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Chiral nematic and fluctuation-induced first-order phase transitions in AB-stacked kagome bilayers
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We study a Heisenberg-Dzyaloshinskı̆-Moriya Hamiltonian on AB-stacked kagome bilayers at finite temper-
ature. In a large portion of the parameter space, we observe three qualitative changes upon cooling the system:
a crossover from a Heisenberg paramagnet to an XY chiral paramagnet, a Kosterlitz-Thouless transition to a
chiral nematic phase, and a fluctuation-induced first-order transition to an Ising-like phase. We characterize the
properties of phases numerically using Monte Carlo finite-size analysis. To further explain the nature of the
observed phase transitions, we develop an analytical coarse-graining procedure that maps the Hamiltonian onto
a generalized XY model on a triangular lattice. To leading order, this effective model includes both bilinear
and biquadratic interactions and is able to correctly predict the two phase transitions. Lastly, we study the
Ising fluctuations at low temperatures and establish that the origin of the first-order transition stems from the
quasidegenerate ring manifold in the momentum space.

DOI: 10.1103/PhysRevB.108.L060402

Introduction. Competing interactions are at the root of
complex behavior for a broad variety of physical sys-
tems [1–5]. In magnetic systems the competition can arise
from lattice geometry (geometric frustration) or from the
spin-orbit interactions [6,7]. The resulting ordered states of-
ten possess important properties, such as topological stability
and nonzero chirality, and are attractive for device appli-
cations [8]. On the other hand, a considerable amount of
research has been devoted to phases that either remain dis-
ordered down to zero temperature (spin liquids) or exhibit
partial ordering, such as spin nematics [6,9,10]. The experi-
mental discovery of these phases remains challenging, since
they lack conventional dipolar ordering. Theoretical studies
have shown that the stabilization of spin nematic states is
nontrivial [11] and often requires higher-order spin interac-
tions, such as the biquadratic exchange [12–14]. Furthermore,
since spin nematics break rotational, but not time-reversal,
symmetry, the orientations of the spins in these phases
continue to fluctuate in an Ising-like fashion. Geometric frus-
tration, among other things, was shown to accommodate these
fluctuations [15–17].

The Heisenberg antiferromagnet on a kagome lattice is
the paradigmatic example of a geometrically frustrated spin
system with macroscopic degeneracy [18–20]. At low tem-
peratures, the classical spins form a 120◦ coplanar structure
with dominant octupolar correlations [21]. The macroscopic
degeneracy in a two-dimensional (2D) kagome lattice is gen-
erally unstable with respect to anisotropic interactions, such
as Dzyaloshinskı̆-Moriya (DM) interactions or changes in the
geometry that introduce competing interactions [22,23].

A previous study of the AB-stacked kagome lattice (AB-
SKL) [24] revealed that the symmetry of the model introduces
a large number of duality transformations, allowing for a

unified description of magnetic phases in different parts of
the parameter space. Furthermore, a minimal Heisenberg-DM
(HDM) Hamiltonian was shown to stabilize various single-
and multiple-q structures. Among these, the most intriguing
are magnetic phases where the spins in individual unit cells
have a distorted 120◦ structure, which alternates throughout
the system, forming Ising-like structures [see Fig. 1(c)].

In this Research Letter, we study the finite-temperature
properties of the Ising-like phase in a single AB-SKL bilayer.
We show through both numerical and analytical calculations
that in a large region of parameter space thermal fluctuations
stabilize a phase that exhibits simultaneous chiral and nematic
order. The coexistence of nematicity and chirality is extremely
unusual, since these properties are typically associated with
opposite types of structures (collinear and noncollinear, re-
spectively). Moreover, we find that at lower temperatures, the
chiral nematic phase breaks the time-reversal symmetry and
transforms into Ising-like structures via a fluctuation-induced
first-order transition.

Our study is relevant to the magnetic properties of
compounds with AB-SKL structure, such as Mn3X (X =
Sn, Ge, Ga) and Fe3Sn2. These systems have received a con-
siderable amount of attention due to their unusual transport
properties, including recent discoveries of the anomalous
Hall effect [25–28]. The nonmagnetic atoms in these mate-
rials induce a weak spin-orbit coupling, which by symmetry
should result in the intra- and interlayer DM interac-
tions [29]. Despite the experimental reports of helical [30,31],
skyrmion [32], magnetic bubble, and spin glass [33] phases in
AB-SKL materials, a theoretical description of the magnetism
of these systems is still lacking.

