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Half-quantum flux in spin-triplet superconducting rings with bias current
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Effects of a bias electric current have been theoretically investigated in a spin-triplet superconducting ring
in a magnetic field. Based on the Ginzburg-Landau theory, we show that the bias current can stabilize a half-
quantum-flux (HQF) state via couplings to the Zeeman field and the dipole-type spin-orbit interaction, the latter
effect becoming active when the field is tilted from the ring axis. The emergence of the HQF state is reflected as
a field-induced half-quantum shift in the Little-Parks (LP) oscillation in the critical current. Possible relevance
to recent LP experiments is also discussed.
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The macroscopic quantum nature of superconductivity is
closely related to a phase of the superconducting (SC) gap
function, one typical example of which is the Little-Parks (LP)
oscillation appearing in a SC ring in a magnetic field H where
a SC transition temperature Tc exhibits a quantum oscillation
as a function of field with its period being characterized by the
flux quantum �0 = hc

2|e| [1–3]. When a bias electric current
is further applied to the ring, the critical bias current jc and
the associated resistivity also exhibit the LP oscillation [4–6].
In both the Tc and jc cases, the oscillation peaks appear at
� = n�0, where � is the magnetic flux passing through the
ring and n is an integer corresponding to a winding number
of the phase. Recently, half-quantum-shifted oscillations have
been observed in current-biased LP experiments on the spin-
triplet candidate β-Bi2Pd [7] and the Bi/Ni bilayer as well [8],
pointing to the emergence of half-quantum-flux (HQF) states.
In the former β-Bi2Pd polycrystalline samples, the �0/2 shift
occurs at H = 0 due to the effect of grain boundaries, whereas
in the latter homogeneous system, it occurs at a nonzero field
H �= 0. In this Research Letter, to gain insight into the origin
of the field-induced switching into the HQF state, we theoret-
ically investigate effects of the bias current on spin-triplet SC
rings, putting an emphasis on the LP oscillation in jc.

In the conventional case of the spin-single s-wave ring, the
LP oscillation in Tc is usually explained by assuming that only
the azimuthal angle ϕ is relevant to the spatial variation of the
SC gap function, i.e., �s = |�|e−inϕ [9]. Then, the SC current
circulating around the ring is given by j ∝ ϕ̂|�|2(n − �

�0
),

where the first and second terms originate from the phase
gradient and the London screening, respectively [2,9]. With
increasing H or equivalently �, n switches to a larger integer
to reduce j. Such discontinuous change in n emerges as the LP
oscillation in Tc. In the presence of an additional bias current
[see Fig. 1(a)], the upper and lower arms of the ring are not
equivalent anymore, each carrying a different phase-gradient
current, so that they should possess different phase winding
numbers n1 and n2. The LP oscillation in the critical bias
current jc reflects discontinuous changes in the combination
of n1 and n2 [6].

In the spin-triplet case in which we are interested, there
exist not only phase but also spin degrees of freedom, the

so-called d vector, d = (dx, dy, dz ), which is related to the
SC gap function via (�↑↑,�↑↓,�↓↓) = (−dx + idy, dz, dx +
idy). In a magnetic field as in the LP experiment, the ↑↓
Cooper pair becomes unfavorable, so that the d vector tends
to orient perpendicularly to the field, i.e., dz = 0 [10]. Then,
the d vector on the ring without the bias current can be
expressed as

d =
[

|�↑↑|√
2

ê+ e−imϕ + |�↓↓|√
2

ê− eimϕ

]
e−inϕ (1)

with ê± = 1√
2
(êx ± i êy). Here, êx, êy, and êz are mutually

orthogonal unit vectors in the spin space, and êz corresponds
to the quantization axis of the spin. Equation (1) is a SC
analog of vortex states in superfluid 3He [11], a prototype of
the spin-triplet Cooper-pair condensate. To grasp the physical
meanings of m and n, it is convenient to consider the simpli-
fied case of |�| = |�↑↑| = |�↓↓|, where Eq. (1) is reduced to
d = |�| e−inϕ [êx cos(mϕ) + êy sin(mϕ)]. It is clear that n is
the phase winding number, whereas m describes the rotation
of the d vector along the circumference of the ring. For m = 0,
the d vector is spatially uniform, and n takes integer values as
in the spin-singlet case, whereas for m = ±1/2 the d vector
rotates, and n takes half-integer values since the gap function
can also be single valued for this choice of m and n. The
latter involves the HQF of �0/2 similarly to the half-quantum
vortex in superfluid 3He [12–15]. This HQF state accompa-
nied by the d-vector rotation is usually unstable against the
integer-flux state with m = 0 and n ∈ Z due to the energy cost
to form the d-vector texture.

