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Spontaneous square versus hexagonal nanoscale skyrmion lattices in Fe/Ir(111)
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We study the emergence of spontaneous skyrmion lattices in an Fe monolayer in fcc and hep stacking on
the Ir(111) surface using density functional theory (DFT). For fcc-Fe/Ir(111) we find the well-known square
nanoskyrmion lattice. However, for hcp-Fe/Ir(111) the hexagonal skyrmion lattice previously proposed based on
experiments is energetically unfavorable with respect to a hexagonal multi-Q state with nearly collinear magnetic
moments. By mapping our DFT calculations to an atomistic spin model we demonstrate that the interplay of
pairwise exchange, higher-order exchange, and Dzyaloshinskii-Moriya interaction is decisive for the symmetry

and collinearity of the obtained spin lattice.
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Spintronics using noncollinear spin textures has been a
rapidly growing field since the experimental discovery of
magnetic skyrmion lattices [1-3]. Skyrmions have been ob-
served in a large variety of magnetic materials even at room
temperature [4-6] and numerous potential applications of
magnetic skyrmions [7] are currently being explored [8,9].
The origin of skyrmions is the Dzyaloshinskii-Moriya inter-
action (DMI) [10,11] which occurs due to spin-orbit coupling
in systems with broken inversion symmetry and favors canted
spin structures with a unique rotational sense [12]. It has been
shown that frustrated or higher-order exchange can stabilize
nanoscale topological spin structures as well [13—16]. Higher-
order exchange interactions such as the four-spin interaction
can also lead to multi-Q states which are a superposition of
single-Q (spin spiral) states [17-23].

The formation of a spontaneous nanoskyrmion lattice in
an Fe monolayer (ML) grown in fcc stacking on the Ir(111)
surface, denoted as fcc-Fe/Ir(111), is caused by the inter-
play of DMI and the four-spin exchange interaction [3].
Recently, it has been demonstrated that there are actually
two types of four-spin exchange terms [24]. This can ex-
plain the collinear up-up-down-down (uudd) ground state—a
2Q state formed from the superposition of two 90° spin
spirals—of an Fe ML on Rh(111) [18] and the slightly canted
uudd state found in Rh/Fe/Ir(111) [19]. The newly pro-
posed three-site four-spin interaction [24] can also lead to
two-dimensional nearly collinear multi-Q states as observed
in an Fe ML in hcp stacking on Rh/Ir(111) [25]. In con-
trast to the square nanoskyrmion lattice of fcc-Fe/Ir(111) [3]
these collinear multi-Q states possess a hexagonal unit cell.
For hep-Fe/Ir(111) a hexagonal magnetic state has been ob-
served using spin-polarized scanning tunneling microscopy
(SP-STM) and interpreted based on the experimental data as
a nanoskyrmion lattice [26]. However, a first-principles study
of hep-Fe/Ir(111) has been missing so far.
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Here, we investigate the Fe monolayer in both fcc and
hcp stacking on Ir(111) by means of first-principles calcula-
tions based on density functional theory (DFT). We find that
a noncollinear square nanoskyrmion lattice is the magnetic
ground state of fcc-Fe/Ir(111) in accordance with previous
work [3]. Surprisingly, a nearly collinear hexagonal multi-Q
state is revealed to be lowest in energy for hcp-Fe/Ir(111)
in contrast to the hexagonal noncollinear skyrmion lattice
previously proposed based on spin-polarized scanning tunnel-
ing microscopy measurements [26]. In order to understand
the stabilization mechanisms of spontaneous skyrmion lat-
tices with different symmetries and degrees of noncollinearity
we map total DFT energies of a variety of complex mag-
netic structures to an atomistic spin model. We reveal that
in Fe/Ir(111) the interplay of pairwise Heisenberg exchange,
Dzyaloshinskii-Moriya interaction (DMI), and higher-order
exchange interactions favors a high degree of noncollinear-
ity in square nanoskyrmion lattices while it leads to nearly
collinear spin alignments in hexagonal spin lattices.

