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Intrinsically interacting higher-order topological superconductors
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We propose a minimal interacting lattice model for two-dimensional class-D higher-order topological su-
perconductors with no free-fermion counterpart. A Lieb-Schultz-Mattis-type constraint has been proposed
and applied to guide our lattice model construction. Our model exhibits a trivial product ground state in the
weakly interacting regime, whereas, increasing electron correlations provoke a novel topological quantum phase
transition to a D4-symmetric higher-order topological superconducting state. The symmetry-protected Majorana
corner modes are numerically confirmed with the matrix-product-state technique. Our theory paves the way for
studying correlated higher-order topology with explicit lattice model constructions.
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Introduction. The discovery of the quantum Hall effect
[1,2] raised the curtain on one of the greatest triumphs of
condensed-matter physics, the topological phases of matter.
Different from traditional Landau’s paradigm, phases with
topological distinctions are characterized by their patterns
of long-range entanglement rather than symmetry-breaking
orders. Moreover, lattice or internal symmetries can help
short-range entangled states develop additional topological
structures, leading to symmetry-protected topological (SPT)
phases [3–26]. Recently, SPT phases protected by crystalline
symmetries have been under the research spotlight [5,27–
60], mainly attributed to their capability of supporting an ex-
otic higher-order topological bulk-boundary correspondence.
Namely, an nth order topological phenomenon takes place
when (d − n)D gapless boundary modes (1 < n � d) show
up in a dD crystalline SPT phase [61–79]. In particular, a
two-dimensional (2D) higher-order topological superconduc-
tor (HOTSC) will, by definition, host non-Abelian Majorana
modes that reside around the sample geometric corners, and
recent studies have proposed schemes to realize the non-
Abelian braiding of Majorana corner modes [80,81], which
offers a new platform to topologically encode quantum infor-
mation.

The state-of-the-art development of topological band the-
ory phrased as symmetry indicators [82–85] has boosted our
understanding of HOTSCs at the free-fermion level with
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a plethora of candidate systems having been theoretically
proposed. Nonetheless, no convincing experimental evidence
of HOTSC physics has been reported, thus far. Although
the symmetry indicator theory only applies to free-fermion
systems, the formation of HOTSC usually requires an uncon-
ventional pairing symmetry, which likely arises from electron
interaction effects. Therefore, a faithful microscopic theory
or prediction of HOTSC would also require comprehensive
knowledge of relevant topological physics in the strongly
interacting regime. Along this direction, recent works have
established a constructive classification scheme of crystalline
fermion SPT phases (e.g., Refs. [43,44,51,60]), which in-
volves novel topological structures that can be interpreted as
interacting HOTSC phases with no free-fermion counterpart.
However, the real-space constructions in the classification are
relatively abstract, leaving it unclear whether and how these
new and exciting ideas of intrinsically interacting HOTSCs
can be modeled in a concrete lattice system, let alone realized
in a laboratory. This motivates us to design explicit lattice
models to realize these exotic phases. With the explicit lattice
model, hopefully it will become more possible to explore
this intrinsically interacting HOTSC physics in experiments
and facilitate the development of Majorana-based quantum
computation.

In this Letter, we construct a minimal lattice model of
2D HOTSC that cannot be realized in any free-fermion
systems. The SPT nature of our model is supported by a
Lieb-Schultz-Mattis-type (LSM-type) constraint, the origi-
nal version of which forbids a unique gapped symmetric
ground state in a one-dimensional (1D) spin-1/2 chain with
translation symmetry and SO(3) on-site symmetry [86], and
can be generalized to higher dimensions and other internal
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symmetries [87–89]. The LSM-type constraint can be viewed
as the certain bulk-boundary correspondence of weak SPT
phase in one higher dimension, or, alternatively, can be inter-
preted as a mixed anomaly between translation symmetry and
internal symmetry [56,57]. The LSM-type theorem reveals
that the microscopic structure of a lattice system can impose
strong constraints on its low-energy behavior. It, therefore,
serves as a useful criterion to help us exclude lattice construc-
tions that are SPT impossible (i.e., forbid a unique gapped
symmetric ground state) and further guides us to the “correct”
lattice models with desired topological properties. Building
upon this starting point, we begin with a free-fermion Hamil-
tonian in a designed lattice and add proper D4-symmetric
interactions to it. In the absence of interactions, our model
exhibits a trivial gapped phase, which persists when moderate
interactions are turned on. Further increasing the interaction
strength triggers a novel topological quantum phase transition
between the trivial phase and the HOTSC phase, the critical
behavior of which has been carefully studied here. We also
confirm the signature Majorana corner modes of the HOTSC
phase numerically by placing our model on an open-boundary
two-leg ladder geometry with the help of the matrix-product-
state (MPS) technique. Our lattice model is an important step
towards bridging the gap between the formal classification
theory and the materialization of strongly interacting higher-
order topological physics.

