
PHYSICAL REVIEW B 108, L060503 (2023)
Letter

Phonon-mediated s-wave superconductivity in the kagome metal CsV3Sb5 under pressure
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The nature of the superconducting pairing state in the pristine phase of the compressed kagome metal CsV3Sb5

under pressure is studied by the Migdal-Eliashberg formalism and density-functional theory calculations. We
find that the superconducting gap distribution driven by electron-phonon coupling is anisotropic and nodeless.
It is revealed that the V 3d and Sb 5p orbitals forming the four Fermi surface sheets are strongly coupled to
the V-V bond-stretching and V-Sb bond-bending phonon modes. The resultant superconducting gaps associated
with V 3dxy,x2−y2,z2 and 3dxz,yz orbitals is larger in their average magnitude and more widely spread compared
to that associated with the Sb 5pz orbital. Meanwhile, we find that unconventional superconductivity driven
by electron correlation effects is unlikely because the saddle points at the M point near the Fermi level do not
generate van Hove singularities in the total density of states. Our findings demonstrate that the superconductivity
of compressed CsV3Sb5 can be explained by the anisotropic multiband pairing mechanism with conventional
phonon-mediated s-wave symmetry, evidenced by recent experimental observations at ambient pressure and
under pressure.
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The recently discovered kagome metal series AV3Sb5 (A =
K, Rb, and Cs) has attracted tremendous attention due to its
exotic electronic properties such as topologically nontrivial
band structures, chiral charge density wave, and supercon-
ductivity (SC) [1–5]. For CsV3Sb5, a charge density wave
(CDW) transition occurs around 94 K at ambient pressure,
followed by an emergence of SC as the temperature de-
creases to ≈3 K [2]. The competition between the CDW
order and the SC has been intensively studied by applying
pressure [6–12]. The observed pressure-temperature (P-T )
phase diagram shows the existence of two superconducting
domes under pressure [8–11]. The first superconducting dome
exhibits a maximum superconducting transition temperature
(Tc) of ≈8 K around 2 GPa [6,7], while the second one
exhibits a maximum Tc of ≈6 K around 45 GPa [8–11].
On the other hand, the CDW order is suppressed under
pressure and transforms into the pristine phase at a critical
pressure of ≈2 GPa [6,7]. The presence of such a quantum
critical point (QCP) beneath the top of the first supercon-
ducting dome resembles the P-T phase diagrams of many
unconventional superconductors such as heavy fermions [13],
organics [14], and iron pnictides [15,16], where an anti-
ferromagnetic QCP lies beneath the superconducting dome.
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Here, spin fluctuations in the vicinity of magnetically or-
dered phases have been considered to effectively mediate
the formation of Cooper pairs [17,18]. Similarly, for the
kagome superconductors, many theories have proposed that
electron correlation effects at ambient pressure or CDW fluc-
tuations around the QCP could be an essential ingredient
of the superconducting pairing mechanism [19–26]. Mean-
while, several first-principles calculations for CsV3Sb5 have
showed that the variation of electron-phonon coupling (EPC)
around the QCP plays an important role in the formation
of the superconducting dome [27–29], supporting a conven-
tional phonon-mediated superconducting mechanism. Thus,
the question of whether the nature of SC in CsV3Sb5 is
unconventional (mediated by electronic interactions) or con-
ventional (mediated by phonons) has been controversial.

The pairing symmetry of SC in CsV3Sb5 has also been
an issue of intense debate. The symmetry structure of
Cooper pairs in a superconducting state can be manifested
by the momentum dependence of the superconducting gap
�. For example, cuprate superconductors have a nodal
gap with d-wave pairing symmetry [30,31], while conven-
tional phonon-mediated superconductors have a nodeless gap
with s-wave pairing symmetry [32]. For CsV3Sb5, various
experiments have reached different conclusions on the super-
conducting pairing symmetry. Ultralow temperature thermal
conductivity measurements have suggested nodal SC [11],
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whereas magnetic penetration depth experiments using tunnel
diode oscillator techniques have reported nodeless SC [33].
Moreover, scanning tunneling microscopy and spectroscopy
(STM/STS) measurements have reported different super-
conducting features of a nodal V-shaped superconducting
gap [34,35] and a nodeless s-wave superconducting gap [36].

