform distribution in the range
[−U0/2,U0/2], where we call U0 the disorder strength. In a
geometry of a finite width ribbon, two leads (altermagnetic

FIG. 1. Quasiparticle excitations of Hamiltonian (1) for (a), (c)
tJ1 > 0, tJ2 = 0 and (b), (d) tJ1 = 0, tJ2 > 0. (a) The constant energy
contours for E > 0 are ellipses with the major axes either parallel
or perpendicular to the AM/SC interface. (b) The constant energy
contours for E > 0 are ellipses with the major axes at π/4 angle to
the AM/SC interface. (c) Quasiparticle dispersion E (kx ) for ky > 0
contains an energy range in which only normal reflection is possible
for spin-down electrons. (d) Andreev and normal reflection are pos-
sible in the same energy range for both spin-up and -down electrons.
In all panels red and blue correspond to spin-up and -down, dark and
light to electron and hole, and solid and dashed to group velocity
vx > 0 and vx < 0, respectively.

and superconducting) are attached at opposite ends and the
scattering matrix of the system is computed using Kwant code
[55]. From the scattering matrix, conductance of the interface
is obtained by summing over the BTK conductance of each
scattering mode.

Excitations and reflection processes in altermagnet. With
such a Hamiltonian describing the interface we can first ex-
amine the electron and hole excitations within the altermagnet
for the two orientations of the spin-splitting direction. We
will consider two separate cases, with either tJ1 or tJ2 being
nonzero. The constant energy contours at E > 0 for electron
and hole excitations in both of these scenarios are presented
in Figs. 1(a) and 1(b). While in both cases the contours are
elliptical, the orientation of these ellipses for spin-up and
-down quasiparticles with respect to the AM/SC interface is
different. For tJ1 > 0 the ellipse major axes are perpendicular
to the interface for spin up and parallel to the interface for
spin-down particles, while for the tJ2 > 0 case both major
axes are at π/4 angle to the interface. This translates to
a different set of restrictions on the possibility of Andreev
reflection, during which the electron gets reflected as a hole
of the opposite spin and vice versa. In the first case, there
is a range of ky for which a state with a given spin does
not have a hole counterpart with the opposite spin, neces-
sitating a purely normal reflection when the energies under
consideration are within the superconducting gap, similarly
to the behavior in the ferromagnet/superconductor junction.
In contrast, in the second case, the energy range for which
electrons and holes of opposite spin can coexist is the same
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for spin-up and -down particles. This means that Andreev
reflection is always possible and the precise split between
Andreev and normal processes depends on the details of the
wave length and effective mass mismatch across the interface.
This difference is clearly visible in the excitation dispersion
presented in Figs. 1(c) and 1(d) for a ky > 0 in both of the
analyzed cases. In Fig. 1(c), when tJ1 > 0, there is an energy
region within which the spin-down electron can only be re-
flected as another spin-down electron moving in the opposite
direction. In the same energy window, a spin-up electron can
be reflected as spin-down hole as well as the spin-up electron.
However, in Fig. 1(d) the dispersion is symmetrical for both
spin-up and -down particles, and no energy window within
which only normal reflection is possible exists. This will have
direct consequences for the conductance across the SC/AM
interface as we discuss below. While the model considered
here is two-dimensional, the discussion above would straight-
forwardly generalize to a three-dimensional (3D) case, where
an additional degree of freedom would arise that could be
used to orient the altermagnet Fermi surface with respect to
the interface between the materials.

