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Majorana spin current generation by dynamic strain
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Majorana fermions that emerge on the surface of topological superconductors are charge neutral but can
have higher-rank electric multipoles by allowing for time-reversal and crystalline symmetries. Applying the
general classification of these multipoles, we show that the spin current of Majorana fermions is driven by
spatially nonuniform dynamic strains on the surface of a 3D topological crystalline superconductor. We find that
the frequency dependence of the Majorana spin current reflects the energy dispersion of Majorana fermions.
Our results provide new dynamics of Majorana fermions characterized by crystalline and superconducting
symmetries.
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Majorana fermions (MFs) are charge-neutral relativistic
particles moving in 3D space. In addition, two types of MFs
emerge in topological superconductors (TSCs) as gapless An-
dreev bound states [1–7]. One type is a spatially localized
zero-dimensional MF, which appears at the ends of nanowires
[8–14] or in the cores of the vortices of TSCs [15–18]. MFs
have been the subject of considerable research because of
their potential application to fault-tolerant topological quan-
tum computation with non-Abelian statistics [19,20].

Here, one can ask the following question: what are the
physical phenomena unique to spatially extended 1D or 2D
MFs? A typical example is the half-integer thermal quantum
Hall effect on the surface of a TSC [21–23]. “Half-Integer” is
a peculiarity originating from the fact that MFs are heat carri-
ers. The half-integer thermal quantum Hall effect is unique to
MFs that are spread in 2D space, and its “driving force” is a
thermal gradient. Recently, the optical response of Majorana
chiral edge modes has also been discussed [24,25]. The fre-
quency dependence of the real part of the optical conductivity
is proportional to ω2, through which these modes can be
distinguished from trivial superconductors or insulators and
Dirac chiral edge modes. Then, the driving force of MFs is
an electromagnetic wave. In superconductors, the responses
to acoustic waves have been extensively studied through ul-
trasonic attenuation measurements [26,27] to investigate the
superconducting symmetry or measurements of the tempera-
ture dependence of the superconducting gap [28]. Therefore,
we can expect to be able to use dynamic strains for the driving
force of MFs on the surfaces of 3D TSCs.

When MFs have time-reversal symmetry, they do not ap-
pear alone but form Kramers pairs, which are called Majorana
Kramers pairs (MKPs). Due to the time-reversal symmetry,
a single MKP is stable against an external electric field.
Previously, we derived the general effective theory for the
electromagnetic properties of “double” MKPs on the surface
of a 3D TSC [29–31]. Double MKPs can have various electric
multipole degrees of freedom that are qualitatively different
from those of ordinary fermions, and it has been shown that

they can respond to static strains [31]. Double MKPs are
always protected by crystalline symmetries in addition to
time-reversal symmetry; thus, TSCs are specifically referred
to as topological crystalline superconductors (TCSCs).

In this Letter, we clarify the transport phenomena of dou-
ble MKPs driven by spatially nonuniform dynamic strains
on the surface of 3D TCSCs. We start with a 4 × 4 Dirac
Hamiltonian with respect to the surface point group (PG)
symmetry. Then, we reveal the spin current of double MKPs,
referred to as the “Majorana spin current,” generated by spa-
tially nonuniform dynamic strains on the surface (see Fig. 1).
When there is no gap in the dispersion of double MKPs, we
find that the Majorana spin current is caused by an intrinsic

FIG. 1. Schematic showing that Majorana spin currents flow on
the surface of a 3D TCSC driven by a dynamic strain. The surface
has four Majorana fermions that form double MKPs. Double MKPs
have electric quadrupoles coupled to a dynamic strain, and the spin
current of Majorana electric quadrupoles is generated by a dynamic
strain.
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effect and does not depend on the relaxation time. Alterna-
tively, for the gapped case induced by surface magnetization,
the Majorana spin current has two frequency regions that
reflect the energy dispersion of double MKPs. Our results
provide new dynamics of Majorana fermions characterized by
crystalline and superconducting symmetries, and accelerate
the study of the coupling of given external fields with MFs
and the resulting transport phenomena.

