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In the spirit of multiscale modeling, we develop a theoretical framework for spin-lattice coupling that connects,
on the one hand, to ab initio calculations of spin-lattice coupling parameters and, on the other hand, to the
magnetoelastic continuum theory. The derived Hamiltonian describes a closed system of spin and lattice degrees
of freedom and explicitly conserves the total momentum, angular momentum, and energy. Using a numerical
implementation that corrects earlier Suzuki-Trotter decompositions we perform simulations on the basis of the
resulting equations of motion to investigate the combined magnetic and mechanical motion of a ferromagnetic
nanoparticle, thereby validating our developed method. In addition to the ferromagnetic resonance mode of
the spin system, we find another low-frequency mechanical response and a rotation of the particle according
to the Einstein–de Haas effect. The framework developed herein will enable the use of multiscale modeling
for investigating and understanding a broad range of magnetomechanical phenomena from slow to ultrafast
timescales.
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The spin-orbit interaction is a relativistic effect at the heart
of modern spintronics [1]. It couples the electron’s spin to
its orbital motion and plays a central role in quantum mate-
rials, bearing high potential for future nanoelectronic devices.
Its manifestations include phenomena such as magnetocrys-
talline anisotropy and the Dzyaloshinskii-Moriya interaction
(DMI) [2,3]. While the focus in spintronics has long been on
electrons or magnons as carriers of angular momentum, newer
lines of research include even circularly polarized phonons to
fully understand and control the flow of angular momentum in
a material [4–7]. Recently, it was demonstrated that even on
ultrashort timescales angular momentum can be transferred
from the spin system to the lattice [8]. In the lattice, the spin
angular momentum is absorbed by phonons carrying angu-
lar momentum until, on larger timescales, the macroscopic
Einstein–de Haas (EdH) effect sets in [9]. A coupling between
spin and lattice degrees of freedom that, beside the exchange
of energy, includes the exchange of angular momentum must
be based on spin-orbit coupling, the effect of which has to be
taken into account for a complete description of spin-lattice
dynamics (SLD).

Descriptions of spintronic phenomena are often based
on spin models, which treat the lattice degrees of freedom
as a heat bath and define the spin Hamiltonian with its
magneto-crystalline anisotropy and DMI for a rigid lattice.
Consequently, the spin angular momentum is not conserved.
First attempts to develop a framework for the calculation of
coupled SLD, also referred to as molecular and spin dynamics
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simulations, suffer from an incomplete formulation of the
spin-lattice interaction [10–13]. The works by Aßmann [13]
and Strungaru [12] assume a pseudodipolar coupling that
conserves the total angular momentum, a prerequisite for a
well-defined spin-lattice coupling (SLC). However, it suffers
from the fact that it is not linked to first-principles calculations
of SLC terms, which always rest on an expansion of the spin
Hamiltonian with respect to small distortions of the lattice.
The works by Hellsvik et al. [14], Sadhukan et al. [15], and
Mankovsky et al. [16] use exactly these SLC terms, that
can be derived from first principles. However, these terms
do not conserve the total angular momentum since they are
not rotationally invariant. This inconsistency and the need for
rotational invariance has already been pointed out 50 years
ago in the context of the magnetoelastic (ME) theory [17,18],
a continuum theory that approximates a microscopic spin-
lattice model Hamiltonian on larger length scales.

In this Letter, we develop a rotationally invariant de-
scription of a spin-lattice interaction for multiscale modeling
relaxing the assumption of a rigid lattice with fixed ori-
entation. The resulting Hamiltonian is translationally and
rotationally invariant, keeping total energy, momentum, and
angular momentum constant. All terms can be linked to the
recently developed ab initio methods that allow for a first-
principles calculation of model parameters [14–16], opening
perspectives for multiscale modeling of SLD. We also demon-
strate that our spin-lattice Hamiltonian represents the discrete
formulation of magnetoelastic theory and we link the mi-
croscopic parameters with the magnetoelastic constants. We
show that even terms that, in a spin model, do not include
any lattice distortions must transfer angular momentum to the
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FIG. 1. Rotation and translation of a magnetized sample. The
reference configuration at t = 0 is denoted by Ri (left), and for t > 0
by ri (right). During its motion, the easy axis for an atom i at position
ri or Ri can be defined via its upper and lower neighbors at position
rz±

i .

lattice. Furthermore, we derive the equations of motion for
spin and lattice degrees of freedom and solve them nu-
merically with an appropriate Suzuki-Trotter decomposition.
Finally, we present simulations of the precession of a magne-
tized body and spin dynamics including the resulting response
of the lattice.