We start by discussing the energy dispersion E(q) of flat
spin spirals for both stackings of the Fe ML on Ir(111) (Fig. 1
and Supplemental Fig. S1 [27]) obtained via DFT calculations
using the FLEUR code [28] (see Supplemental Material [27]
for computational details). Spin spirals are characterized by
a q vector from the irreducible part of the two-dimensional
hexagonal Brillouin zone (2D BZ). They represent the gen-
eral solution of the Heisenberg model on a periodic lattice
and thus allow to scan a large part of the magnetic phase
space. For a spin spiral with a specific wave vector q the
direction of a magnetic moment at lattice site R; is given
by M; = M(cos(q - R;), sin(q - R;), 0), with M denoting the
size of the magnetic moment. The calculated Fe magnetic
moments are Mg, ~ 2.72up for fcc-Fe/Ir(111) and ~2.71up
for hep-Fe/Ir(111), respectively, and are quite stable upon the
variation of q.

We find a large exchange frustration for both Fe stackings.
For hep-Fe/Ir(111) (Fig. 1), the energy dispersion neglecting
spin-orbit coupling is quite flat around the ferromagnetic (FM)

©2023 American Physical Society
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FIG. 1. Energy dispersion E(q) of flat cycloidal spin spirals
calculated via DFT along the two high-symmetry directions of the
two-dimensional Brillouin zone for hep-Fe/Ir(111). Black (red) cir-
cles represent total DFT energies without (with) spin-orbit coupling
(SOC), while black (red) lines show a fit to the Heisenberg model
neglecting (including) DMI. The DFT total energies of several multi-
Q states discussed in the text are denoted at the q values of their
constituting single-Q states.

state at the T point. The row-wise antiferromagnetic (RW-
AFM) state at the M point is by about 20 meV /Fe atom higher
in energy than the FM state. For fcc-Fe/Ir(111) (Fig. S1 [27]),
a similar picture emerges, however, the FM state represents
a local energy maximum while spin spirals with periods of
A=19-1.7 nm (g = |q| &~ 0.14-0.16 x 27 /a) along both
high-symmetry directions experience a small energy gain of
2-4 meV /Fe atom. Mapping the DFT results to the Heisen-
berg model of pairwise exchange (black lines) reveals a small
FM nearest-neighbor exchange constant which competes with
AFM interactions of second- and third-nearest neighbors
(see Table I).

The inclusion of spin-orbit coupling (SOC) in DFT calcu-
lations (Fig. 1) generates energy minima in hcp-Fe/Ir(111) for
cycloidal spin spirals with periods of A = 1.4-1.1 nm (¢ =
|q] & 0.20-0.25 x 27 /a) with a depth of up to 4 meV /Fe

TABLE I. Heisenberg exchange constants for the first three near-
est neighbors, J;—J3, as extracted from the fit of the respective energy
dispersion (without modification by higher-order interaction terms)
and the higher-order exchange constants B;, K, and Y, calculated
using the pseudoinverse method (see Supplemental Material [27] for
details). All values are given in meV.

System J] ]2 Jg B] K] Y]
fce-Fe/Ir(111) 546 —135 —-124 —-197 =222 247
hep-Fe/Ir(111) 252 —-0.24 —1.03 042 —-2.09 0.68

atom and further stabilizes the spin spiral minima in fcc-
Fe/Ir(111). The energy contributions due to SOC for every
spin spiral state (Fig. S2 [27]) reveal the preference of
a clockwise rotational sense of cycloidal spin spirals for
both Fe stackings with a nearest-neighbor DMI constant of
about 1.6 meV (see Supplemental Material [27] for all DMI
constants).

To go beyond spin spiral (single-Q) states and search for
the experimentally observed square and hexagonal spin lat-
tices [3,26], we have calculated the total DFT energies of
several multi-Q states. We find that for both Fe stackings the
collinear uudd (2Q) state along the TM direction is much
lower in energy than all spin spiral states (Fig. 1 and Fig. S1).
In contrast, the uudd-TK state and the triple-Q state are on
the order of 20-40 meV /Fe atom above the FM state. Within
the Heisenberg model of pairwise exchange a multi-Q state
and its corresponding spin spiral (1Q) state are energetically
degenerate. Therefore, the large energy differences obtained
in our DFT calculations indicate significant higher-order ex-
change contributions.