Before we consider the main topic, we discuss the electro-
magnetic properties of MKPs on the surface of a TSC. When
there is only one MF on the surface, the single MF is strongly
protected by particle-hole symmetry (charge-neutrality con-
straint), and it is extremely stable against any external fields.
If a TSC has time-reversal symmetry, then two MFs form an
MKP. The single MKP is protected by time-reversal symme-
try, and hence, it generally responds only to external magnetic
fields and remains stable to external electric fields. On the
other hand, when crystalline symmetries are taken into ac-
count, double MKPs can exist, and they can respond to an
electrical perturbation that breaks the crystalline symmetry.
The coupling of N MKPs to a spatially uniform external field
can be represented according to Ref. [31] by

Ĥsurf,ex = −ÔF, Ô = 1

2

∫
d2x

∑
ss′

ψ̂s(x)(AF )ss′ψ̂s′ (x), (1)

where ψ̂s(x) (s = 1, ..., 2N ) are Majorana field operators and
satisfy ψ̂†

s (x) = ψ̂s(x). AF is conjugate to F and should be
an antisymmetric Hermite matrix since Majorana field oper-
ators obey {ψ̂s(x), ψ̂s′ (x′)} = δss′δ2(x − x′). When AF is the
2 × 2 matrix with only one MKP, there exists only AF = σy

satisfying �surfAF �−1
surf = −AF for the time-reversal operator

�surf = (−iσyK ). K is a complex conjugation, and hence, the
MKP couples only to external magnetic fields. On the other
hand, when AF is the 4 × 4 matrix with double MKPs, AF

satisfying �surfAF �−1
surf = AF can be formed, and the double

MKPs can also be coupled to an external electric field accord-
ing to Eq. (1). Double MKPs have various electric multipoles
depending on the crystalline symmetry of the surface, i.e.,
wallpaper groups (WGs), and superconducting symmetry. In
a previous study [31], we revealed the coupling between the
electric multipoles and spatially uniform static strain for each
WG. In the following, we first show that dynamic strains
generate a finite spin current by using a concrete model based
on the symmetries of the system. Then, we discuss the gen-
eral theory of couplable strains and the resulting surface spin
currents, depending on the crystalline and superconducting
symmetries of the system.

We consider the 3D time-reversal-invariant topological su-
perconductor with Oh PG symmetry, which belongs to the A1u

superconducting state. Then, we utilize the low-energy model
for double MKPs on the (001) surface with the p4m WG
symmetry, which equals the C4v PG symmetry. The surface
symmetry operations are given by D{C4z |0} = −1√

2
(s0τ3 − is3τ3)

and D{σ (xz)|0} = i√
2
(s2τ3 − s1τ3), with Dg being a representa-

tion matrix of g ∈ C4v , where siτ j’s are the product of Pauli
matrices acting on the spin, orbital, and sublattice degrees of
freedom. The time-reversal �, particle-hole C, and chiral �

symmetries are also defined by � = s2τ3K,C = s1τ0K, and
� = s3τ3. We note that these representations of surface sym-

metry operations are determined by the bulk superconducting
symmetry [30,31] (see Sec. I of the Supplemental Material
[32]). Then, we obtain the total symmetric Hamiltonian:

Ĥ = 1

2

∑
k

ψ̂
†
k H (k)ψ̂k,

H (k) = [v1(η1ky − η2kx ) + v2(η3ky − η4kx )], (2)

where ψ̂
†
k = (ψ̂†

1k, ψ̂
†
2k, ψ̂

†
3k, ψ̂

†
4k) and ψ̂k = t (ψ̂1k, ..., ψ̂4k )

are the Majorana creation/annihilation operators, which
satisfy ψ̂

†
1k = ψ̂2−k and ψ̂

†
3k = ψ̂4−k, and the subscripts

1,...,4 denote four MFs. The ηi’s are given by η1 =
(1/

√
2)(s1τ0 + s2τ0), η2 = (−1/

√
2)(s1τ0 − s2τ0), η3 =

(1/
√

2)(s1τ3 + s2τ3), and η4 = (−1/
√

2)(s1τ3 − s2τ3).
H (k) satisfies �H (k)�−1 = H (−k), CH (k)C−1 =
−H (−k), �H (k)�−1 = −H (k), and DgH (k)D†

g = H (gk),
where a momentum k is transformed to gk under the action of
g. The spin of MFs is represented by σ = (σx, σy, σz ) ≡
(η5, η6,−s3τ0), where η5 = (1/