A complete Hamiltonian accounting simultaneously for
the spin and lattice degrees of freedom contains contribu-
tions from the lattice degrees of freedom (kinetic energy and
pair potentials) as well as contributions which include the
spin degrees of freedom. The latter can be expressed as an
expansion of relativistic spin-spin interactions for small dis-
tortions [14,16],

HSLC ≈
∑
i j,αβ

J αβ
i j Sα

i Sβ
j +

∑
i jk,αβμ

J αβ,μ

i j,k Sα
i Sβ

j

(
u μ

k − u μ
i

)

+
∑

i jkl,αβμν

J αβ,μν

i j,kl Sα
i Sβ

j

(
u μ

k − u μ
i

)(
u ν

l − u ν
i

)
, (1)

where the summation runs over the lattice (latin indices) and
Cartesian coordinates (greek indices) [19]. Si are unit vectors
representing the direction of magnetic moments at sites i, and
ui = ri − Ri are displacement vectors of atoms i at position ri

(and equilibrium position Ri in a reference configuration; see
Fig. 1). The spin-spin coupling (SSC) J αβ

i j and SLC tensors

J αβ,μ

i j,k = ∂J αβ
i j /∂uμ

k are defined with respect to a chosen co-
ordinate system. As shown by Mankovsky et al., these tensors
can be calculated quantitatively from first principles [16].

The relative displacements (u μ

k − u μ
i ) with respect to a

reference atom i take into account deformations of the lat-
tice [20]. They are the discrete lattice representation of the
strain and rotation tensor elements of elasticity theory. As
such, Eq. (1) represents the discrete formulation of the ME
theory [21], from which we can derive an extended expression
for the ME energy density,

ε =
∑
αβμν

SαSβ
(
Bs

αβ,μνεμν + Bas
αβ,μνωμν

)

+
∑

αβγμν

∂βSα∂γ Sα
(
As

βγ ,μνεμν + Aas
βγ ,μνωμν

)

+
∑

αβγ δμν

εαβγ Sα∂δSβ
(
Ds

γ δ,μνεμν + Das
γ δ,μνωμν

)
, (2)

where S is the continuous magnetization, εμν the strain tensor,
εαβγ the Levi-Civita symbol, and ωμν the rotation tensor.
The important role of the latter in the ME theory has been
addressed before by Melcher [17,18], and reaffirmed in recent
experiments [22–24]. The terms in Eq. (2) model anisotropy,
Heisenberg exchange, and DMI due to lattice distortions
and the corresponding symmetric/antisymmetric ME tensors
Bs/as

αβ,μν , As/as
βγ ,μν , and Ds/as

γ δ,μν can be obtained from the micro-
scopic SLC tensors. A detailed derivation can be found in the
Supplemental Material [25] as well as the connection between
the ME constants [21] and the microscopic SLC tensors.

Looking at Eq. (1) one finds immediately that this Hamil-
tonian does not conserve the total (spin and lattice) angular
momentum, since it is not rotationally invariant. It is, hence,
not capable of describing spins plus lattice as a closed sys-
tem. To understand this, we examine an isotropic Heisenberg
model with a uniaxial on-site anisotropy,

Hani = −
∑

i j

Ji jSi · S j − dz

∑
i

(
Sz

i

)2
, (3)

for a system with the z axis being the easy axis of the mag-
netization. Here, the Heisenberg exchange interaction term
is rotationally invariant and conserves the total spin angular
momentum. The anisotropy term, however, is not rotationally
invariant and the total spin angular momentum is, hence, not
conserved. To keep the total angular momentum conserved,
the spin angular momentum would have to go to the lattice but
since this term does not include any lattice degrees of freedom
it cannot.