LSM-type constraint. The LSM-type constraint was origi-
nally proposed in 1D spin systems with translation symmetry
and later generalized to 2D translationally invariant systems
with various internal symmetries [86–89]. It is natural to
generalize the LSM-type constraint to systems with general
crystalline symmetry. However, there is a significant differ-
ence between crystalline symmetry and internal symmetry.
In systems with crystalline symmetry, the effective on-site
symmetry, often known as a site symmetry group [90], can
vary across different spatial locations. One may simplify this
situation by placing physical degrees of freedom only on the
maximal Wyckoff positions of the lattice. This simplification
is supported by the fact that physical degrees of freedom if not
being maximally Wyckoff positioned can always be smoothly
deformed to these maximal Wyckoff positions symmetrically
through a lattice homotopy [91]. As a result, the LSM-type
constraint for crystalline-symmetric lattice systems should be
defined for the maximal Wyckoff positions.

The LSM-type constraint for topological crystalline phases
in 2D interacting fermionic systems is defined as a gapped
nondegenerate ground state requires that the system can be
adiabatically connected to a state with an integer multiple of
linear representations of the total symmetry group at maximal
Wyckoff positions per unit cell [92]. In other words, if the
physical degrees of freedom within a unit cell can be deformed
to a projective representation of the total symmetry group at
maximal Wyckoff positions, the ground state either breaks
symmetry or has gapless excitations. In Supplemental Mate-
rial, we demonstrate the LSM-type constraint in 2D fermionic
systems with D2 symmetry [92]. A lattice system that satisfies
the LSM-type constraint forbids a unique gapped symmetric
ground state, and, thus, cannot be a candidate for SPT phase.
As a result, the LSM-type constraint immensely reduces the
possibilities of assigning physical degrees of freedom on the

FIG. 1. (a) Reflection generators M1,2 and maximal Wyckoff
positions (dashed circles) a, b, c of D4. Blue shadows depict atomic
sites assigned between each neighboring maximal Wyckoff positions
a and c, composed of two Majorana zero modes depicted by two
solid dots. (b) Lattice in the open boundary condition, where 1a/1c
denotes the maximal Wyckoff position. Atomic sites are placed on a
square-octagon lattice depicted by solid lines.

lattice and greatly simplifies the model construction of the
higher-order crystalline topological phase.

D4-symmetric HOTSC. Now, we apply the LSM-type con-
straint to a system with D4-crystalline symmetry. The fourfold
dihedral group D4 is the semidirect product of a fourfold
rotation group C4 and a reflection group ZM

2 (i.e., D4 =
C4 � ZM

2 ). Alternatively, as illustrated in Fig. 1(a), D4 can
be generated by two reflection operators M1 and M2. There
are three maximal Wyckoff positions per unit cell, denoted
as qa = (0, 0), qb = (0, 1/2), or (1/2, 0) and qc = (1/2, 1/2).
Here, the site-symmetry group for both a and c is D4, whereas,
that for b is D2. To build a D4-symmetric 2D HOTSC with a
unique gapped ground state, the LSM-type constraint requires
an even number of (pseudo) spin-1/2 degrees of freedom at
maximal Wyckoff positions per unit cell because a spin-1/2
degree of freedom forms a projective representation of a D4

group. Note that a pair of spinless fermions, or equivalently,
four Majorana fermions, can form a spin-1/2 operator. Thus,
we should place, at least, eight Majorana operators at each
occupied maximal Wyckoff position for a gapped SPT state to
emerge.