We have further considered the square nanoskyrmion
lattice (squ SkX) observed in fcc-Fe/Ir(111) [3] that is con-
structed from a superposition of two q vectors enclosing an
angle of about 90° [Fig. 2(a)]. In the scalar-relativistic cal-
culation this state is energetically slightly above the uudd
state (Fig. 1). However, the inclusion of SOC significantly
lowers its energy by about 2 meV /Fe atom for both stackings.
By projecting the magnetic moments of the squ SkX onto
the z axis perpendicular to the film plane we obtain a fully
collinear state with seven moments pointing in one and eight
pointing into the opposite direction, the 7:8-mosaic state (MS)
[Fig. 2(b)] [29]. In both systems, this state is energetically
clearly unfavorable compared to the squ SkX (Fig. 1 and
Fig. S1).

Hexagonal skyrmion lattices can be constructed from the
superposition of three q vectors of equal lengths and with
angles of 120° between them [25]. If one chooses the q vec-
tors along the symmetry-equivalent TK directions and with
a period of three nearest-neighbor distances one obtains a
hexagonal 12 atom SkX [Fig. 2(c)] previously proposed as
the magnetic ground state of hcp-Fe/Ir(111) [26]. The total
DFT energy of the hex 12-SkX is lower than the spin spiral
minimum [30] but significantly above the squ SkX (Fig. 1).
Surprisingly, the collinear analog, the 3:9-MS [Fig. 2(d)],
gains energy with respect to the corresponding hex 12-SkX
for both Fe stackings. This effect is even more prominent in
hep-Fe/Ir(111) (Fig. 1) and brings the energy of the 3:9-MS
below the uudd-T'M state and to the same energy as the
square SkX.

A similar scenario emerges for the hexagonal 19-SkX
versus the collinear 7:12-MS which are constructed in an
analogous way with shorter and slightly rotated q vectors
[Figs. 2(e) and 2(f)]. The collinear 7:12-MS, which has
previously been observed in hcp-Fe/Rh/Rh/Ir(111) [25], is
energetically lower than the noncollinear hexagonal 19-SkX
(Fig. 1). For hep-Fe/Ir(111) the 7:12-MS state is energetically
even lower than the 3:9-MS and the square SkX (Fig. 1).

Note that experimentally a hexagonal magnetic structure
with 12 atoms per unit cell, consistent with the 3:9-MS
or the 12-SkX, has been observed in hcp-Fe/Ir(111) using
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FIG. 2. Sketches of selected multi-Q states in Fe/Ir(111) with
their respective unit cells indicated by dashed lines. (a) The square
nanoskyrmion lattice observed in fcc-Fe/Ir(111) [3] and (b) the cor-
responding collinear 7:8-MS. (c) The hexagonal 12-atomic skyrmion
lattice proposed as the magnetic ground state of hep-Fe/Ir(111) [26]
and (d) the corresponding collinear 3:9-MS. (e) The hexagonal 19-
atomic skyrmion lattice and (f) the corresponding collinear 7:12-MS.
Spheres illustrate Fe atoms and arrows the direction of their magnetic
moments in which red (blue) denotes the up (down) out-of-plane
component. Insets show the Fourier transform of the spin structures
in the hexagonal Brillouin zone and the two (three) Q vectors from
which the square (hexagonal) skyrmion lattices are constructed.

SP-STM [26], while in our DFT calculation the 7:12-MS
is slightly lower in total energy (Fig. 1). Nevertheless,
the trend favoring a hexagonal collinear rather than a
square noncollinear spin lattice for hcp-Fe stacking can
clearly be recognized from our DFT calculation. In con-
trast, the noncollinear square SkX is the energetically lowest
state for fcc-Fe/Ir(111) in accordance with previous work
(Fig. S1 [27]) [3].