Model Hamiltonian. We consider classical O(3) spins on an
AB-SKL. The minimal HDM model was derived in Ref. [29]
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FIG. 1. (a) Crystal structure of the AB-stacked kagome com-
pounds: The A and B layers are shown in two shades of gray;
dashed and solid lines represent the (J1, D1) and (J2, D2) interactions,
respectively. The arrows on the top left cell indicate bond directions
taken for calculating chirality χ (r). (b) Part of the phase diagram
(from Ref. [24]) where the Ising-like phases are stable. (c) Fragment
of the spin structure in the Ising-like phase. The color corresponds
to A(r) · A(0) (purple and yellow for +1 and −1, respectively).
(d) Definition of the LOPs.

and can be written as follows:

HJD = HJ + HD,

HJ = 1

2

∑
rr′

∑
i j

Ji j (r − r′)Si(r) · S j (r′),

HD = 1

2

∑
rr′

∑
i j

Di j (r − r′)ẑ · [Si(r) × S j (r′)], (1)

where r and r′ label the positions of the unit cells in a
triangular superlattice and i, j label the six sublattices. The
four parameters correspond to the interlayer (J1, D1) and
intralayer (J2, D2) exchange and DM couplings, respectively
[see Fig. 1(a)]. The interlayer interactions stabilize Qz = 0
for all relevant parameter values, and so the properties of a
single bilayer should be representative of the properties in the
bulk. In the following, we will also take advantage of the self-
duality, by defining local coordinates for the six sublattices.
The dual version of the model (1) is written in terms of new
local spin variables S̃i(r) as well as dual parameters (J̃1, D̃1,
J̃2, D̃2) [34]. An important property of the dual parameters,
pointed out in Ref. [24], is that in the stability region of the
Ising-like phases [Fig. 1(b)] we generally have |D̃2|/|J̃1| < 1
and |J̃2|/|J̃1| � 1.

Details of numerical simulations. We perform Monte Carlo
(MC) simulations using standard heat-bath updates combined
with the over-relaxation method [35]. A single MC step con-
sists of one heat-bath update, followed by five over-relaxation
steps. Simulations are performed in bilayer systems with N =
L2 unit cells with 18 � L � 108 and in the temperature range
0.01 � T � 5. A single run typically consists of 105 MC steps
at each temperature. Finally, the results are averaged over
ten independent simulations to estimate the statistical errors.

A list of definitions of average quantities is provided in the
Supplemental Material [34].

For consistency with the results for the 3D systems in
Ref. [24], we fix J1 = 2 and J2 = 1 and vary the values of
D1 and D2. Thus the temperatures can be assumed to have
units of |J2|. In this Research Letter, we present the results for
two representative systems with D1 = −J1 and D2 = −0.5J2

and provide data for the extended range of parameters in the
Supplemental Material [34].

Monte Carlo results. First, we report our numerical find-
ings. Since the DM term in our model (1) breaks the
out-of-plane C2 spin symmetry, the system develops nonzero
chirality in each unit cell, which we define for the bilayer
system as χ (r) = ẑ · ∑

〈i j〉 Si(r) × S j (r), where indices i, j
label sites on a kagome triangle (see Fig. 1). As the system
is cooled, qualitative changes in the spin structure occur at
temperatures T ∗, TQ, and TD [Fig. 2(a)]. Above T ∗, we ob-
serve a broad Schottky-like peak in the heat capacity. A closer
analysis reveals that in this temperature range the spins in
each unit cell form an approximately 120◦ planar structure,
with spins on the A triangle parallel to those on the B triangle
(Fig. 1). The corresponding “local” order parameter (LOP)
A(r) is a two-dimensional vector, which transforms as an
irreducible representation E (14)

g , as discussed in Ref. [24].
Below T ∗, the chirality in each unit cell becomes negative,
i.e., 〈sgn(χ (r))〉 = −1. At the same time, the fluctuations in
magnitude of LOPs become very small, as seen from the tem-
perature dependence of C|A| = 1