In the presence of the bias current, the winding numbers in
the upper arm n1 and m1 do not have to be the same as those
in the lower arm n2 and m2, as in the spin-singlet case. Previ-
ously, we theoretically showed that various types of d-vector
textures with m1 �= 0 and/or m2 �= 0 can be stabilized by a
combined effect of the Zeeman field and the bias current [6].
Even in this case, the HQF state is always unstable, and
the resultant LP oscillation in jc is not half-quantum shifted
[see Fig. 1(f) and the text below]. In this Research Letter,
by introducing an additional dipole-type spin-orbit coupling
which turns out to be active only when the external field is
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FIG. 1. (a) System setup: a spin-triplet SC ring in the presence of
a bias electric current jtot = j1 + j2 and a magnetic field H tilted by
angle θH from the ring axis. (b)–(d) Schematically drawn d-vector
textures [6], where a magenta arrow represents the d vector. In
(c) and (d), textured states enclosed by red rectangles correspond
to the HQF states (for details, see the text). (e) and (f) Calculated
critical bias current jc obtained at T/Tc0 = 0.6 for R/ξ0 = 50 and
η = 0.005 in the absence of spin-orbit coupling (gD = 0) and the
field tilt (θH = 0). (e) jc for the type-I state with m1 = m2 = 0, where
convex curves are obtained for given sets of n1 and n2, and their
largest values are traced by a thick green curve which exhibits the
Little-Parks (LP) oscillation. (f) jc’s for the five types of d-vector
textures shown in (b)–(d), where the green curve is exactly the same
as the one in (e) and the dashed lines indicate peak positions of the
LP oscillation for the type-I state (the green curve). The HQF states
are not realized for gD = 0 and θH = 0.

tilted from the ring axis [θH �= 0 in Fig. 1(a)], we will demon-
strate that a transition into the HQF state occurs at H �= 0,
manifesting itself as a field-induced half-quantum shift in
the LP oscillation in jc, as observed in the Bi/Ni-bilayer
superconductor [8].

As a simple model, here, we consider the spin-triplet
superconductor with the isotropic p-wave pairing in which
the d vector is expressed as dμ = ∑

i Aμ,i p̂i with the or-
der parameter Aμ,i. The associated Ginzburg-Landau (GL)
free energy functional FGL in a magnetic field is given
by FGL = N (0)

∫
dr( f0 + fD) with f0 = f (2) + δ f (2) + f (4),

where

f (2) =
∑
μ,i, j

A∗
μ,i

[α

3
δi, jAμ, j + K ′(� j� jAμ,i + 2�i� jAμ, j )

]
,

δ f (2) = −δα

3
i
∑

i

(Ax,iA
∗
y,i − Ay,iA

∗
x,i ),

f (4) =
∑

μ,ν,i, j

(β1|Aμ,iAμ,i|2 + β2(A∗
μ,iAμ,i )

2

+β3A∗
μ,iA

∗
ν,iAμ, jAν, j + β4A∗

μ,iAν,iA
∗
ν, jAμ, j

+β5A∗
μ,iAν,iAν, jA

∗
μ, j ),

fD = gD

∑
μ,ν

(
A∗

μ,μAν,ν + A∗
μ,νAν,μ − 2

3
A∗

μ,νAμ,ν

)
. (2)

Equation (2) is obtained from the GL free energy for
the superfluid 3He by the replacement −i∇ → � = −i∇ +
2|e|A with the vector potential A = 1

2 H × r, so that in
the weak-coupling limit, the coefficients are given by
α = ln T

Tc0
, K ′ = 1

5 ( Tc0
T )2 ξ 2

0 , −2β1 = β2 = β3 = β4 = −β5 =
2β0 = 7ζ (3)

120π2T 2 with the SC transition temperature at zero field

Tc0 and the SC coherence length ξ0 =
√

7ζ (3)
48π2

vF
Tc0

[10]. The

δ f (2) term originates from the difference in density of states
between the up-spin and down-spin Fermi surfaces [10,16],
so that within a linear approximation, we have δα ∝ |H|. The
density of states averaged over the two Zeeman-split Fermi
surfaces is denoted by N (0). The additional term which is not
incorporated in the previous work [6] is the dipole interaction
fD. It represents a kind of spin-orbit coupling in the sense that
the spin and orbital subscripts μ and i in Aμ,i are coupled
in fD. This dipole-type spin-orbit coupling is known to be
important for texture formations in superfluid 3He [10], and
such a situation is also the case for the present system, as will
be discussed below.