Solution of the scattering problem. To obtain the transport
properties of the AM/SC junction, we solve the scattering
problem with the wave-function matching condition at the
interface

�(x = 0−) = �(x = 0+),
(3)

τz(t0 − tJ1σz )∂x�|0− + tJ2τzσz∂y�|0− = tSCτz∂x�|0+ ,

with τz being the Pauli matrix in particle-hole space. The sec-
ond condition, as derived in the Supplemental Material [54],
is equivalent to the conservation of the quasiparticle current
across the interface. Since we neglect the spin-orbit coupling
and thus spin remains a good quantum number within the
altermagnet, the matching condition splits into two sets of
equations for spin-up and -down particles. In each set we
consider an incoming and normal reflected electron states and
Andreev-reflected hole within the altermagnet. Inside of the
superconductor the wave function consists of electron- and
hole-like quasiparticles, which are exponentially decaying for
E < � and propagating through the superconductor above the
gap. The solution of these equations yields the amplitudes for
normal (rNσ ) and Andreev reflection (rAσ ) processes for both
spin-up and spin-down electrons

rAσ = 2σ k̃F,SC

√
k̃eσ k̃hσ̄

k̃F,SC (k̃eσ + k̃hσ̄ )ε̃ + (
k̃2

F,SC + k̃eσ k̃hσ̄

)√
ε̃2 − 1

, (4)

rNσ = k̃F,SC (k̃eσ − k̃hσ̄ )ε̃ + (
k̃eσ k̃hσ̄ − k̃2

F,SC

)√
ε̃2 − 1

k̃F,SC (k̃eσ + k̃hσ̄ )ε̃ + (
k̃2

F,SC + k̃eσ k̃hσ̄

)√
ε̃2 − 1

, (5)

where we defined ε̃ = E/� and σ = ±1 for spin up and
down. We also have

k̃F,SC = tSC

√
μSC/tSC − k2

y ,

k̃eσ = (t0 ∓ tJ1)

√
μ + �ε̃

t0 ∓ tJ1
− k2

y

t2
0 − t2

J1 − t2
J2

(t0 ∓ tJ1)2
,

k̃hσ = (t0 ∓ tJ1)

√
μ − �ε̃

t0 ∓ tJ1
− k2

y

t2
0 − t2

J1 − t2
J2

(t0 ∓ tJ1)2
.

(6)

No barrier (           ) Weak barrier (                  )

FIG. 2. Normalized conductance of altermagnet/superconductor
interface obtained from Eq. (7) for three different orientations of
altermagnetic Fermi surface. In all cases, t0 = 4, μ = μSC = 0.25,
� = 0.001. Blue lines are calculated for tJ1 = 3, orange lines for
tJ2 = 3, green lines for tJ1 = tJ2 = 2.12, and red lines for BZ = 0.15.
(a) Perfect interface with no tunneling barrier. (b) Interface with a
weak tunneling barrier.

Here the upper sign corresponds to spin-up and the lower
sign to the spin-down component. In deriving these formulas
we assume that the wave vector of the quasiparticle within
the superconductor is independent of energy. A similar set of
reflection coefficients can also be derived for the scenario with
the barrier present (UB �= 0) as shown in the Supplemental
Material [54]. In both of these cases, since the wave functions
are normalized to carry a unit quasiparticle current, for E < �

we have |rAσ |2 + |rNσ |2 = 1 as required by the unitarity of the
scattering matrix.

With the reflection amplitudes derived, we can now em-
ploy the BTK formalism in the temperature T = 0 limit to
obtain the conductance across the interface. In each case we
normalize the conductance with the respective conductance of
a normal state interface, characterized by the normal reflection
amplitude rN0σ :

GNS/GN =
∑

σ

∫
dky(1 − |rNσ |2 + |rAσ |2)∑
σ

∫
dky(1 − |rN0σ |2)

. (7)

The limits of integration are established by the extent of the
constant energy contour ellipses for given E and are

kmax
y,eσ =

√
(t0 ∓ tJ1)(μ + E )

t2
0 − t2

J1 − t2
J2

, kmax
y,hσ =

√
(t0 ∓ tJ1)(μ − E )

t2
0 − t2

J1 − t2
J2

.