N

∑
r〈(|A(r)|2 − 〈|A(r)|2〉)2〉

in Fig. 2(a).
Despite the apparent ordering of the chiralities, the in-plane

spin fluctuations remain large, which poses a question about
the global ordering of the system. To analyze the spin structure
on the global scale, we define the dipole and quadrupole
correlation functions as

SD(ρ) = 1

N

∑
r

〈Â(r) · Â(r + ρ)〉, (2)

SQ(ρ) = 1

N

∑
r

〈Q(r) · Q(r + ρ)〉, (3)

respectively, where ρ = r − r′, Â(r) = A(r)/|A(r)|, and the
quadrupole tensor is defined as Qαβ (r) = Âα (r)Âβ (r) −
1
2δαβ . As seen from Figs. 2(d) and 2(e), in the temperature
range between TQ and T ∗, both types of correlations decay
exponentially with distance. Thus, in this region, the state of
the system can be thought of as chiral paramagnetic [36].

Further decreasing the temperature of the system, we ob-
serve the appearance of a spontaneous quadrupole moment at
TQ (Fig. 3). Below TQ, SQ(ρ = |ρ|) displays a clear algebraic
decay, with a correlation length that strongly depends on the
temperature [Fig. 2(e)]. This is a strong indication of the
emergent quasi-long-range Kosterlitz-Thouless (KT) order-
ing of the nematic degrees of freedom (NDOFs), as a result
of the algebraic breaking of the continuous U(1) symmetry.
Since chirality vectors remain ordered, this nematic phase is
also chiral. We confirm the KT nematic order by defining
the collinearity parameter ψ (r) = 1

3

∑
ρ〈Q(r) · Q(r + ρ)〉,

where the sum runs over the nearest neighbors [34].
Figure 2(c) and the Supplemental Material [34] show the
formation of topological defects, identical in character to the
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FIG. 2. (a) High-temperature properties of the heat capacity, LOP magnitude susceptibility, and average chirality alignment. (b) and
(c) Fragment of the spin configuration in the chiral nematic phase. In (b), we plot the spins on an AB-SKL and color the unit cells using
the overlap of the LOP vectors. In (c), we plot the same configuration but in terms of A(r), where the collinearity parameter (see text) is used
to color the directors. The dark spots correspond to disclinations. (d) Dipolar and (e) quadrupolar correlation functions plotted as a function of
distance per kagome bond length.

disclinations in conventional nematics [37]. Below TQ, the
defects appear in pairs, which is further consistent with the
KT theory of 2D nematics [38].

In the reciprocal space, SQ(q) becomes sharply peaked at
q = 0 at TQ [34]. In contrast, SD(q) shows a broad ring feature
at incommensurate wave vectors (Fig. 3). As the system is
cooled down below TQ, the number of wave vectors contribut-
ing to the ring decreases, and the sixfold anisotropy becomes

FIG. 3. Magnetic phases studied in this Research Letter. Top:
Finite-size data for low-temperature heat capacity and average
quadrupole moment. Bottom: Average dipolar structure factors from
MC data (left half of each plot) and calculated from the effective XY
Hamiltonian (right half of each plot).

more pronounced. Since the Ising degrees of freedom (ID-
OFs) continue to fluctuate, we conclude that the time-reversal
Z2 symmetry must remain unbroken in the nematic phase.
Finally, at TD the IDOFs freeze, and the LOP vectors form
complicated network patterns, as reported in Ref. [24]. Anal-
ysis of the histograms of energy components at TD (collected
using 2 × 106 MC steps) reveals multiple peaks (Fig. 4),
which signals a weak first-order transition. Unlike in the
conventional first-order transitions, we observe three to seven
peaks in the energy histograms for a range of temperatures.
The heat capacity in the same range of temperatures appears
noisy and does not display a clear anomaly.

These observations lead us to believe that the free-
energy landscape of the Ising-like phases consists of many
near-degenerate minima. Therefore we suspect that the char-
acteristic network patterns form when the system fails to reach
equilibrium as a result of the large configurational entropy.
Our speculations are supported by the fact that for most sys-
tems in our study we can impose a single-q stripe structure
which is slightly lower in energy than the random con-
figurations (�E ∼ 10−5). Nevertheless, these ordered states
almost never occur in 2D systems, even for longer MC runs
(>106 MC updates).