Following that, we consider a lattice model with 16 Majo-
rana operators per unit cell, eight at each maximal Wyckoff
position a/c, which form a linear representation of Z f

2 × D4.
As shown in Fig. 1(a), we label these Majorana fermions αk ,
α′

k , γk , and γ ′
k , with k = 1, 2, 3, 4. To describe a physical

superconductor, the Majorana fermions must come in pairs
to form complex fermions corresponding to atomic sites (de-
noted by the blue shadows), which sit around the midpoints
between Wyckoff positions a and c. As shown in Fig. 1(b), the
complex fermions together form a square-octagon lattice. We
construct a D4-symmetric Hamiltonian with intraite Majorana
pairs denoted by the black solid lines in Fig. 1(a),

H0 = it
∑

j

(α2, jγ
′
4, j + α′

2, jγ4, j + α3, jγ
′
1, j−ŷ

+ α′
3, jγ1, j−ŷ + α4, jγ

′
2, j−x̂−ŷ + α′

4, jγ2, j−x̂−ŷ

+ α1, jγ
′
3, j−x̂ + α′

1, jγ3, j−x̂ ). (1)
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The additional subscript j of the Majorana operator labels the
unit cell. One can easily verify that H0 is invariant under D4

action via the following symmetry transformations:

M1:
(α1, α2, α3, α4) ↔ (α′

2, α
′
1, α

′
4, α

′
3)

(γ1, γ2, γ3, γ4) ↔ (γ ′
2, γ

′
1, γ

′
4, γ

′
3)

M2:
(α1, α2, α3, α4) ↔ (α′

3, α
′
2, α

′
1, α

′
4)

(γ1, γ2, γ3, γ4) ↔ (γ ′
3, γ

′
2, γ

′
1, γ

′
4). (2)

Here, we omit the subscript j for simplicity. For Majorana
modes away from the symcenter, their subscripts j should
transform accordingly.

In this way, the Majorana pairs in Eq. (1) are local mass
terms of complex fermions. Therefore, the ground state of
H0 is clearly a topologically trivial product state. In fact,
one can show that a free-fermion lattice model respecting the
same set of lattice symmetries must always be topologically
trivial [44].

Towards a nontrivial HOTSC, there should be intersite
couplings centered at the maximal Wyckoff positions. Due
to the crystalline symmetry constraint, the pairing between
two Majoranas on the different sides of the reflection axis
is forbidden since the reflection will inverse the direction of
pairing. Hence, the intersite couplings need to be some four-
fermion interaction. Thus, we now explore the topological
consequence of four-fermion interactions in our model. The
interacting Hamiltonian should be D4 symmetric and trivially
gapped in the periodic boundary conditions (PBC). For the
sake of convenience, at each maximal Wyckoff position a or
c, we redefine four complex fermion operators from Majorana
operators (k = 1, 2, 3, 4),

c†
k, ja = 1

2 (αk, j + iα′
k, j )

c†
k, jc = 1

2 (γk, j + iγ ′
k, j ). (3)

This redefinition of complex fermions is equivalent to a
change in basis or unitary transformation in the Hilbert space.
The particle number operators of these complex fermions are
denoted as nk, ja = c†

k, jack, ja and nk, jc = c†
k, jcck, jc. We first in-

troduce Hubbard interactions HU for these complex fermions,
which are D4-symmetric (U > 0),

HU = U
∑

j

∑
s=a,c

2∑
k=1

(
nk, js − 1

2

)(
nk+2, js − 1

2

)
. (4)

In PBC, all Majorana operators are involved in HU , and
the occupations result in a fourfold ground state degeneracy
(GSD) per a/c site, i.e., (n1, js, n3, js) or (n2, js, n4, js) = (0, 1)
or (1,0). This fourfold GSD can be effectively regarded as two
pseudo-spin-1/2 degrees of freedom per site,