√
2)(s1τ2 − s2τ2) and

η6 = (−1/
√

2)(s1τ2 + s2τ2), which are coupled to the
magnetization M as M · σ. In this model, the double
MKPs have specific electromagnetic multipoles with
particle-hole symmetry; the double MKPs have magnetic
multipoles that are represented by σ and electric quadrupoles
that are represented by s3τ1 with the B1 representation
and s0τ2 with the B2 representation. Therefore, in the
following, we can define the spin currents jx

y + jy
x and

jx
x − jy

y generated by dynamic strains uxx − uyy and
uxy + uyx, where ui j (x) = ∂iu j (x) and u j (x) ∝ ei(q·x−ωt )

denote the displacement fields (Fig. 1). The spin current
is defined by jαi ≡ 1

2 {σα, ∂H (k)/∂ki} (i = x, y), which
satisfies particle-hole symmetry C jαi C−1 = − jαi . Then,
we obtain ĵx

y (q) + ĵy
x (q) = 1

2

∑
k ψ̂

†
k− q

2
[−v2s3τ1]ψ̂k+ q

2
and

ĵx
x (q) − ĵy

y (q) = 1
2

∑
k ψ̂

†
k− q

2
[v1s0τ2]ψ̂k+ q

2
.

Here, we define the electrical operators, which are repre-
sented by Ô(1)(q) ≡ 1

2

∑
k ψ̂

†
k− q

2
(ρ1s3τ1)ψ̂k+ q

2
and Ô(2)(q) ≡

1
2

∑
k ψ̂

†
k− q

2
(ρ2s0τ2)ψ̂k+ q

2
. Since Ô(1) and uxx − uyy as well as

Ô(2) and uxy + uyx share the same representation, the cou-
plings between double MKPs and the dynamic strains are
represented by

Ĥsurf,ex = − {Ô(1)(q)[uxx(q, ω) − uyy(q, ω)]

+ Ô(2)(q)[uxy(q, ω) + uyx(q, ω)]}. (3)

Then, we calculate the linear response of the spin currents
ĵx
y + ĵy

x and ĵx
x − ĵy

y to the dynamic strains given by Eq. (3):〈
ĵx
y + ĵy

x

〉
(q, ω) ≡ K1(q, ω)[uxx(q, ω) − uyy(q, ω)]

+ K2(q, ω)[uxy(q, ω) + uyx(q, ω)], (4)〈
ĵx
x − ĵy

y

〉
(q, ω) ≡ K ′

1(q, ω)[uxx(q, ω) − uyy(q, ω)]

+ K ′
2(q, ω)[uxy(q, ω) + uyx(q, ω)], (5)

where the response function Ki(q, ω) is given in Ref. [33] as

Ki(q, ω) ≡ i
∫ ∞

0
dtei(ω+iδ)t

〈[
ĵx
y (q, t ) + ĵy

x (q, t ), Ô(i)(−q, 0)
]〉
,

(6)
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where Â(t ) = eiĤt Âe−iĤt and δ → +0. K ′
i (q, ω) is also de-

fined by replacing ĵx
y + ĵy

x with ĵx
x − ĵy

y in Eq. (6). Note that
the chemical potential μ for MFs is equal to zero due to the
particle-hole symmetry in superconducting states. Addition-
ally, 〈· · · 〉 = tr[e−Ĥ/T · · · ]/tr[e−Ĥ/T ]. If there are no applied
external fields, then K1(q, ω) and K ′

2(q, ω) only take finite
values since the spin currents and dynamic strains share
the same representation of C4v . Here, we assume that the wave
number q and the frequency ω are smaller than the mean free
path l and relaxation time τ of the MFs. These conditions
are represented by q � l−1 and ω � τ−1 = 2γ , where γ is
the impurity scattering [34]. We expand the response function
for ω and consider the nonequilibrium part: Ki(ω) − Ki(0)
(the details are shown in Sec. II of the Supplemental Material
[32]):

K1(ω) − K1(0) � iω

8π2

ρ1

v1
ln

[
(v1 − v2)2

(v1 + v2)2

]
. (7)

One can see that K1(ω) − K1(0) does not depend on γ . Such
independence from impurity scattering for a system with
linear dispersion also occurs in the minimal conductivity
problem of graphene [35]. We note that K ′

2(ω) − K ′
2(0) =

v1ρ2

−v2ρ1
(K1(ω) − K1(0)) because of the chiral symmetry.