Coarse graining. To better understand the MC data, we
provide analytical analysis of the model (1). When the system
is in the chiral paramagnet state, its properties are effectively
described by N fluctuating LOP vectors. Therefore it is desir-
able to construct an effective Hamiltonian, written explicitly
in terms of A(r) variables. To do this, we consider the normal
modes of spin fluctuations within a single unit cell [39]. In
total, there are 12 modes, half of which [α{0−5}(r)] describe
the in-plane fluctuations, with the remaining half [γ{0−5}(r)]
describing the out-of-plane fluctuations. Among these, only
the uniform in-plane rotations, which we denote α0(r), do not
change the magnitude of the LOP vectors. As a result, we
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FIG. 4. Energy histograms for a range of temperatures near T =
TD for an L = 54 system.

may construct a coarse-graining procedure, whereby the hard
modes α{1−5}(r), γ{0−5}(r) are integrated out, leaving effective
interactions written in terms of the soft modes α0(r). The pro-
cedure follows closely the method presented in Ref. [24] and
is given in the Supplemental Material [34]. In the derivation,
we take advantage of the smallness of |J̃2|/|J̃1| ∼ 10−2 and
calculate the effective Hamiltonian up to the smallest power of
|D̃2|/|J̃1| ∼ 10−1. The result is a generalized XY Hamiltonian
on a triangular lattice:

Heff = E0 + HD + HQ + HDQ, (4)

HD = 1

2

∑
rr′

JD(ρ)Â(r) · Â(r′), (5)

HQ = 1

2

∑
rr′

JQ(ρ)Q(r) · Q(r′), (6)

HDQ = 1

2

∑
rr′r′′

JDQ(ρ; ρ′)ÂT (r′)Q(r)Â(r′′), (7)

where E0 is a constant, ρ = r − r′, and ρ′ = r − r′′. Impor-
tantly, HQ is equivalent to a biquadratic coupling of the LOP
vectors [34]. The dipolar couplings JD(ρ) extend to the third
neighbors and lead to geometric frustration, whereas JQ(ρ)
only couple nearest neighbors and stabilize collinear (ne-
matic) configurations of the LOPs. Generally, the biquadratic
couplings are larger than the dipolar couplings [|JQ(ρ)| ∼
5|JD(ρ)|].

A family of similar generalized XY models has been
studied numerically [40–47] and using analytical tech-
niques [48–51]. In these works, the dipolar interactions
are typically unfrustrated and stabilize ferromagnetic order.

When the coupling term is zero, the phase diagram in the
|JD(ρ)|/|JQ(ρ)| � 1 limit has been well established: As
the system is cooled down, it first undergoes a nematic KT
transition (T = TQ), followed by an Ising transition (T =
TD) leading to a phase with a quasi-long-range ferromag-
netic order. This model was proposed to be relevant for a
range of systems, including liquid crystals and superconduc-
tors [43,46,48,49]. In the vast majority of magnetic systems,
the biquadratic term (HQ), if present, is smaller than the
exchange interaction, meaning that the split transition cannot
occur through this mechanism. Our coarse-graining proce-
dure uncovers that the effective interactions impose a large
quadrupolar coupling through DM interactions. We note that
the validity of the effective model in (4) extends beyond the
Ising-like phases into the Q = 0 phase. Using duality transfor-
mations in Ref. [24], we can quickly construct similar models
for other Q = 0 phases. Since these phases occupy most of the
parameter space and are known to be the ground states of the
Mn3X compounds, the properties of (4) are extremely relevant
for future experimental studies.

In the case of the Ising-like phases, the situation is com-
plicated by both the geometric frustration on the dipolar
interaction and the presence of the coupling term. JD(q)
produces a degenerate ring, similar to the SD(q), which leads
to a competition between different incommensurate config-
urations. The HDQ may influence a variety of properties,
including the universality classes of transitions, as well as
the nature of topological defects [40,52–54]. This analysis is
outside the scope of this Research Letter and will be reported
elsewhere [55]. Our calculations show that HDQ changes the
value of TD as well as the radius of the ring in JD(q) but does
not break its degeneracy [34]. Therefore our results for the
decoupled model (HDQ = 0) still apply to the physics of the
system.