In this Letter, using first-principles density-functional
theory (DFT) calculations [37] together with the Migdal-
Eliashberg equations [38–40], we explore the anisotropy and
pairing symmetry of the superconducting gap in the pris-
tine phase of the multiband kagome superconductor CsV3Sb5

under pressure. Our analysis of the band- and k-resolved
superconducting gap distributions on the four Fermi surface
(FS) sheets identifies the existence of an anisotropic, node-
less superconducting gap. By strong coupling to the V-V
bond-stretching and V-Sb bond-bending phonon modes, the
V 3dxy,x2−y2,z2 and 3dxz,yz orbitals produce larger size and
anisotropy in the superconducting gap than the Sb 5pz orbital.
Furthermore, we find that the saddle points at the M point
near the Fermi level do not generate van Hove singularities
(VHSs) in the total density of states (DOS), thereby excluding
the possibility of unconventional superconductivity driven by
electron correlation effects due to the Fermi-surface nesting
of VHSs between three inequivalent M points. The present
results provide a theoretical framework for understanding the
conventional phonon-mediated s-wave pairing symmetry in
the SC of the pristine phase, as recently evidenced by several
experimental tools such as STM/STS [36], electrical transport
and magnetic penetration depth measurements [41,42], and
angle-resolved photoemission spectroscopy (ARPES) [43].

We begin by optimizing the atomic structure of CsV3Sb5

at a pressure of 3 GPa using the DFT scheme [44]. Fig-
ure 1(a) shows the optimized structure corresponding to the
1 × 1 × 1 pristine phase, which crystallizes in the hexagonal
space group P6/mmm (No. 191) with the stacking of the
V3Sb kagome layer containing a triangular Sb (termed Sb(1))
sublattice centered on each V hexagon, the Sb (termed Sb(2))
honeycomb layers above and below the V3Sb kagome layer,
and the Cs triangular layer. The electronic band structure of
this pristine phase is displayed in Fig. 1(b), together with its
projection onto V 3d and Sb 5p orbitals (see Figs. 1(b), 1(c),
and S1 in the Suppelmental Material [44]). We find that there
exist three Dirac points located at the K point [indicated
by the dashed circles in Fig. 1(b)], similar to the previous
ARPES data [55–57] measured from the high-temperature
pristine phase at ambient pressure. Figures 2(a) and 2(b) show
the FS composed of four sheets (designated as FS1, FS2,
FS3, and FS4) at kz = 0 and π/c, respectively. Here, FS1

forms the cylindrical-like sheet surrounding the �-A path in
the Brillouin zone [see the right panel in Fig 1(a)], while
FS2, FS3, and FS4 change their shapes due to the defor-
mation of electronic states along the kz direction: i.e., FS2

(FS3/FS4) forms the hexagonal-shaped (circularlike) sheet at
kz = 0, but FS2/FS4 (FS3) forms the circularlike (deformed
hexagonal-shaped) sheet at kz = π/c. In Figs. 2(a) and 2(b),
we display the projected FS sheets onto the V 3d and Sb 5p
orbitals. We find that the FS sheets feature different orbital
characters: i.e., FS1 arises mostly from the Sb(1) pz orbital,
FS2 from the V dxy,x2−y2,z2 orbitals, and FS3 and FS4 from
the V dxz,yz orbitals. It is noticeable that the V dxy,x2−y2,z2