Figure 1(a) shows the system setup, a SC ring of mean ra-
dius R in a magnetic field tilted from the ring axis by angle θH .
When the ring width w and thickness d are sufficiently small,
being comparable to ξ0, the vector potential can be expressed
as A = HR cos θH

2 ϕ̂, so that we have � = ϕ̂ 1
R ( − i∂ϕ + �

�0
) with

� = πR2H cos θH . Also, the effect of the Zeeman splitting
δα can be expressed as δα = η (�/ cos θH )/�0. Note that for
θH �= 0, the spin quantization axis êz is tilted from the ring
axis.

Among various possible symmetries of Aμ,i, we consider
axially symmetric states compatible with the ring geometry.
A typical example of such axial states is the Anderson-
Brinkman-Morel state of the form Aμ,i = dμ wp,i with wp,i =

1√
2
( p̂x + i p̂y)i, which is known to be realized in the superfluid

3He A phase [10]. In the present system, we assume that p̂z is
parallel to the ring axis. Since the dipole energy is calculated
as fD = gD( 1

3 |d|2 − |d · p̂z|2), it tends to orient the d vector
parallel to the p̂z direction (ring axis), which is a manifestation
of the spin-orbit coupling nature of fD. We note that the
following results are qualitatively unchanged even if the polar
pairing state of wp,i = p̂z is assumed [17], and thus the chiral
nature of the orbital state is not important.

In the presence of the bias current, Eq. (1) can be extended
to [6]

dμ =
⎧⎨
⎩

[ |�↑↑|√
2

ê+
μe−im1ϕ+|�↓↓|√

2
ê−
μeim1ϕ

]
e−in1ϕ (0 � ϕ � π )[ |�↑↑|√

2
ê+
μe−im2ϕ+|�↓↓|√

2
ê−
μeim2ϕ

]
e−in2ϕ (π � ϕ � 2π ).

The upper-arm winding numbers n1 and m1 are correlated
to the lower-arm ones n2 and m2 via a constraint to avoid
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sign mismatches at the intersections between the two arms,
namely, at ϕ = 0 and π ; n1 − n2 must be an even (odd) integer
when m1 − m2 is an even (odd) integer.

Following Ref. [6], the usual integer-flux state with the
uniform d vector (m1 = m2 = 0) will be called type I,
whereas the states possessing nonzero integer and half-integer
values of m1 and m2 will be called type II and type III,
respectively. These three types of flux states are shown
in Figs. 1(b)–1(d), where |�↑↑| = |�↓↓| = |�| is assumed
for ease of understanding, and then the SC current j =
− δFGL

δA = −8N (0)|e|K ′ ∑
μ d∗

μ�dμ satisfies the relation
∮

j ·
dϕ ∝ 2π |�|2( n1+n2

2 − �
�0

)(for the concrete expression of j in
each arm, see below). Thus, among the type-II and type-III
states, the specific combinations of n1, n2, m1, and m2 having
half-integer values of (n1 + n2)/2 correspond to the HQF state
having a half-integer �/�0. For half-integer (n1 + n2)/2,
(m1 + m2)/2 must also be a half integer because of the con-
straint on n1, n2, m1, and m2, and thus it turns out that
the textured states enclosed by red rectangles in Figs. 1(c)
and 1(d) correspond to the HQF state.

Now, we will discuss the critical bias current jc [6].
With the use of the above expression for dμ, the SC cur-
rent in each arm jl (l = 1, 2) can be calculated as j l =
(−1)l (4N (0)|e|K ′/R)[|�↑↑|2(nl + ml − �

�0
) + |�↓↓|2(nl −

ml − �
�0

)]ϕ̂, so that the total bias current jtot = j1 + j2 is given
by

jtot = −ϕ̂
4N (0)|e|K ′

R
[(|�↑↑|2 + |�↓↓|2)(n1 − n2)

+ (|�↑↑|2 − |�↓↓|2)(m1 − m2)]. (3)

One can see from Eq. (3) that the difference in the phase wind-
ing number ntot = n2 − n1 corresponds to the bias current
jtot, and the d-vector texture yields an additional contri-
bution proportional to m1 − m2. The free energy FGL =
N (0)Rwd (

∫ π

0 + ∫ 2π

π
)dϕ [ f0 + fD] is also a function of the

four winding numbers, so that by substituting |�σσ | deter-
mined by the GL equation δFGL

δ|�σσ | = 0 into Eq. (3), we can
calculate |jtot|’s for various combinations of n1, n2, m1, and
m2, among which the largest one gives jc.