Mean-field theory. In order to study the properties of the
effective model in Eq. (4), we construct a mean-field the-
ory using variational methods [56,57]. The derivation of the
model is given in the Supplemental Material [34]. We de-
note Q and φ(q) as the order parameters for the NDOFs
and the IDOFs, respectively. We obtain the following Landau
expansion:

fL = f0 + fD + fQ, (8)

fD = τD� + 3λD�2 − 3λD

2

∑
q

|φ(q)|4, (9)

fQ = τQ

2
Q2 + λQ

4
Q4, (10)

where f0 is a constant and � = ∑
q |φ(q)|2. Here, we restrict

the wave vectors to lie on the degenerate ring. The coeffi-
cients τD and τQ change sign at TD and TQ, respectively, and
are related to the corresponding bare susceptibilities evalu-
ated at the critical wave vectors, and λD and λQ are positive
constants [34].

The mean-field theory predicts two phase transitions, con-
sistent with the numerical results. We note that fQ has exactly
the same form as the mean-field expansion for a 2D XY
model, which is unsurprising given that HQ can be mapped
onto an XY Hamiltonian by changing α0(r) −→ 1

2α0(r).
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Therefore, in the decoupled limit, the nematic transition
should belong to the XY universality class. This is in contrast
to a system with a 3D nematic order parameter, where a
first-order transition is predicted at the level of the mean-field
theory.

The model further predicts the Ising transition to be con-
tinuous. Assuming that the order parameter is defined by m
magnetic wave vectors, the corresponding free energy in the
ordered state is

f min
D = − τ 2

D

6λD

m

2m − 1
. (11)

The structure of the equilibrium Ising order parameter de-
pends on the sign of λD. Thus, in the mean-field limit, the
free energy is minimized by a single-q solution (m = 1).

Effects of fluctuations. This predicted nature of the phase
transition is inconsistent with our numerical observations,
which indicates that the role of thermal fluctuations is not
negligible. Indeed, the degenerate ring of critical wave vec-
tors HD signals that the phase space of fluctuations is very
large, even if their amplitudes are small. Near T = TD, the
bare dipolar susceptibility can be parametrized according
to

χ0,D(q) ≈ 1

τD + c(q − q0)2
, (12)

where we ignored the effects of the hexagonal anisotropy. We
further consider only wave vectors with radius q close to the
critical ring (q0).

This scenario was first studied in three-dimensional
isotropic systems by Brazovskı̆ [58], who, for the case of a 3D
system, showed that the large volume of fluctuations stabilizes
the disordered state down to T = 0. This prevents the system
from undergoing a continuous phase transition. Nevertheless,
Brazovskı̆’s analysis indicated that the system may still have
a first-order transition, even in the absence of a cubic term in
the Landau theory.

Since the field theory for the IDOFs in the AB-SKL is iden-
tical to that contained in Ref. [58], up to the dimension of the
system, we follow the same steps to obtain the renormalized
values of τD and λD [59–61]. The procedure is described in
the Supplemental Material [34]. For the renormalized suscep-
tibility, we obtain

χD(q) = 1

tD + c(q − q0)2
, (13)

where the renormalized parameter tD is defined through a
simple self-consistency relation:

tD = τD + 3λDq0

2
√

ctD
. (14)

Since tD is non-negative for all values of τD, the fluctuations
stabilize the nematic phase for all T < TQ. Furthermore, the
renormalized value of the vertex λD is calculated to be

lD = λD
1 − 2�

1 + �
, (15)

where � ∝ t
− 3

2
D . Since lD changes sign at 2� = 1, and since

mean-field theory predicts a positive sixth-order term [34],
we conclude that thermal fluctuations induce a first-order

transition. The negative value of lD and the form of Eq. (12)
further indicate that fluctuations will prefer multiple-q so-
lutions, which can contribute to the formation of random
Ising-like structures.

The Brazovskı̆ transition has been mostly discussed in
the context of weak crystallization [62,63], cholesteric liquid
crystals [64,65], and some biological systems [66,67]. How-
ever, the symmetry of the order parameter in these systems
implies a cubic term in the Landau free energy, and a first-
order transition is generally not surprising.

In magnetic systems, the Brazovskı̆ scenario remains
largely unstudied. To our knowledge, the only other magnetic
system where this type of transition has been clearly demon-
strated is a helical magnet MnSi [68–71]. Nevertheless, we
believe that the Brazovskı̆ scenario applies to many other frus-
trated systems with large ground state degeneracy [72]. Our
results demonstrate that the same arguments still hold for 2D
systems with a 1D degenerate manifold, which is applicable
to a large number of frustrated 2D magnets.