FIG. 1. (a) Optimized structure of the pristine phase of CsV3Sb5

at 3 GPa, together with its top view (middle panel) and Brillouin
zone (right panel). Here, the lattice parameters are a = b = 5.410 Å
and c = 8.563 Å. (b) Calculated band structure of the pristine phase
at 3 GPa. The projected bands onto V 3d and Sb 5p orbitals are
separately displayed in panels (b) and (c), respectively, where the
radii of circles are proportional to the weights of the corresponding
orbitals. For distinction, the radius scale of Sb 5p orbitals is increased
by 2 times larger compared to that of V 3d orbitals. In panel (b), the
numbers indicate band indices forming the FS sheets FS1, FS2, FS3,
and FS4.

and dxz,yz orbitals around EF hybridize conspicuously with
the Sb(2) px,y orbitals [see Figs. 1(b) and 1(c)] [58]. This
hybridization between V 3d and Sb 5p orbitals leads to
an effective electron-phonon interaction between the V3Sb(1)

kagome and Sb(2) honeycomb layers, as discussed below.
We also demonstrate later that the presence of such multiple
FS sheets with different orbital characters provides a strong
anisotropy in EPC, thereby yielding a multiband SC with
highly anisotropic superconducting-gap distributions.

FIG. 2. FS sheets of the pristine phase at 3 GPa, projected onto
the Sb(1) 5pz, V 3dxy,x2−y2,z2 , and V 3dxz,yz orbitals at (a) kz = 0 and
(b) π/c using the color scale.
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FIG. 3. (a) Calculated phonon spectrum of the pristine phase at
3 GPa, together with the EPC strength (in color scale) of each phonon
mode and the main atomic displacements of Li and Mi (i = 1, 2, or
3) modes. Here, Li and Mi belong to the B1u and Ag modes with D2h

symmetry, respectively. The results of α2F and λ(ω) obtained at 3,
5, and 7 GPa are given in (b). The frequencies of Li and Mi (i = 1, 2,
or 3) modes as a function of pressure are displayed in (c). In (d), λnk

on the FS is drawn on the horizontal kz = 0 and kz = π/c planes and
the vertical �-M-L-A and �-K-H -A planes.

To explore the EPC in compressed CsV3Sb5, we calcu-
late the phonon spectrum with the EPC strength of each
phonon mode, Eliashberg spectral function α2F , and inte-
grated EPC constant λ(ω) as a function of phonon frequency.
The calculated results at 3 GPa are displayed in Figs. 3(a)
and 3(b). We find that there are two frequency regimes R1

and R2 where λ(ω) increases as large as ≈80% and ≈20%
of the total EPC constant λ = λ(∞) = 1.39, respectively [see
Fig. 3(b)]. It is noticeable that the phonon modes L1, L2, and
M1 in the low-frequency R1 regime and L3 and M2 in the
high-frequency R2 regime exhibit large EPC strengths. As
shown in the right panel of Fig. 3(a), L1 and M1 represent
the V-V bond-stretching modes coupled with the up and down
vibration of Sb(2) atoms; L2 is similar to L1 but also involves
the relatively larger up and down vibration of Cs atoms ap-

proaching Sb(1) atoms; and L3 and M2 represent the V-Sb(2)

bond-bending modes (see the animation of each mode in the
Supplemental Material [44]). As pressure increases, the Li and
Mi (i = 1, 2, or 3) phonon modes increase their frequencies
[see Fig. 3(c)], yielding a sharp decrease in λ as 0.84 and 0.71
at 5 and 7 GPa, respectively [see Figs. 2(b)]. In other words, as
pressure approaches a QCP of ≈2 GPa from higher pressures,
the softening of the Li and Mi phonon modes increases λ,
leading to the formation of a superconducting dome around
the QCP [6,7,29]. Here, the soft Li (Mi) modes at the three
equivalent L (M) points induce a quantum phase transition
to the 2×2×2 CDW phase with the so-called inverse-star-of-
David structure [59].