(8)

The maximum extent of hole energy contour of a given spin
kmax

y,hσ limits the extent of Andreev reflection of the electron of
opposite spin, beyond which the electron gets fully normally
reflected for energies within the superconducting gap. When
evaluating the integral we also include a small imaginary part
η in energy E → E + iη to provide regularization.

Interface conductance. With the formalism for the interface
conductance established, we can now investigate the impact of
different orientations of the altermagnet Fermi surface on the
transport properties of the junction. We first consider a perfect
interface with no barrier and the same chemical potential
within the altermagnet and superconductor as presented in
Fig. 2(a). Here the difference in the range of ky for which
Andreev reflection is possible for the two orientations of the

L060508-3



MICHAŁ PAPAJ PHYSICAL REVIEW B 108, L060508 (2023)

Ferromagnet

FIG. 3. Conductance of interface with barrier placed distance L away from the altermagnet/superconductor boundary at energy E , obtained
using numerical simulation with system width W = 301 lattice sites. In each case the vertical side panels present the line cut of the color maps
at E = 0 (green) and E = �/2 (red). We scale the distance by kF = √

μ/t0. In all panels, t0 = 4, μ = μSC = 0.25, � = 0.001. (a) Altermagnet
with tJ1 = 3, tJ2 = 0. (b) Altermagnet with tJ1 = 0, tJ2 = 3. (c) Altermagnet with tJ1 = tJ2 = 2.12. (c) Ferromagnet with BZ = 0.15.

altermagnet is immediately obvious. While in the tJ1 case
Andreev reflection becomes suppressed with decreasing con-
ductance when energy increases towards the superconducting
gap edge, in the tJ2 case the Andreev reflection leads to
increased conductance with maximum at E = �. When com-
pared to the ferromagnetic interface, the tJ1 bears qualitative
resemblance to it in the energy dependence of conductance,
with nevertheless stronger Andreev reflection at E = 0. In
contrast, tJ2 altermagnet behaves more similarly to a non-
magnetic system with imperfect Andreev reflection resulting
from the barrier due to the Fermi wave-vector mismatch. In
the intermediate case, when tJ1 = tJ2 > 0, the system mirrors
the tJ1 energy dependence while also presenting increased
conductance of the tJ2 case.

We then introduce a delta-function barrier at the AM/SC
interface and present the results for intermediate strength
barrier in Fig. 2(b). There, the similarity between the tJ1 ori-
entation and the ferromagnet is further strengthened, with the
E = 0 conductance advantage of the altermagnet diminished
and the curves following a similar dependence. In contrast, the
tJ2 and the mixed cases retain their conductance enhancement
throughout the superconducting gap, and in particular, at the
gap edge. In all of the cases, however, the behavior outside of
the superconducting gap is largely equivalent. Finally, with a
very strong barrier, all of the conductances collapse onto one
dependence, which now results in probing the density of states
of the superconductor, with resonant peaks at the gap edge and
no conductance within the gap.

The delta-function barrier can also be placed at some dis-
tance L away from the interface within the altermagnet. This
can lead to a formation of resonant states trapped between
the barrier and interface through combination of normal and
Andreev reflection processes. The conductance of such a setup
for varying L and energy is presented in Fig. 3 for each of
the previously analyzed altermagnetic cases and a ferromag-
net for comparison, with the slices along the distance axis
at E = 0 and E = 0.5� presented in the side panels. This
again illustrates the qualitative differences in the behavior of
AM/SC interface, dependent on the orientation of the AM
Fermi surface. In Fig. 3(a) we demonstrate the presence of the
aforementioned resonant states within the gap in the tJ1 case,
where they appear as interface conductance peaks at E = 0
and E = � for barrier distance L determined by the electron
and hole wave vectors within the altermagnet. These peaks
then split into pairs when the barrier distance is changed,