We note that higher-order effective interactions, which we
ignored in this Research Letter, will break the degeneracy of
the ring in χ0,D(q). However, provided that this splitting is
small, thermal fluctuations will still populate the whole ring,
meaning that the analysis above should still apply.

Concluding remarks. Our theoretical study of the Ising-like
phases in AB-SKL bilayers uncovered rich physical phenom-
ena. These phenomena bridge the properties of a broad range
of magnetic and nonmagnetic systems, such as liquid crystals,
helical magnets, and glasses.

The description of the ordered phases in our system de-
pends crucially on the partial magnetic ordering of the unit
cells, i.e., the transition from a Heisenberg paramagnet to an
XY chiral paramagnet. The coarse-graining procedure that
reflects this transition unveils the effective biquadratic interac-
tion between LOPs, which is responsible for the stabilization
of the chiral nematic phase. Recently, the interplay of chi-
rality and nematicity in metallic and semimetallic kagome
magnets has been discussed in the context of the electronic
properties [73]. Here we discuss a magnetic phase that is,
notably, simultaneously nematic and chiral. Even more re-
markable is the fact that this phase is stabilized over a large
range of parameters, thanks in part to the dual properties
of the HDM model. Furthermore, our analytical procedure can
be generalized to other triangular systems, which could aid the
experimental realization of chiral nematics.

We also note that our numerical results in the chiral para-
magnet phase are qualitatively similar to the experimental
results in the “fluctuation disordered” phase of MnSi, ap-
pearing above Tc at low fields [36,69]. Adding the Brazovskı̆
scenario to these similarities hints at universal properties of
the HDM models that apply to crystals with and without
inversion symmetry.

Finally, the glassy properties of the Ising-like phases de-
serve further investigation. It is not clear if a single-q stripe
always provides the ground state or if the Ising constraint may
lead to additional frustration and, as a result, large degeneracy.
A combination of chirality and nonuniform magnetic structure
makes these states an interesting subject for spintronic stud-
ies, since the itinerant electrons will couple to the emergent
electromagnetic fields [74,75]. It is also possible that the
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chiral nematic magnetic order may stabilize nematic elec-
tronic states in metallic AB-SKL.

To conclude, we hope that the richness of magnetic prop-
erties discussed in this Research Letter will serve as a
motivation for future studies of the AB-SKL.
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[47] M. Žukovič, Phys. Lett. A 382, 2618 (2018).
[48] D. H. Lee and G. Grinstein, Phys. Rev. Lett. 55, 541 (1985).
[49] S. E. Korshunov, JETP Lett. 41, 263 (1985).
[50] S. E. Korshunov, J. Phys. C: Solid State Phys. 19, 4427 (1986).

L060402-6

https://doi.org/10.1126/science.277.5330.1225
https://doi.org/10.1039/b818169a
https://doi.org/10.1103/PhysRevB.98.081102
https://doi.org/10.1371/journal.pone.0018442
https://doi.org/10.1103/PhysRevB.93.214431
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1038/s42254-019-0038-2
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1103/PhysRevLett.130.116701
https://doi.org/10.1063/1.1657616
https://doi.org/10.1103/PhysRevB.81.184409
https://doi.org/10.1103/PhysRevLett.96.027213
https://doi.org/10.1103/PhysRevLett.108.057206
https://doi.org/10.1103/PhysRevB.94.224403
https://doi.org/10.1103/PhysRevLett.68.855
https://doi.org/10.1103/PhysRevB.45.2899
https://doi.org/10.1103/PhysRevB.45.7536
https://doi.org/10.1103/PhysRevB.78.094423
https://doi.org/10.1103/PhysRevB.92.144415
https://doi.org/10.1103/PhysRevB.107.064407
https://doi.org/10.1103/PhysRevB.106.144433
https://doi.org/10.1038/nature15723
https://doi.org/10.1126/sciadv.1501870
https://doi.org/10.1103/PhysRevApplied.5.064009
https://doi.org/10.1088/0953-8984/23/11/112205
https://doi.org/10.1103/PhysRevB.103.144401
https://doi.org/10.1038/s41535-018-0137-9
https://doi.org/10.1088/0953-8984/21/45/452202
https://doi.org/10.1038/s41467-019-13675-4
https://doi.org/10.1002/adma.201701144
http://link.aps.org/supplemental/10.1103/PhysRevB.108.L060402
https://doi.org/10.1103/PhysRevD.36.515
https://doi.org/10.1103/PhysRevLett.102.197202
https://doi.org/10.1103/PhysRevB.18.2397
https://doi.org/10.1103/PhysRevB.102.144417
https://doi.org/10.1103/PhysRevLett.66.1090
https://doi.org/10.1088/0953-8984/1/30/004
https://doi.org/10.1103/PhysRevLett.106.067202
https://doi.org/10.1103/PhysRevLett.107.240601
https://doi.org/10.1103/PhysRevE.89.012126
https://doi.org/10.1103/PhysRevE.94.032140
https://doi.org/10.1088/1751-8121/aa89a1
https://doi.org/10.1016/j.physleta.2018.07.039
https://doi.org/10.1103/PhysRevLett.55.541
http://serkor.itp.ac.ru/pdf/85-XY_with_solitons-JETPL.pdf
https://doi.org/10.1088/0022-3719/19/23/007