Next, the anisotropy of EPC in compressed CsV3Sb5 is
examined by using the anisotropic Migdal-Eliashberg equa-
tions [38–40]. We calculate the n- and k-resolved EPC
constant λnk, which includes all available electron-phonon
scattering processes connecting k and other k points on the
FSn (n = 1, 2, 3, and 4) sheets. Figure 3(d) shows λnk on
the FSn sheets at 3 GPa. We find that λnk associated with
the Sb(1) pz orbital (n = 1) distributes between ≈0.6 and
≈1.0. Meanwhile, λnk associated with the V 3d orbitals is
quite widely spread between ≈0.7 and ≈2.2, where the V
(dxz,yz: n = 3 and 4) and V (dxy,x2−y2,z2 : n = 2) orbitals are
in the ranges of 0.7–1.6 and 1.5–2.2, respectively. Therefore,
the EPC strength of the electronic states on the FS sheets
varies with respect to their orbital characters and k directions,
indicating a strong anisotropy of the EPC. It is worth noting
that this orbital-dependent EPC is attributed to the specific
three-dimensional bonding character of the CsV3Sb5 kagome
crystal: i.e., (i) the V dxy,x2−y2 (dz2 ) orbitals forming the V-
V σ (π )-bonding states are effectively coupled to the V-V
bond-stretching phonon modes, (ii) the V dxz,yz orbitals hy-
bridizing with the Sb(2) px,y orbitals [see Figs. 1(b) and 1(c)]
are coupled to the V-Sb(2) bond-bending phonon modes, and
(iii) the Sb(1) pz orbital on the FS1 sheet is coupled to the L2

phonon mode that involves a decrease in the Cs-Sb(1) distance
due to the up and down vibration of Cs atoms, as mentioned
above.

It is natural that the wide distribution of λnk leads to
an anisotropy in �. By numerically solving the anisotropic
Migdal-Eliashberg equations [38–40] with a typical Coulomb
pseudopotential parameter of μ∗ = 0.13 [29,60,61], we cal-
culate the temperature dependence of � at 3 GPa. Figure 4(a)
displays the energy distribution of � as a function of tem-
perature. We find that the widely distributed � closes at a
Tc of ≈15 K. To analyze the anisotropy of �, we calculate
the n- and k-resolved superconducting gap �nk on the FS
sheets at 2 K. As shown in Fig. 4(b), �nk associated with
the Sb(1) pz (n = 1), V dxz,yz (n = 3 and 4), and V dxy,x2−y2,z2

(n = 2) orbitals are in the ranges of 1.5–2.2, 1.6–2.5, and
2.3–3.5 meV, respectively. These band- and k-dependent fea-
tures of �nk are well correlated with those of λnk, indicating
that the gap size of each band is determined by the strength
of the EPC. Therefore, the �nk distributions on the four FS
sheets having different orbital characters are widely spread
without any node, representing an anisotropic superconduct-
ing gap with s-wave pairing symmetry. In Fig. 4(a), the
dashed line represents the � vs T curve obtained using the
isotropic Migdal-Eliashberg formalism [52]. Here, we obtain
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FIG. 4. (a) Calculated energy distribution of the anisotropic su-
perconducting gap as a function of temperature at 3 GPa and (b) �nk

on the FS at 2 K. The dashed line in panel (a) represents � values,
estimated using the isotropic Migdal-Eliashberg formalism.

Tc ≈ 13 K, slightly lower than that (≈15 K) estimated using
the anisotropic Migdal-Eliashberg formalism. Note that the
dimensionless ratio 2�T =0/kBTc with the isotropic gap and
Tc is 4.28 at 3 GPa [62], well comparable with the experi-
mental [41] values of 5.20 and 4.66 at 2.87 and 3.99 GPa,
respectively. These theoretical and experimental ratios that are
larger than the weak-coupling BCS value of 3.52 indicate a
strong-coupling SC in CsV3Sb5.