Next, we consider the case in which the dispersion of
double MKPs is gapped. This situation can be realized, for
example, by attaching ferromagnets on the surface. Then, the
effective Hamiltonian is given by

H̃ (k) = H (k) + M̃zσz. (8)

The second term in Eq. (8) is the Zeeman term reflected by
the coupling between the spin moment of double MKPs and
the magnetization of ferromagnets, where we define Mz ≡
−M̃z. Then, the energy dispersion is given by Eτ=±,± =
±√

M2
z + k2(v1 + τv2)2. The applied magnetization opens an

energy gap in the dispersion of double MKPs and lowers the
symmetry from C4v to C4. Therefore, K2(ω) can take a finite
value since jx

y + jy
x and uxy + uyx share the same irreducible

representation of C4. The relationship between Bz and ω is
important; hence, we calculate the response function by using
the Lehmann representation:

Ki(ω) = 1

4

∑
n∈occ,m∈unocc

{
〈n| − v2s3τ1|m〉〈m|o(i)|n〉

En − Em + ω + iδ

+
[ 〈n| − v2s3τ1|m〉〈m|o(i)|n〉

En − Em − ω + iδ

]∗}
,

o(1) = ρ1s3τ1, o(2) = ρ2s0τ2, (9)

where δ → +0 and |n〉 and |m〉 denote the occupied states
and unoccupied states of Eq. (8), respectively. As a result, we
obtain the nonequilibrium part: Ki(ω) − Ki(0):

K1(ω) − K1(0)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A ω2

Mz
(ω � 2|Mz|),

B

(
−ω

2 ln

∣∣∣∣ 1+ 2kcv1
ω

1− 2kcv1
ω

∣∣∣∣ + 2Mzv
2
1

v2
1−v2

2
− Mzv1ln

∣∣ v1−v2
v1+v2

∣∣
2v2

)
+ i Bπv1

2v2
ω

(2|Mz| � ω � x(kc)),

(10)

FIG. 2. Numerical results of (9). (a) and (b) show the ampli-
tudes of the real and imaginary parts of K1(ω) − K1(0), respectively.
(c) and (d) show the real and imaginary parts of K2(ω) − K2(0),
respectively. Red, blue, and green lines denote the cases of |Mz| =
0.3, |Mz| = 0.2 and |Mz| = 0.1, respectively. The values of the three
black dotted lines drawn on the horizontal axis in (a), (b), (c), and
(d) denote the size of the energy gap 2|Mz| and from left to right
are 0.2, 0.4, and 0.6. The parameters are ρ1 = 1.0, ρ2 = 1.0, v1 =
0.3, v2 = 0.2, and kc = 10.

K2(ω) − K2(0)

=

⎧⎪⎨
⎪⎩

iCω (ω � 2|Mz|),
DπMz + iDMzln

∣∣∣∣∣ 1+ 2kcv1
ω

1− 2kcv1
ω

∣∣∣∣∣ (2|Mz| � ω � x(kc)),

(11)

A = 2v1v2
(
3v2

2 − v2
1

) − ((
v2

1 + v2
2

)2 − 4v4
2

)
ln

∣∣ v1−v2
v1+v2

∣∣
32v3

1v
3
2/ρ1

,

B = v2ρ1

8πv2
1

,

C = v2ρ2

4π

−2v1v2 + v2ln
∣∣∣ v1+v2
v1−v2

∣∣∣
8v2

1v
2
2

,

D = −v2ρ2

8π

v2

v3
1 − v1v

2
2

, (12)