The situation is shown in Fig. 1. Let us assume the atoms
are at time t = 0 in equilibrium positions Ri in a reference
configuration with the easy axis along z (defined in the lab-
oratory frame). When the sample starts moving the atom
positions at later times are ri(t ) = Ri + ui(t ) and the easy
axis may no longer be aligned with the z axis of the labora-
tory frame. Consequently, the anisotropy term in Eq. (3) has
to be transformed. This can be done by projecting the spin
orientation using unit vectors that are defined in terms of the
respective neighbor atoms.

In a cubic lattice an appropriate unit vector ez can be
defined via the upper (+) and lower (−) nearest neighbors of
atom i at positions rz±

i = Rz±
i + uz±

i , yielding

ez(±)
i = rz±

i − ri∣∣rz±
i − ri

∣∣ . (4)

Now we can write the anisotropy term of Eq. (3) without
reference to a specific coordinate system and we obtain

Hani = −
∑

i j

Ji jSi · S j − dz

2

∑
i

⎡
⎣(

Si · rz+
i − ri∣∣rz+
i − ri

∣∣
)2

+
(

Si · rz−
i − ri∣∣rz−
i − ri

∣∣
)2

⎤
⎦. (5)

The resulting Hamiltonian contains only scalar products of
the spins Si and differences of position vectors ri. It is hence
translationally and rotationally invariant and will keep the
total momentum and angular momentum constant. Most im-
portantly, the transformed Hamiltonian contains the lattice
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degrees of freedom explicitly, even though the original one
did not. Only this makes it possible to transfer angular mo-
mentum from the spins to the lattice, keeping the total angular
momentum constant.

The microscopic origin of the anisotropy can be crucial in
determining the exact form of the definition of the z direction.
It is however sufficient to take only two neighbors into account
to capture the majority of effects. Note that this local defini-
tion of an easy axis does not only work for a global rotation
but also for deformations of the sample. Furthermore, both
upper and lower neighbors are used to define the local easy
axis for spins i, a definition that holds also at surfaces with
a reduced number of neighbors. Nevertheless, it should be
stressed that this definition is neither unique nor trivial, since
the choice of neighbors for the definition of the unit vectors
will affect the equations of motion and the atoms the angular
momentum is transferred to. Also, we want to point out that
while the continuum magnetoelastic theory considers ideal
homogeneous crystals, our formulation in principle allows
for the inclusion of additional contributions to spin-lattice
coupling that would result from a locally reduced crystal sym-
metry due to defects and dislocations, for which the choice of
neighbors would have to be adapted depending on the local
atomic arrangement.

The transformation above can be extended to other con-
tributions of the spin-lattice Hamiltonian (1). In order to do
so, the local definition for the unit vector in the z direction
for atom i from Eqs. (4) can be generalized to a set of three
orthogonal directions α,

eα(±)
i = rα±

i − rα
i∣∣rα±

i − rα
i

∣∣ . (6)

Similar to the case of a uniaxial anisotropy, these unit vectors
can be used to transform the first term of Eq. (1),

HSS =
∑

i j

∑
αβ

J αβ
i j Sα

i Sβ
j =

∑
i j

∑
αβ

J αβ
i j

(
Si · eα

i

)(
S j · eβ

j

)
.

(7)

Again, this Hamiltonian consists of scalar products of spins
and differences of position vectors and is hence rotationally
invariant. Analogously, the spin-lattice Hamiltonian becomes

HSLC = HSS +
∑

i jk,αβμ

J αβ,μ

i j,k

(
Si · eα

i

)(
S j · eβ

j

)
× [

(rk − ri ) · eμ

k − Rki
] + · · · , (8)

where Rki is the equilibrium distance between atoms k and
i in the reference configuration. This Hamiltonian consists
of the rotationally invariant spin-spin term (HSS) and a sec-
ond spin-spin-lattice term. It should be stressed here that the
choice of unit vectors does not affect the relation of the atom-
istic spin-lattice Hamiltonian to the continuum theory and the
first-principles determination of the parameters, since this was
done before the transformation on the basis of Eq. (1).