In order to explain the microscopic origin of a collinear
hexagonal mosaic state in hcp-Fe/Ir(111) versus a non-
collinear square nanoskyrmion lattice in fcc-Fe/Ir(111) we
consider an atomistic spin model given by

=- Zjij(mi -mj) — ZDij(mi X m;)
ij

ij
- X:I(u(mf)2 - ZBl(mi -m;)’

(i)

— D Kil(m; - mj)(my - my) + (m; - my)(m; - my)
(ijkl)
—(m; - my )(m; - my)]

- ZYL[(mi -m;)(m; - my) + (m; - m;)(m; - my)
(i jk)
+(m; - my)(my - m;)]. ()

Here, m; = M;/M denotes the normalized magnetic mo-
ment at lattice site i, J;; the Heisenberg pairwise exchange
constants, D;; the vectors of the DMI, and K, the uniax-
ial magnetocrystalline anisotropy constant. The last three
terms are the higher-order exchange interactions arising from
fourth-order perturbation theory from a multiband Hubbard
model [24]. We restrict ourselves to the nearest-neighbor
approximation as suggested in Ref. [24] and the coupling
strengths are Bj, K, and Y| for the biquadratic, four-site
four-spin, and three-site four-spin interactions, respectively
(Table I). All interaction constants of the atomistic spin model,
given by Eq. (1), were determined from DFT total energies
(see Supplemental Material [27] for details).

Figure 3 shows the energy of the energetically lowest states
of Fe/Ir(111) computed from the atomistic spin model [31].
The trend of DFT energies for the multi-Q states is captured
by the atomistic spin model (top panels of Fig. 3). In par-
ticular, the collinear 3:9-MS and 7:12-MS are energetically
preferred over the hexagonal 12-SkX and 19-SkX, respec-
tively. In contrast, the noncollinear square SkX is lower in
energy than the collinear 7:8-MS, in agreement with DFT.
The model also correctly predicts the square SkX as the
magnetic ground state of fcc-Fe/Ir(111) and in the case of
hep-Fe/Ir(111) the hexagonal 3:9-MS is the state of lowest
energy [32].

By decomposing the total energy from the spin model into
the single interaction contributions one can study how the
differences between square and hexagonal skyrmion lattices
arise (lower panels in Fig. 3). The four-site four-spin interac-
tion (K; < 0) leads to a coupling of 1Q (spin spiral) states to
multi-Q states as previously reported for fcc-Fe/Ir(111) [3].
For example, the uudd-TM state is preferred by about
20 meV /Fe atom with respect to the 90°-1Q-T'M spin spi-
ral state (Fig. 3) and a similar energy gain is obtained for
skyrmion lattices and mosaic states versus 1Q states. Note that
the three mosaic states gain the largest amount of energy by
the four-site four-spin interaction.

The three-site four-spin interaction with its positive sign
(Y1 > 0) promotes collinear over noncollinear spin states
with a considerable preference for hexagonal spin lattices.
This effect has previously been reported to stabilize collinear
hexagonal multi-Q states in Fe/Rh/Ir(111) [25]. A decisive
role is played by the biquadratic term. Due to its sign, it favors
noncollinear states over collinear states for fcc-Fe stacking
(B < 0) and vice versa for hcp-Fe stacking (B; > 0). Thereby,
the square SkX becomes the energetically lowest state for
fcc-Fe/Ir(111), while the hexagonal 3:9-MS is favored for
hep-Fe/Ir(111).

To obtain deeper insight into the question why the square
spin lattice is noncollinear while the hexagonal spin lattices
are collinear, we have calculated via DFT the total energies
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FIG. 3. Spin model vs DFT total energies for selected magnetic
states in (a) fcc-Fe/Ir(111) and (b) hep-Fe/Ir(111). Upper panels
show DFT total energies (red squares) and energies obtained via
the atomistic spin model (black circles) using DFT parameters for
the magnetic interactions (see Supplemental Material for all val-
ues). The top axis denotes the noncollinear spin states and the
lower axis the corresponding collinear states. Lower panels show the
decomposition of the energy into the contributions from the Heisen-
berg exchange, the biquadratic interaction, the three-site four-spin
(3-Spin), and the four-site four-spin interaction (4-Spin). Solid
(open) circles represent collinear (noncollinear) states. The lines
connecting the data points serve as a guide to the eye. Note that the
spin model total energies include the DMI contribution not shown in
the decomposition.

of magnetic states in which the moments rotate continuously
from the 7:8-MS to the square SkX and from the hexagonal
3:9-MS to the 12-SkX, respectively (Fig. 4).