where x(kc) = √
M2

z + k2
c (v1 + v2)2 + √

M2
z + k2

c (v1 − v2)2

and kc is a cutoff value. Equations (10) and (11) show that
K1(ω) and K2(ω) have two frequency regions with different
behaviors. The numerical results of Eq. (9) are shown in
Fig. 2, and they reproduce the approximate analytical solu-
tions obtained in each region well. Both K1(ω) − K1(0) and
K2(ω) − K2(0) reflect the energy dispersion of the MFs. In
particular, there are abrupt changes in the values in panels (a),
(b), and (c) of Fig. 2, which are the points at ω = 2|Mz| when
the frequency is equal to the band gap. On the other hand, (d)
shows a diagram corresponding to the result of the principal
value integration in Eq. (9), and there is no peak structure
even at ω = 2|Mz| where the density of states becomes finite.
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TABLE I. Electromagnetic degrees of freedom of the double MKPs. They emerge on the surface with WG symmetry when the bulk pair
potential belongs to irrep �. The magnetization Mz perpendicular to the surface and strain ui j (x), which couple to MKPs, are also shown. The
last column denotes that the strain can couple to the double MKPs and to the spin current generated by the same strain. We adapt the definitions
for WGs and irreps given by the Bilbao Crystallographic Server [36].

Strain (spin current)

WG � Magnetization Mz uxx − uyy

(
jx
y + jy

x

)
uxy + uyx

(
jx
x − jy

y

)
p4m A2 Gapped © ©
p31m A1 Gapless ×, only coupled to uxy − uyx

(
jx
x + jy

y

)
p4g B1 Gapped ×, coupled to uxy − uyx

(
jx
x + jy

y

) ©

This occurs because the chemical potential of MFs is exactly
zero, and K2(ω) − K2(0) is the quantity that can take a finite
value when the dispersion of MFs exhibits an energy gap
with applied magnetization. Hence, the contribution from the
Fermi sea is considered to be dominant.

We emphasize that the electromagnetic multipoles formed
by double MKPs determine the properties of the spin cur-
rent responses to dynamic strains. To see this, by using
the results of the previous study [31], we show the gen-
eral results of couplable strains and the resulting surface
spin currents in Table I, which depend on the crystalline
and superconducting symmetries of the system (see the
Supplemental Material of Ref. [31] for the complete version).
The case of p4m corresponds to the present model. In the
cases of p4m and p4g, the applied magnetization Mz induces
an energy gap of double MKPs; however, in the case of
p31m, the double MKPs remain gapless. In addition, p4m
and p4g are both gapped cases, but in the case of p4g, the
double MKPs do not couple to the strain uxx − uyy but cou-
ple to uxy − uyx, owing to the protection of the glide-plane
symmetry.

In this Letter, we show that a Majorana spin current is
generated by spatially nonuniform dynamic strain flows on
the surface of a 3D TCSC. For the gapless case, the spin
current does not show a damping dependence due to the linear
dispersion of the double MKPs and the fact that their chemical
potential is exactly zero. In contrast, for the gapped case, the
spin currents reflect the energy dispersion of the MFs, and
they have a unique frequency dependence. We have shown
the application of the general effective theory for the elec-
tromagnetic properties of MFs derived from crystalline and
superconducting symmetries. Then, one can see the new dy-
namics of MFs characterized by these symmetries. We believe
that our work accelerates the study of the coupling of given
external fields with MFs and the transport phenomena arising
therefrom.

We suggest that our results can be applied to the surface of
the antiperovskite superconductor Sr3SnO. The antiperovskite
A3BX , A = Ca, Sr, La, B = Pb, Sn, X = C, N, O with space
group symmetry Pm3̄m (No. 221) [37,38], which is equivalent
to the Oh PG symmetry, has multiple J = 3/2 bands and is a
candidate material for topological crystalline insulators due
to the band inversion of two orbitals [39–41]. In particular,

Sr3SnO has the potential to become a TSC with hole doping
at temperatures below 5 K [42]. Interestingly, it has been
suggested that double MKPs can appear on the (001) surface
with p4m WG symmetry when the superconductor symmetry
has the A1u representation [43].