Figures 1(e) and 1(f) show the results for gD = θH = 0,
where other parameters are set to be T/Tc0 = 0.6, R/ξ0 = 50,
and η = 0.005, and jc is normalized by j0 = N (0)Tc0|e|vF.
This case of gD = θH = 0, which has already been discussed
in Ref. [6], is picked up here just for reference. In the case
of the type-I state shown in Fig. 1(e), among jc’s obtained
for different combinations of n1 and n2, the highest ones
indicated by the green curve exhibit the conventional LP os-
cillation with its peaks at integer �/�0. The textured states
of m1 − m2 �= 0, on the other hand, can yield a higher jc
which, due to the second term in Eq. (3), increases almost
linearly in H as |�↑↑|2 − |�↓↓|2 can roughly be estimated as
∼ηH [6]. Actually, as shown in Fig. 1(f), the type-III state
with m1 = −m2 = −1/2 is realized at high fields, giving the
highest jc (see the violet curve). Even in this type-III state,
the phase of the LP oscillation remains unchanged. Although
the half-quantum-shifted LP oscillations are potentially possi-
ble (see the cyan and red curves), such HQF states are not
realized as their jc’s are always smaller than those of the

counter-integer-flux states with m1 + m2 = 0 (see the violet
and blue curves).

It is useful to understand, from the viewpoint of the free
energy, the reason why the HQF states are always unstable.
In the case of gD = θH = 0, the free energy density averaged
over the whole ring f0 = 1

2π
(
∫ π

0 + ∫ 2π

π
)dϕ f0 reads [6]

f0 = α − δα

6
|�↑↑|2 + α + δα

6
|�↓↓|2

+β0(|�↑↑|4 + |�↓↓|4) + K ′

R2
(|�↑↑|2 + |�↓↓|2)

×
[(

n2 − ntot

2
− �

�0
+ λ

m1 + m2

2

)2

+ n2
tot

4
+ m2

1

2

+ m2
2

2
− λ ntot

m1 − m2

2
−

(
λ

m1 + m2

2

)2]
(4)

with λ = |�↑↑|2−|�↓↓|2
|�↑↑|2+|�↓↓|2 . Due to the λ ntot (m1 − m2) term, which

is roughly proportional to ηH |jtot|(m1 − m2), the d-vector
texture with a larger m1 − m2 �= 0 can acquire a larger en-
ergy gain. This situation is analogous to noncentrosymmetric
superconductors in a magnetic field [18] where a similar field-
current coupling term induces the phase-modulated helical
SC state [19–26]. In Eq. (4), for a fixed value of m1 − m2,
the energy cost for the texture formation m2

1 + m2
2 takes a

minimum value at m1 + m2 = 0, so that the HQF state with
a half-integer (m1 + m2)/2 �= 0 is unfavorable compared with
the counter-integer-flux state with m1 + m2 = 0.

The above situation, however, can be changed by the
dipole-type spin-orbit interaction whose energy density fD =

1
2π

(
∫ π

0 + ∫ 2π

π
)dϕ fD can be evaluated [17] as

fD = −gD

[
(|�↑↑|2 + |�↓↓|2)c + |�↑↑||�↓↓|c1 + c2

2

]

with c = (3 sin2 θH − 2)/12 and

c1 + c2

2
= sin2 θH

4

{(
δm1,0 + δm2,0

) +
∣∣∣∣δ2m1,odd

π m1
− δ2m2,odd

π m2

∣∣∣∣
}
.

The |�↑↑||�↓↓|(c1 + c2) term can lower the energy of the
HQF state with m1 = − 3

2 and m2 = 1
2 , keeping the energy of

the counter-integer-flux state with m1 = −1 and m2 = 1 un-
changed, so that it can stabilize the HQF state, compensating
the relative energy cost for the texture formation. This energy
gain mechanism is active only when the field is tilted from
the ring axis (θH �= 0) and the applied bias current breaks the
symmetry of the upper and lower arms (m1 �= m2).