For the square spin lattice of fcc-Fe/Ir(111) [Fig. 4(a)]
the fully noncollinear skyrmion lattice clearly represents the
energy minimum along the geodesic path in spin space. The
atomistic spin model gives an excellent quantitative descrip-
tion of the DFT energies.

In contrast, for the hexagonal 12-atomic state of hcp-
Fe/Ir(111) the energy minimum is found to be close to the
collinear 3:9-MS in both DFT and spin model [see red/black
arrow in Fig. 4(c)]. In the DFT calculation this 18% canted
state gains 0.6 meV/Fe atom with respect to the collinear
state. Note that the deviation from the collinear MS state
corresponds to only 7°-16° of the magnetic moments from
the z direction. Hence the degree of noncollinearity is very
small. The spin model shows a similar trend of energy versus
canting, however, the quantitative deviations are larger than
for the square spin lattice [Fig. 4(a)].

The different behavior of square versus hexagonal
skyrmion lattices can be explained by the decomposition of
the total energy from the spin model [Figs. 4(b) and 4(d)].
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FIG. 4. Total energies of magnetic states along the geodesic
path from (a) the square 7:8-MS to the square SkX for fcc-
Fe/Ir(111) and (c) the hexagonal 3:9-MS to the hexagonal 12-SkX
for hep-Fe/Ir(111). Red and black data points are obtained via DFT
including the effect of SOC and via the atomistic spin model, respec-
tively. (b) and (d) show the energy-resolved contributions from the
single magnetic interactions obtained in the atomistic spin model.
The relative polar angle 6 is defined for every magnetic moment
in the unit cell as 6(x) = 6y + x(6; — 6p) with x € [0, 1] where the
value x = 0 is chosen for the collinear MS and x = 1 for the non-
collinear SkX in each case. 6, refers to the final value of every
magnetic moment in the respective SkX, whereas 6, is set to 0° for
upward pointing moments (180° for downward pointing moments).
The lines connecting the data points serve as a guide to the eye.

In both cases the four-spin interactions favor the collinear
MS, while the pairwise exchange and the DMI promote the
noncollinear SkX. Due to the opposite sign of the biquadratic
term for the two Fe stackings, it favors the noncollinear SkX in
fcc-Fe while it stabilizes the collinear MS for hep-Fe. Quanti-
tatively the contributions of the competing interactions differ
between square and hexagonal spin lattices. For the square
spin lattice [Fig. 4(b)], the effect of four-spin interactions is
weak and the exchange, DMI, and biquadratic term stabilize
the SkX. For the hexagonal spin lattice [Fig. 4(d)], the bi-
quadratic and four-spin interactions dominate and a nearly
collinear MS occurs [33].

In order to directly compare our prediction of a nearly
collinear hexagonal multi-Q state with previous experiments
on hcp-Fe/Ir(111) [26], we have simulated SP-STM im-
ages (see Supplemental Material [27]). We find that the
SP-STM images are very similar for the previously proposed
noncollinear 12-SkX and the nearly collinear 3:9-MS state
predicted in this Letter irrespective of the magnetization di-
rection of the spin-polarized tip. This makes an unambiguous
experimental distinction challenging. However, a similar pref-
erence of a hexagonal nearly collinear 12:15-MS over the
corresponding SkX has recently been found by DFT for hcp-
Fe/Rh/Ir(111) and confirmed by SP-STM experiments [25].

In conclusion, we have demonstrated that the appearance of
noncollinear skyrmion lattices versus nearly collinear multi-Q
states in Fe monolayers on Ir(111) depends on the sym-
metry of the spin states due to the interplay of pairwise
exchange, higher-order exchange, and DMI. While the mag-
netic moments in the nanoskyrmion lattice of fcc-Fe/Ir(111)
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are strongly canted, we propose that the magnetic ground state
of hep-Fe/Ir(111) is a nearly collinear hexagonal multi-Q
state.
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