τ
μ
13, js = (c†

1, js, c†
3, js)σμ

(
c1, js

c3, js

)
,

τ
μ
24, js = (c†

2, js, c†
4, js)σμ

(
c2, js

c4, js

)
, s = a, c. (5)

where σ x, σ y, and σ z are Pauli matrices. Then, we in-
troduce a spin-spin interaction at each maximal Wyckoff

position (J > 0),

HJ = J
∑

j

[τ13, ja ∗ τ24, ja + τ13, jc ∗ τ24, jc]. (6)

Here, ∗ is defined as S1 ∗ S2 = Sx
1Sx

2 + Sy
1Sz

2 − Sz
1Sy

2 to satisfy
D4 symmetry Eq. (2). HJ lifts the GSD of HU to a nonde-
generate ground state, which is a spin-singlet assembly. Note
that when viewed on the previous basis (corresponding to real
atomic sites), this ground state is not a product state because
the alternative complex fermions defined in Eq. (3) are virtual
and cannot be gapped by local mass terms. At each maximal
Wyckoff position a or c, the nondegenerate ground state in the
pseudospin basis is

|ψ〉 = 1
2 (|↑,↑〉 + i|↑,↓〉 − i|↓,↑〉 − |↓,↓〉). (7)

Likewise, each maximal Wyckoff position a/c carries a linear
representation. According to the LSM-type constraint, the
interaction terms HU + HJ at each maximal Wyckoff position
are suitable candidates for constructing a 2D HOTSC.

Following that, we investigate the topological properties of
the proposed model in the topological nontrivial (U/t � 1)
regime. We will see that Majorana zero modes appear at
the geometric corners of the system in the open boundary
condition (OBC) as a signature of the HOTSC phase. As
shown in Fig. 1(b), for the lattice in OBC, all Majorana modes
in the bulk are gapped out by HU + HJ , whereas, Majorana
modes on the boundary are not involved in interaction terms,
resulting in gapless dangling boundary modes. Those 1D gap-
less boundary modes can be gapped out by a D4-symmetric
perturbation,

H ′ = ε
∑

j

(α1, jα
′
1, jα2, jα

′
2, j + α2, jα

′
2, jα3, jα

′
3, j

+ α3, jα
′
3, jα4, jα

′
4, j + α4, jα

′
4, jα1, jα

′
1, j ). (8)

The remaining zero-dimensional gapless boundary modes ηk

and η′
k (k = 1, 2, 3, 4) are all strictly localized at the corner

of the system [see Fig. 2(a)] with two at each corner and the
symmetry properties,

M1:

{
(η1, η4) ↔ (η2, η3),

(η′
1, η

′
4) ↔ (η′

2, η
′
3),

M2: (η1, η2, η3, η4) ↔ (η′
3, η

′
2, η

′
1, η

′
4). (9)

These eight Majorana zero modes are protected by D4 symme-
try and cannot be gapped out by symmetric perturbations. The
only possible way to gap out is to introduce a Majorana pair
at each corner iη jη

′
j ( j = 1, 2, 3, 4). However, these terms

break the reflection operation in D4 symmetry either diago-
nally or off diagonally [see dashed lines in Fig. 2(a)], e.g.,
M2: iη2η

′
2 → −iη2η

′
2. As a result, all these Majorana corner

modes are robust against D4-symmetric perturbations, which
feature a HOTSC phase.

We now numerically investigate the general case of our
model with t,U, J 
= 0, and verify the Majorana corner modes
of the HOTSC phase in the strongly interacting regime. Con-
sider the interacting Hamiltonian H = H0 + HU + HJ on a
2 × 20 two-leg ladder geometry with OBC in the horizontal
direction and PBC in the vertical direction. The computational
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M1 M2η2

η2

η1

η1

η3

η3

η4

η4

(a)

FIG. 2. (a) Sketch of Majorana zero modes of D4-symmetric HOTSC at geometric corners in OBC. (b) and (c) Evolution of Majorana
corner modes of the Hamiltonian H = H0 + HU + HJ on a two-leg ladder when slightly tuned away from half-filling from (b) weakly
interacting regime with t = 1, U = J = 0.1 to (c) strongly interacting regime with t = 1, U = J = 10. The color of each point indicates
the ground-state density expectation value of complex fermions defined in Eq. (3).