As a method of detecting AC spin currents, spin wave
resonance can be observed by injecting spin currents into
ferromagnetic metals [44,45] and through the rectifying ef-
fect of magnetostriction [46]. Dynamic strains uxx(r, t ) and
uxy(r, t ) can be realized by a Rayleigh wave and a Love wave
propagating in the x direction, respectively. In relation to
the experiment, the bulk spin current must not directly arise
from inversion-symmetric strains if the bulk has inversion
symmetry. This is because a spin current breaks the inversion
symmetry but strain does not. Therefore, we suppose that it is
experimentally possible to measure only the surface spin cur-
rent. We also estimate the amplitude of the spin current given
by Eqs. (4) and (7). We assume the induced dynamic strain
form uxx(r, t ) = iAxqxeiq·r−iωt , where Ax denotes a lattice dis-
placement, and we set Ax ∼ 0.1 [Å], ω ∼ 109 [s−1], and qx ∼
106 [m−1]. Additionally, the velocities of MFs are set to v1 ∼
v2 ∼ 104 [m · s−1] (which is equivalent to the electron veloc-
ity in graphene). The coupling energy between MFs and static
strain [uxx]ω=0 is given by Eg = 2|ρ1uxx|, where ρ1 denotes the
coupling constant. We assume that Eg is much smaller than
the bulk superconducting gap and set Eg ∼ 0.1 μeV. Then,
ρ1 ∼ 104 μeV. Therefore, we obtain |〈 ĵx

y + ĵy
x 〉(r, t )| ∼ 1 nA,

where we assume that ln[ (v1−v2 )2

(v1+v2 )2 ] ∼ 1 and the system size is
L ∼ 1 mm.

The authors gratefully acknowledge M. Matsuo, Y. Nozaki,
J. J. Nakane, Y. Imai, T. Yamaguchi, T. Matsushita, R.
Kikuchi, and H. Kohno for valuable discussions. Y.Y.’s
present affiliation is the RIKEN Cluster for Pioneering Re-
search. This work was supported by JSPS KAKENHI, Grant
No. JP20K03835 and the Sumitomo Foundation (190228).
Y.Y. is supported by Grant-in-Aid for JSPS Fellows, Grant
No. 22J14452. This work was financially supported by JST
SPRING, Grant No. JPMJSP2125. The author Y.Y. would
like to take this opportunity to thank the “Interdisciplinary
Frontier Next-Generation Researcher Program of the Tokai
Higher Education and Research System.”

L060505-4



MAJORANA SPIN CURRENT GENERATION BY DYNAMIC … PHYSICAL REVIEW B 108, L060505 (2023)

[1] C.-R. Hu, Midgap Surface States as a Novel Signature for
dx2

a−x2
b
-Wave Superconductivity, Phys. Rev. Lett. 72, 1526

(1994).
[2] S. Kashiwaya and Y. Tanaka, Tunnelling effects on surface

bound states in unconventional superconductors, Rep. Prog.
Phys. 63, 1641 (2000).

[3] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[4] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[5] Y. Tanaka, M. Sato, and N. Nagaosa, Symmetry and topology
in superconductors -odd-frequency pairing and edge states-,
J. Phys. Soc. Jpn. 81, 011013 (2012).

[6] M. Sato and Y. Ando, Topological superconductors: A review,
Rep. Prog. Phys. 80, 076501 (2017).

[7] A. Haim and Y. Oreg, Time-reversal-invariant topological su-
perconductivity in one and two dimensions, Phys. Rep. 825, 1
(2019).

[8] M. Sato, Y. Takahashi, and S. Fujimoto, Non-Abelian Topologi-
cal Order in s-Wave Superfluids of Ultracold Fermionic Atoms,
Phys. Rev. Lett. 103, 020401 (2009).

[9] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[10] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Ma-
jorana Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures, Phys. Rev.
Lett. 105, 077001 (2010).

[11] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and
Majorana Bound States in Quantum Wires, Phys. Rev. Lett. 105,
177002 (2010).

[12] A. Cook and M. Franz, Majorana fermions in a topological-
insulator nanowire proximity-coupled to an s-wave supercon-
ductor, Phys. Rev. B 84, 201105(R) (2011).

[13] J. Alicea, New directions in the pursuit of Majorana fermions in
solid state systems, Rep. Prog. Phys. 75, 076501 (2012).

[14] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
fermions in hybrid superconductor-semiconductor nanowire de-
vices, Science 336, 1003 (2012).

[15] G. E. Volovik, Fermion zero modes on vortices in chiral super-
conductors, JETP Lett. 70, 609 (1999).

[16] N. Read and D. Green, Paired states of fermions in two di-
mensions with breaking of parity and time-reversal symmetries
and the fractional quantum Hall effect, Phys. Rev. B 61, 10267
(2000).