Each term in the initial formulation (1) that breaks rota-
tional symmetry now depends on the spins and the lattice
positions and, hence, can transfer angular momentum be-
tween the two subsystems. Thus, the dominating terms for
angular momentum transfer may vary for different materials,

TABLE I. Maximal absolute SSC JSSC
i j and maximal modifica-

tion of SSC due to SLC �JSLC
i j = Ji j, j · ux

j (in meV) in the presence of
a displacement ux

j = 0.03alat in Fe and FePt for different SSC contri-
butions. For both materials, we consider sites i and j being Fe atoms
with different distances ri j and list the values for the pair i j with the
largest contribution to the respective parts of the SSC tensor. In Fe,
the largest contribution which can transfer angular momentum is the
spin-lattice DMI |�Di j | = |Dx

i j, j · ux
j | for ri j = 1alat , and in FePt it is

the spin-spin antisymmetric diagonal part |Jdia−a
i j | = 1

2 |Jxx
i j − Jzz

i j | for
ri j = 1.414alat . The symmetrized off-diagonal elements are defined
as Joff−s

i j = 1
2 (Jxy

i j + Jyx
i j ). For details, see the Supplemental Mate-

rial [25].

Material Contribution to SSC |J iso
i j | |Jdia−a

i j | |Joff−s
i j | |Di j |

Fe JSSC
i j 11.389 0.019 0.017 0.0

�JSLC
i j (ux

j ) 1.587 0.002 0.003 0.062

FePt JSSC
i j 9.590 0.320 0.209 0.0

�JSLC
i j (ux

j ) 1.960 0.023 0.024 0.089

depending on the specific values of the SSC and SLC tensors.
For example, in Fe the transfer is mainly via the spin-lattice
DMI [16], whereas in FePt the dominating terms are two-site
anisotropy terms (see Table I).

As an application of our formulation and to test its validity,
we perform combined SLD simulations using the following
Hamiltonian for a simple cubic lattice,

H = Hani +
∑

i

p2
i

2m
+ V0

∑
i j

(ri j − Ri j )2

Ri j
, (9)

that extends our rotationally invariant formulation of the spin
Hamiltonian of Eq. (5) by terms describing the interaction and
the kinetic energy of the lattice, with m being the mass of the
atoms and V0 describing the strength of the lattice interactions
in the harmonic approximation. For the sake of simplicity,
we assume that these interactions are restricted to the first
three shells of neighbors and that they scale inversely with
the equilibrium distance.

Evaluating the dynamics of spin and lattice degrees of free-
dom {ri, pi, Si} requires the concurrent solution of the coupled
equations of motion,

ṙi = ∂H
∂ pi

, ṗi = −∂H
∂ri

, and Ṡi = γ

μs
Si × ∂H

∂Si
, (10)

with γ and μs being the absolute values of the gyromagnetic
ratio and the magnetic spin moment, respectively. Conser-
vation of energy, momentum, and angular momentum can
be ensured by using a symplectic algorithm. Here, we use
a scheme based on the Liouville formalism [26] and the
Suzuki-Trotter decomposition [27] that was initially proposed
in Ref. [28] and has proven reliable for the simulation of
combined SLD [10,12,13,29–32]. Note that the presence of
a uniaxial on-site anisotropy term, which is quadratic in the
spins, requires a further decomposition of the integration
scheme that has yet to be discussed in literature. Details, tests
of the conservation of the total angular momentum and the
energy of the system, and a comparison of the temperature
dependence of the magnetization with spin dynamics (SD)
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FIG. 2. Coherent magnetization dynamics of a free cubic
nanoparticle obtained from SLD in comparison with SD simulations
(light curves) for toy model parameters. Top: Magnetization vector
components mα vs time. Bottom: Fourier transform of my.

simulations based on the stochastic Landau-Lifshitz-Gilbert
equation of motion can be found in the Supplemental Mate-
rial [25].