basis is taken as the Fock basis with complex fermion op-
erators defined as Eq. (3). H represents a half-filling system
on this basis, and the electron density for the ground state
is exactly ni = 0.5 at each site. Because H is fully gapped
in the bulk, perturbing H with a small chemical potential μ

allows us to reveal the zero modes. When μ slightly devi-
ates from 0, the variation of ni from half-filling reveals the
density distribution of zero modes. The density distribution
with μ = 0.2 for both the weakly interacting regime and the
strongly interacting regime is plotted in Fig. 2. In the weakly
interacting regime [Fig. 2(b)], μ induces hardly any density
variation, showing that there is no gapless edge mode and the
phase is trivial. In the strongly interacting regime [Fig. 2(c)],
however, an obvious density variation occurs, which is strictly
localized at the corners. This demonstrates the existence of
Majorana corner modes as well as the HOTSC phase. The
numerical result is consistent with our previous analysis in
the free limit (U, J → 0) and strong interaction limit (t → 0).
The robustness of the Majorana corner modes against D4-
symmetric perturbations reveals the nontrivial topology of
the model we have constructed. We emphasize that such a
nontrivial topological property is a result of strong electron
interactions.

Furthermore, we find a topological quantum phase tran-
sition (QPT) by tuning the ratio of interaction strength to

FIG. 3. The correlation lengths ξ of the matrix product state as a
function of U with fixed t = 1 and J = U . The power-law divergence
of ξ near the critical point Uc ∼ 1.038 signifies a quantum phase
transition.

the intensity of Majorana pairs U/t . As previously stated,
the system is a trivial product state when U/t � 1, whereas,
it is a 2D D4-symmetry-protected HOTSC when U/t � 1.
This QPT is characterized by the divergence of the correla-
tion length ξ on an infinite-length two-leg ladder, which is
determined by the ratio between the two largest eigenvalues
of the MPS transfer matrix [93]. We fix t = 1 on a 2 × ∞
lattice, tune the interaction strength U (J = U ), and calculate
ξ for various U ’s ranging from 0 to 8 as shown in Fig. 3. ξ

diverges at Uc ∼ 1.038, implying an unambiguous topological
QPT between a trivial product state and an extended HOTSC.
As shown in the inset of Fig. 3, the correlation length exhibits
a perfect power-law divergence for U � Uc, and we fit the
critical exponent ξ ∝ |U − Uc|−0.40. This QPT is also implied
by the evolutions of Majorana corner modes for various U/t
ratios as shown in Fig. 2. According to the classification of
2D crystalline fermionic SPT phases in Ref. [44], the lattice
model we constructed in this Letter is the only possible 2D
intrinsically interacting class-D HOTSC, for both spinless and
spin-1/2 fermions.

Conclusion and discussion. In this Letter, we construct
an intrinsically interacting lattice model of 2D D4-symmetric
class-D HOTSC using the LSM-type constraint. An indis-
pensable advantage of the LSM-type constraint is that it
considerably simplifies the lattice model construction: only
physical degrees of freedom forming linear representations
of the total symmetry group at maximal Wyckoff positions
are allowed. With the concrete lattice model, we study its
Majorana corner modes, which are robust under symmet-
ric perturbations, and find that there are two Majorana zero
modes at each corner of the system. Subsequently, we perform
MPS calculations on systems with two-leg ladder geome-
try in order to tackle the general interacting Hamiltonian.
We see the stability of Majorana corner modes and find an
unambiguous topological QPT between a 2D HOTSC and
a trivial product state, controlled by the ratio between the
intensity of interactions and Majorana pairs. The concrete
lattice model we developed here is the only possible 2D
intrinsically interacting class-D HOTSC, and explicit and ro-
bust Majorana corner modes are experimentally relevant and
can be directly measured with spectroscopic experiments on
monolayer iron-selenide (FeSe, a strongly correlated material
whose point-group symmetry is D4). Lattice model construc-
tion with the LSM-type constraint established in this Letter
can be generalized to systems with any dimension and any
spatial or internal symmetry for interacting fermionic systems.
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