[17] S. DasSarma, C. Nayak, and S. Tewari, Proposal to stabi-
lize and detect half-quantum vortices in strontium ruthenate
thin films: Non-Abelian braiding statistics of vortices in
a px + ipy superconductor, Phys. Rev. B 73, 220502(R)
(2006).

[18] L. Fu and C. L. Kane, Superconducting Proximity Effect and
Majorana Fermions at the Surface of a Topological Insulator,
Phys. Rev. Lett. 100, 096407 (2008).

[19] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S.
DasSarma, Non-Abelian anyons and topological quantum com-
putation, Rev. Mod. Phys. 80, 1083 (2008).

[20] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J.
Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K.
Flensberg, and J. Alicea, Milestones Toward Majorana-Based
Quantum Computing, Phys. Rev. X 6, 031016 (2016).

[21] H. Sumiyoshi and S. Fujimoto, Quantum thermal Hall effect in
a time-reversal-symmetry-broken topological superconductor
in two dimensions: Approach from bulk calculations, J. Phys.
Soc. Jpn. 82, 023602 (2013).

[22] K. Nomura, S. Ryu, A. Furusaki, and N. Nagaosa, Cross-
Correlated Responses of Topological Superconductors and
Superfluids, Phys. Rev. Lett. 108, 026802 (2012).

[23] Y. Shimizu, A. Yamakage, and K. Nomura, Quantum thermal
Hall effect of Majorana fermions on the surface of super-
conducting topological insulators, Phys. Rev. B 91, 195139
(2015).

[24] J. J. He, Y. Tanaka, and N. Nagaosa, Optical Responses of
Chiral Majorana Edge States in Two-Dimensional Topological
Superconductors, Phys. Rev. Lett. 126, 237002 (2021).

[25] J. J. He and N. Nagaosa, Local Raman spectroscopy of chiral
Majorana edge modes in Kitaev spin liquids and topological
superconductors, Phys. Rev. B 103, L241109 (2021).

[26] T. Tsuneto, Ultrasonic attenuation in superconductors, Phys.
Rev. 121, 402 (1961).

[27] L. P. Kadanoff and I. I. Falko, Ultrasonic attenuation in su-
perconductors containing magnetic impurities, Phys. Rev. 136,
A1170 (1964).

[28] B. Lüthi, Ultrasonics in superconductors, in Physical Acoustics
in the Solid State (Springer, Berlin, 2005).

[29] Y. Yamazaki, S. Kobayashi, and A. Yamakage, Magnetic
response of Majorana Kramers pairs protected by Z2 Invariants,
J. Phys. Soc. Jpn. 89, 043703 (2020).

[30] S. Kobayashi, Y. Yamazaki, A. Yamakage, and M. Sato, Ma-
jorana multipole response: General theory and application to
wallpaper groups, Phys. Rev. B 103, 224504 (2021).

[31] Y. Yamazaki, S. Kobayashi, and A. Yamakage, Electric multi-
poles of double Majorana Kramers pairs, J. Phys. Soc. Jpn. 90,
073701 (2021).

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.108.L060505 for I. Effective Hamiltonian
on the (001) surface of antiperovskite, II. Spin current induced
by dynamic strain.

[33] T. Funato and M. Matsuo, Acoustic Rashba–Edelstein effect, J.
Magn. Magn. Mater. 540, 168436 (2021).

[34] The impurity effect can be taken into the self-energy by using
the self-consistent Born approximation. The vertex corrections
also should be calculated to recover the gauge invariance. How-
ever, the vertex corrections yield only higher-order terms for the
impurities, and hence qualitatively and quantitatively the results
do not change. The details of the vertex corrections are shown
in Sec. II C of the Supplemental Material.

[35] K. Ziegler, Robust Transport Properties in Graphene, Phys. Rev.
Lett. 97, 266802 (2006).

[36] L. Elcoro, B. Bradlyn, Z. Wang, M. G. Vergniory, J. Cano, C.
Felser, B. A. Bernevig, D. Orobengoa, G. de la Flor, and M. I.
Aroyo, Double crystallographic groups and their representa-
tions on the Bilbao Crystallographic Server, J. Appl. Cryst. 50,
1457 (2017).

[37] A. Widera and H. Schäfer, Übergangsformen zwischen zintl-
phasen und echten salzen: Die verbindungen A3BO (MIT A =
Ca, Sr, Ba und B = Sn, Pb), Mater. Res. Bull. 15, 1805 (1980).