To examine how the characteristics of anisotropic SC vary
with increasing pressure, we calculate λnk and �nk at 5 GPa.
The calculated distribution of λnk on the FS is displayed in
Fig. S3(a) [44]. We find that λnk values associated with the
Sb(1) pz (n = 1), V dxz,yz (n = 3 and 4), and V dxy,x2−y2,z2

(n = 2) orbitals are distributed in the ranges of 0.5–0.9,
0.6–1.0, and 0.8–1.2, respectively. Here, the magnitude and
distribution of λnk arising from V d orbitals are much re-
duced compared to the corresponding ones at 3 GPa, but
the orbital-dependent features of λnk are similar between 3
and 5 GPa. Due to the reduced λnk values at 5 GPa, the
temperature dependence of � closes at Tc = 9 K (see Fig. S4)
with 2�T =0/kBTc ≈3.83. Therefore, as pressure increases,
2�T =0/kBTc is lowered towards the BCS weak-coupling limit.
As shown in Fig. S3(b), the �nk distributions on the FS at 2 K
are in the ranges of 1.0–1.7, 1.1–1.6, and 1.4–2.2 meV for
the Sb(1) pz (n = 1), V dxz,yz (n = 3 and 4), and V dxy,x2−y2,z2

(n = 2) orbitals, respectively. It is thus likely that the pristine
phase at higher pressures preserves the anisotropic supercon-
ducting characteristics with s-wave pairing symmetry.

Recently, several experiments [36,42,43] have reported the
s-wave superconducting gap symmetry in CsV3Sb5 both at
ambient pressure and under pressure: i.e., STM/STS [36]
reported nodeless s-wave superconductivity with a large

anisotropic gap for the V 3d orbitals compared to Sb 5p
orbitals; electrical resistivity and magnetic penetration depth
measurements with nonmagnetic impurity effects [42] also
provided evidence for the nodeless s-wave superconductiv-
ity having an anisotropic (isotropic) gap for V 3d (Sb 5p)
orbitals; and ARPES [43] with partial Nb/Ta substitutions
of V measured a momentum-dependent superconducting gap
to identify a nodeless, nearly isotropic superconducting gap
for the V 3d and Sb 5p orbitals. Despite a difference in
the degree of anisotropy in the superconducting gap func-
tions derived from the V 3d and Sb 5p orbitals, all these
experiments [36,42,43] evidenced the nodeless s-wave su-
perconducting symmetry with a non-sign-changing gap. For
comparison with such observed superconducting gap distri-
butions, we employ a multigap model with three anisotropic
sixfold symmetric gap functions �i[1 + αicos(6φ)] [42] orig-
inating from the V dxy,x2−y2,z2 (i = 1), V dxz,yz (i = 2), and
Sb(1) pz (i = 3) orbitals at 3 GPa. By fitting to the �nk,T =2K

on the FS sheets at kz = 0 [see Fig. 4(b)], we find that the
difference between the maximum and minimum gap ampli-
tudes (i.e., 2αi�i) is 0.2, 0.6, and 0.0 meV for i = 1, 2, and
3, much smaller than the corresponding �i values of 3.1, 2.0,
and 2.3 meV for i = 1, 2, and 3, respectively [64]. The re-
sultant anisotropic (isotropic), nodeless superconducting gap
for V 3d (Sb 5p) orbitals shows similar characteristics as
observed by the abovementioned various experimental tech-
niques [36,42,43].

In summary, our first-principles calculations for the pris-
tine phase of compressed CsV3Sb5 have shown that the V
3dxy,x2−y2,z2 , V 3dxz,yz, and Sb(1) 5pz orbitals forming the
multiple FS sheets are strongly coupled to the V-V bond-
stretching and V-Sb bond-bending phonon modes, giving rise
to the orbital- and momentum-dependent distributions of λnk
and �nk. Therefore, unlike many theories [19–26] favoring
unconventional superconductivity in AV3Sb5 [66], we pave
the way to understanding the superconducting gap symmetry
in terms of a conventional phonon-mediated s-wave pairing
mechanism. Our findings not only have important implica-
tions for understanding the nature of the superconducting
pairing state in AV3Sb5 [67] but also suggest that EPC would
be an important ingredient for the microscopic mechanism of
the intertwined CDW and superconducting orders below the
QCP. Further theoretical and experimental research efforts are
needed to explore the underlying physics of such intertwined
orders in AV3Sb5.
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