As an application we study the coupled magnetization
and lattice dynamics of a free cubic nanoparticle using toy
model parameters as well as realistic parameters modeling
L10 FePt [25]. For this simulation we assume that initially the
cube is oriented such that the easy axis is aligned with the z
axis and all spins point along m0 = (0.1, 0,

√
1 − 0.12)T. This

gives rise to a coherent precession of the magnetization along
with mechanical motion of the cube. We begin by discussing
the general aspects of the emerging dynamics based on toy
model parameters, since for real materials, the timescales of
magnetic and mechanical motion can be very different (see
below). Figure 2 displays the time evolution of the mag-
netization m = 1

N

∑N
i Si and the Fourier transform of its y

component for a nanoparticle consisting of 43 atoms. The light
curves are obtained by pure SD simulations, for which we
keep the position of the atoms fixed. In contrast to pure SD, the
SLD simulations produce oscillations at two characteristic fre-
quencies ωn3 ≈ 3.89 × 10−3γ J/μs and ωFMR ≈ 0.152γ J/μs.
The peak at ωFMR can be attributed to the usual ferromagnetic
resonance (FMR) frequency and is close to the value predicted
by linear spin-wave theory ωFMR = 2d̄γ /μs = 0.15γ J/μs,
where d̄ is the averaged uniaxial magnetic anisotropy [33].
The SD value (ωFMR ≈ 0.148γ J/μs) is slightly smaller due
to finite-size effects: The spins at the edges of the cube lag
behind, since their anisotropy field is weaker [cf. Eq. (5)],
slowing down the overall precession frequency. Surprisingly,
the FMR frequency of SLD is shifted to higher values as
compared to the SD value.

The emergence of the peak at ωn3 as well as the shift of
the FMR frequency are a result of the mechanical motion of
the nanoparticle, which can be characterized by the vectors
nα (α ∈ 1, 2, 3) normal to the faces of the cube. As the easy

FIG. 3. Mechanical motion of a cubic nanoparticle excited by
coherent precession of the magnetization around n3 (easy axis).
(a) Spiraling magnetization dynamics and easy-axis precession in the
time interval [0, 103]μs/γ J for toy model parameters. (b) Sketch of
the two characteristic mechanical modes. (c) Characteristic frequen-
cies of an FePt nanoparticle vs cube size l . Dotted lines correspond
to theory curves for ωFMR and ωn3 as explained in the text and a guide
to the eye for ωEdH.

axis is firmly attached to one of these vectors (without loss
of generality, n3), we can compare the dynamics of the easy
axis and the magnetization [see Fig. 3(a)]. We find that the
magnetization precesses around the easy axis, which itself
revolves around m0 exactly at ωn3 , giving rise to the second
peak in Fig. 2 and the shift of the FMR frequency.

This emergence of the easy-axis precession was pre-
dicted in Ref. [34] based on a simple rigid-body-macrospin
model [35–37]. There, the magnetic nanoparticle is described
by the normalized magnetization m and the vectors nα intro-
duced above. The dynamics of these vectors nα are given by
ṅα = ω × nα , where ω is the angular velocity of the nanopar-
ticle in the laboratory frame, which is related to its angular
momentum via L = �ω. For a cubic nanoparticle, the mo-
ment of inertia is given by � = 1

6 Nml2, l being the cube size
and N being the number of atoms. Conservation of angular
momentum requires that −N μs

γ
ṁ + L̇ = 0. If the nanoparticle

is initially at rest, we get ω(t ) = 6μs

ml2γ
[m(t ) − m0], with m0

being the initial orientation of the magnetization. This yields
ṅα = 6μs

ml2γ
[m(t ) × nα − m0 × nα]. The first contribution to

the torque depends on the current value of the magnetization
and amounts to zero for n3, due to the rapid oscillations of
m(t ) around n3. The second term describes a simple rotation
of n3 around the initial direction of the magnetization m0 with
frequency ωn3 = 6μs

ml2γ
. For the parameters used here, we cal-

culate ωn3 ≈ 3.75 × 10−3γ J/μs, which is in close agreement
with the simulation results.

In addition to the precession of n3, we find an EdH-type
rotation of n1,2 with ωEdH ≈ 1.81 × 10−5γ J/μs around the
z axis of the laboratory frame [see Fig. 3(b)]. This rotation
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occurs when the average magnetization differs from its initial
value, since the average angular velocity of the cubic nanopar-
ticle is given by 〈ω(t )〉 = 6μs

ml2γ
〈(m(t ) − m0)〉. This leads to a

nonzero value only for the z component of the angular velocity
(cf. Fig. 2).