[38] J. Nuss, C. Mühle, K. Hayama, V. Abdolazimi, and H. Takagi,
Tilting structures in inverse perovskites, M3TtO (M = Ca,
Sr, Ba, Eu; Tt = Si, Ge, Sn, Pb), Acta Cryst. B 71, 300
(2015).

L060505-5

https://doi.org/10.1103/PhysRevLett.72.1526
https://doi.org/10.1088/0034-4885/63/10/202
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1016/j.physrep.2019.08.002
https://doi.org/10.1103/PhysRevLett.103.020401
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevB.84.201105
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1126/science.1222360
https://doi.org/10.1134/1.568223
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.73.220502
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.7566/JPSJ.82.023602
https://doi.org/10.1103/PhysRevLett.108.026802
https://doi.org/10.1103/PhysRevB.91.195139
https://doi.org/10.1103/PhysRevLett.126.237002
https://doi.org/10.1103/PhysRevB.103.L241109
https://doi.org/10.1103/PhysRev.121.402
https://doi.org/10.1103/PhysRev.136.A1170
https://doi.org/10.7566/JPSJ.89.043703
https://doi.org/10.1103/PhysRevB.103.224504
https://doi.org/10.7566/JPSJ.90.073701
http://link.aps.org/supplemental/10.1103/PhysRevB.108.L060505
https://doi.org/10.1016/j.jmmm.2021.168436
https://doi.org/10.1103/PhysRevLett.97.266802
https://doi.org/10.1107/S1600576717011712
https://doi.org/10.1016/0025-5408(80)90200-7
https://doi.org/10.1107/S2052520615006150


YAMAZAKI, FUNATO, AND YAMAKAGE PHYSICAL REVIEW B 108, L060505 (2023)

[39] T. Kariyado and M. Ogata, Three-dimensional dirac elec-
trons at the Fermi energy in cubic inverse perovskites:
Ca3PbO and its family, J. Phys. Soc. Jpn. 80, 083704
(2011).

[40] T. Kariyado and M. Ogata, Low-energy effective Hamiltonian
and the surface states of Ca3PbO, J. Phys. Soc. Jpn. 81, 064701
(2012).

[41] T. H. Hsieh, J. Liu, and L. Fu, Topological crystalline insulators
and Dirac octets in antiperovskites, Phys. Rev. B 90, 081112(R)
(2014).

[42] M. Oudah, A. Ikeda, J. N. Hausmann, S. Yonezawa, T.
Fukumoto, S. Kobayashi, M. Sato, and Y. Maeno, Superconduc-
tivity in the antiperovskite Dirac-metal oxide Sr3−xSnO, Nat.
Commun. 7, 13617 (2016).

[43] T. Kawakami, T. Okamura, S. Kobayashi, and M. Sato,
Topological Crystalline Materials of J = 3/2 Electrons:
Antiperovskites, Dirac Points, and High Winding Topological
Superconductivity, Phys. Rev. X 8, 041026 (2018).

[44] D. Kobayashi, T. Yoshikawa, M. Matsuo, R. Iguchi, S.
Maekawa, E. Saitoh, and Y. Nozaki, Spin Current Generation
Using a Surface Acoustic Wave Generated via Spin-Rotation
Coupling, Phys. Rev. Lett. 119, 077202 (2017).

[45] S. Tateno, G. Okano, M. Matsuo, and Y. Nozaki, Electrical
evaluation of the alternating spin current generated via spin-
vorticity coupling, Phys. Rev. B 102, 104406 (2020).

[46] T. Kawada, T. Funato, H. Kohno, and M. Hayashi, Acoustic spin
Hall effect in strong spin-orbit metals, Sci. Adv. 7, eabd9697
(2021).

L060505-6

https://doi.org/10.1143/JPSJ.80.083704
https://doi.org/10.1143/JPSJ.81.064701
https://doi.org/10.1103/PhysRevB.90.081112
https://doi.org/10.1038/ncomms13617
https://doi.org/10.1103/PhysRevX.8.041026
https://doi.org/10.1103/PhysRevLett.119.077202
https://doi.org/10.1103/PhysRevB.102.104406
https://doi.org/10.1126/sciadv.abd9697