appearing at intermediate energies 0 < E < �. Strong
oscillations of conductance occur also for energies outside
of the gap, but the position of the enhancement maximum
no longer disperses with barrier distance. While similar res-
onant states are present in the ferromagnetic case [Fig. 3(d)],
the oscillations for energies above the gap are not nearly as
pronounced. In contrast to this behavior, in the tJ2 case the
resonant states are absent and the conductance within the gap
slowly increases for larger barrier distances, with some noise
imposed over this trend due to the higher-order interference
of multiple paths between the barrier and the interface. More-
over, in this case the conductance above the gap is uniform
across all the barrier distances, with a sharp peak at the gap
edge more akin to the standard normal-superconductor in-
terface with a barrier. Finally, the mixed case with tJ1 = tJ2

is again more similar to the tJ1 case, with the conductance
behavior presenting the resonant states within the gap and
strong conductance oscillations above the gap, albeit weaker
than in a purely tJ1 system.

Impact of disorder. Using the lattice model allows us to
also investigate the impact of disorder on the interface con-
ductance. We first consider the scenario where the altermagnet
region contains random onsite disorder, but otherwise does
not include a delta-function barrier, with the results presented
in Fig. 4(a). Both orientations of the altermagnet and the
ferromagnet show similar response to disorder, but the de-
crease of conductance throughout the gap is the largest in tJ1

case. The behavior of the magnetic materials in this case is
different than the one of normal spin-degenerate metal, as in
that situation the effect of disorder can be compared to the
effect of a tunneling barrier, with a strong resonant peak at
the gap edge and quick decay of conductance within the gap.
Here, however, the conductance remains stable throughout the
gap. Comparatively, for the same strength of disorder, the tJ2

orientation of the altermagnet suffers less from the presence of
disorder, with the conductance flat within the gap as well. In
Fig. 4(b) we then include a variable position delta barrier and
show the dependence of interface conductance on the barrier
distance at E = 0 and E = 0.5�, the same as the side panels
of Fig. 3, with disorder included between the barrier and the
interface. While in the tJ2 case the disorder does not change
the results qualitatively, both tJ1 and the ferromagnet exhibit
suppression of the conductance oscillation amplitude as the
barrier distance increases.
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FIG. 4. Conductance of altermagnet/superconductor interface
obtained from numerical simulation with disorder included. The
solid lines in all panels are conductance results averaged over 50
disorder realizations. (a) Disordered junction (U0 = 1) with no delta
function barrier in the system of width W = 201 lattice sites and
other parameters as in Fig. 2(a). Dashed lines show results for clean
system. (b) Disordered junction with delta barrier placed distance L
away from the interface, with disorder between the barrier and the
interface. The results correspond to line cuts presented in side panels
of Figs. 3(a), 3(b), and 3(d), with green line at E = 0, red line at
E = 0.5�, and the same model parameters.

Summary and outlook. In conclusion, we investigated the
conductance of the AM/SC junction, characterizing its de-
pendence on the altermagnet Fermi surface orientation with
respect to the interface. We showed that, while the tJ1 case is

qualitatively similar to a ferromagnet, the tJ2 altermagnet does
not suffer from suppressed Andreev reflection and thus pre-
serves enhanced conductance within the superconducting gap.
Our results highlight the importance of determining the crys-
talline orientation of altermagnets when creating interfaces
with superconductors and can also bear important conse-
quences for creation of altermagnetic Josephson junctions.
Another promising direction for future study is to explore
the interface between altermagnetism and d-wave supercon-
ductivity. It may also be interesting to study the behavior of
altermagnetic interfaces with more exotic forms of supercon-
ductivity, such as the Bose-Einstein condensate regime [56]
or gapless superconductors with segmented Fermi surface
[57]. With the multitude of new research avenues, alter-
magnet/superconductor heterostructures promise fascinating
phenomena, both from the basic research perspective as well
as for potential technological applications.

Note added. After the article submission we were made
aware of a very recent, related work on the Andreev reflection
in altermagnets [58], with the results in common between our
works in full agreement.
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