Figure 3(c) displays all three characteristic frequencies ver-
sus cube size for parameters modeling L10 FePt nanoparticles.
Again, the FMR frequency is the highest and approaches
the bulk value for large cubes. The other two (mechanical)
frequencies are more than three orders of magnitude lower
and scale with l−2, while keeping a constant ratio of around
0.004 over the range considered here [38]. Besides testing the
validity of the analytical expression for ωn3 , this allows us to
estimate the mechanical frequencies for larger particles. For
example, for an FePt nanocube with edge length of 100 nm
we get ωn3 ≈ 250 kHz and ωEdH ≈ 1 kHz.

In summary, we have developed a rotationally invariant
formulation of coupled spin-lattice dynamics for multiscale
modeling of magnetomechanical motion. It successfully in-
tegrates first-principles evaluation of SLC parameters, ME
continuum theory, and spin-lattice dynamics simulations.

Employing our developed framework and a numerical imple-
mentation that corrects earlier Suzuki-Trotter decompositions
we simulate combined magnetomechanical dynamics of a fer-
romagnetic nanoparticle, thereby validating our formulation.
Our simulations demonstrate that in addition to the ferro-
magnetic resonance mode of the spin system there are two
low-frequency mechanical modes describing the precession
of the easy axis and a rotation of the particle according to
the EdH effect. By incorporating total angular momentum
conservation, our work provides the tools for simulation of a
broad range of magnetomechanical phenomena. Therefore it
is crucial to the understanding of recent and ongoing intrigu-
ing experiments, e.g., on magnon-phonon coupling or ultrafast
magnetization dynamics.

Work in Konstanz is supported by the Deutsche
Forschungsgemeinschaft (DFG) via SFB 1432 and Project
No. NO 290/5-1. A.K. acknowledges financial support from
the Spanish Ministry for Science and Innovation–AEI Grant
No. CEX2018-000805-M (through the “Maria de Maeztu”
Programme for Units of Excellence in R&D).

[1] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine,
Nat. Mater. 14, 871 (2015).

[2] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[3] T. Moriya, Phys. Rev. 120, 91 (1960).
[4] A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Diény,

P. Pirro, and B. Hillebrands, J. Magn. Magn. Mater. 509, 166711
(2020).

[5] D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 92, 024421
(2015).

[6] A. Rückriegel, S. Streib, G. E. W. Bauer, and R. A. Duine, Phys.
Rev. B 101, 104402 (2020).

[7] J. H. Mentink, M. I. Katsnelson, and M. Lemeshko, Phys. Rev.
B 99, 064428 (2019).

[8] S. R. Tauchert, M. Volkov, D. Ehberger, D. Kazenwadel, M.
Evers, H. Lange, A. Donges, A. Book, W. Kreuzpaintner, U.
Nowak, and P. Baum, Nature (London) 602, 73 (2022).

[9] C. Dornes, Y. Acremann, M. Savoini, M. Kubli, M. J.
Neugebauer, E. Abreu, L. Huber, G. Lantz, C. A. F. Vaz, H.
Lemke, E. M. Bothschafter, M. Porer, V. Esposito, L. Rettig,
M. Buzzi, A. Alberca, Y. W. Windsor, P. Beaud, U. Staub, D.
Zhu et al., Nature (London) 565, 209 (2019).

[10] P.-W. Ma and C. H. Woo, Phys. Rev. E 79, 046703 (2009).
[11] D. Perera, M. Eisenbach, D. M. Nicholson, G. M. Stocks, and

D. P. Landau, Phys. Rev. B 93, 060402(R) (2016).
[12] M. Strungaru, M. O. A. Ellis, S. Ruta, O. Chubykalo-Fesenko,

R. F. L. Evans, and R. W. Chantrell, Phys. Rev. B 103, 024429
(2021).

[13] M. Aßmann and U. Nowak, J. Magn. Magn. Mater. 469, 217
(2019).

[14] J. Hellsvik, D. Thonig, K. Modin, D. Iuşan, A. Bergman, O.
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