Figures 2(a)–2(c) show the θH dependence of jc obtained
for gD = 0.005, where other parameters are the same as those
for Fig. 1(f). With increasing θH , jc for the type-III HQF state
with m1 = − 3

2 and m2 = 1
2 (red curve) is gradually elevated to

overwhelm jc for the type-II integer-flux state with m1 = −1
and m2 = 1 (blue curve). As a result, in the case of θH = π/6
shown in Fig. 2(c), the HQF state gives the highest jc in the
high-field region of �/�0 > 15 (yellow region), exhibiting
the half-quantum-shifted LP oscillation, which can clearly be
seen in the zoomed view of Fig. 2(c). Even for smaller θH ,
a stronger spin-orbit coupling (larger gD) can stabilize the
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FIG. 2. The LP oscillation in jc obtained for gD = 0.005. (a)–(c) The results for θH = 0, π/12, and π/6, respectively, where other
parameters (T/Tc0 = 0.6, R/ξ0 = 50, and η = 0.005) and color notations are the same as those in Fig. 1(f). In (c), the panel at right shows a
zoomed view of the region enclosed by a rectangle in the left panel. The HQF state with m1 = − 3

2 and m2 = 1
2 [see Fig. 1(d)] is realized at

high fields (see the red curve in the yellow region), showing the half-quantum-shifted LP oscillation.

HQF state, as exemplified by Fig. S1 in the Supplemental
Material [17].

In this Research Letter, we have theoretically shown that
in the spin-triplet SC ring, the applied bias current can
stabilize the HQF state via the couplings to the Zeeman
field and the dipole-type spin-orbit interaction, the latter
effect becoming active when the field is tilted from the
ring axis. It is also demonstrated that the emergence of the
HQF state is reflected as the field-induced half-quantum shift
in the LP oscillation. In a recent LP experiment on the
Bi/Ni bilayer superconductor, whose pairing symmetry is
still under discussion [27–31], a similar field-induced �0/2
shift has been observed [8], being distinguished from the
zero-field �0/2 shift originating from the grain-boundary
effect [7,32]. In this experiment, an out-of-plane applied
magnetic field and a weak in-plane stray field stemming
from the Ni-layer spontaneous magnetization [33] may
serve as an effective tilted field of θH �= 0. Although in
this case θH should be dependent on the applied field, in
contrast to the situation considered here, i.e., θH = const,
our result could be applied to the higher-field region of
the Bi/Ni system where the effect of the applied out-of-
plane field becomes more dominant than the effects of
the in-plane magnetization and the dipole-type spin-orbit
coupling, keeping θH to an almost-constant small value.
The qualitative agreement between the theoretical and ex-
perimental results suggests that the spin-triplet HQF state
may be realized in the Bi/Ni bilayer superconductor. It
should be emphasized that—in contrast to the well-known
effect of the Fermi-liquid correction which suppresses the
ratio of the spin superfluid and superfluid densities, result-
ing in the occurrence of the HQF (or half-quantum-vortex)
states [12,15,16] accompanied with a peak-split LP oscil-
lation over the whole field range [34,35]—the mechanism
presented here, i.e., the combined effect of the bias current

and the dipole-type spin-orbit coupling, yields not such a
peak splitting, but a field-induced switching to the π -shifted
LP oscillation.

Of course, a dominant spin-orbit coupling and the resultant
d-vector locking generally depend on the details of specific
systems. Actually, for the spin-triplet candidate Sr2RuO4 [36]
(its pairing symmetry is still controversial [37]), an in-plane-
field-induced d-vector locking different from the dipole one is
phenomenologically proposed [34,35,38,39]. Nevertheless, at
least it is certain that for the micrometer- or submicrometer-
sized small rings in which we are interested, the dipole-type
spin-orbit coupling could be relevant. The field strength nec-
essary to overcome the dipole locking is about 30 G in the
well-established case of superfluid 3He [10]. Since this char-
acteristic field strength depends basically on the Fermi-surface
structure but not on the size of the magnetic moment [40],
a dipole field of a similar order is also expected in electron
systems. In the case of Sr2RuO4, an estimation shows that it
is about 200 G [41]. For a small SC ring with diameter of,
for example, 1 µm, the flux quantum �0 ∼ 2.0 × 10−15 Wb
corresponds to about 20 G [7], so that in the case of Fig. 2(d),
the transition into the HQF state should occur at � = 15�0 ∼
300 G, which is slightly larger than or comparable to the
typical dipole field, suggesting that the dipole-type spin-
orbit coupling could be non-negligible for the LP physics
in spin-triplet superconductors. Although a material-specific
microscopic theory would be necessary to fully understand the
SC properties, we believe that our result will lead to further
exploration and understanding of spin-triplet superconduc-
tors.
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