CHIRAL NEMATIC AND FLUCTUATION-INDUCED … PHYSICAL REVIEW B 108, L060402 (2023)

[51] A. Messager and B. Nachtergaele, J. Stat. Phys. 122, 1 (2006).
[52] V. Drouin-Touchette, P. P. Orth, P. Coleman, P. Chandra, and

T. C. Lubensky, Phys. Rev. X 12, 011043 (2022).
[53] I. M. Jiang, S. N. Huang, J. Y. Ko, T. Stoebe, A. J. Jin, and C. C.

Huang, Phys. Rev. E 48, R3240 (1993).
[54] I. M. Jiang, T. Stoebe, and C. C. Huang, Phys. Rev. Lett. 76,

2910 (1996).
[55] A. Zelenskiy, M. L. Plumer, B. W. Southern, and T. L.

Monchesky (unpublished).
[56] J. N. Reimers, A. J. Berlinsky, and A.-C. Shi, Phys. Rev. B 43,

865 (1991).
[57] A. J. Berlinsky and A. B. Harris, Statistical Mechanics: An

Introductory Graduate Course (Springer International, Cham,
Switzerland, 2019), pp. 201–222.

[58] S. A. Brazovskı̆, Sov. Phys. JETP 41, 85 (1975).
[59] P. Chaikin and T. Lubensky, Principles of Condensed Matter

Physics (Cambridge University Press, Cambridge, 2000).
[60] A. Altland and B. D. Simons, Condensed Matter Field Theory,

2nd ed. (Cambridge University Press, Cambridge, 2010).
[61] D. J. Amit and V. Martin-Mayor, Field Theory, the Renormaliza-

tion Group, and Critical Phenomena, 3rd ed. (World Scientific,
Singapore, 2005).

[62] S. A. Brazovskı̆, I. E. Dzyaloshinskı̆, and A. R. Muratov, Sov.
Phys. JETP 66, 625 (1987).

[63] E. I. Kats, V. V. Lebedev, and A. R. Muratov, Phys. Rep. 228, 1
(1993).

[64] S. Brazovskı̆ and S. Dmitriev, Sov. Phys. JETP 42, 497 (1975).
[65] M. Seul and D. Andelman, Science 267, 476 (1995).
[66] M. O. Lavrentovich, E. M. Horsley, A. Radja, A. M. Sweeney,

and R. D. Kamien, Proc. Natl. Acad. Sci. USA 113, 5189
(2016).

[67] F. S. Bates, J. H. Rosedale, G. H. Fredrickson, and C. J. Glinka,
Phys. Rev. Lett. 61, 2229 (1988).

[68] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A.
Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).

[69] M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R.
Georgii, P. Böni, and C. Pfleiderer, Phys. Rev. B 87, 134407
(2013).

[70] A. Bauer, M. Garst, and C. Pfleiderer, Phys. Rev. Lett. 110,
177207 (2013).

[71] J. Kindervater, I. Stasinopoulos, A. Bauer, F. X. Haslbeck,
F. Rucker, A. Chacon, S. Mühlbauer, C. Franz, M. Garst, D.
Grundler, and C. Pfleiderer, Phys. Rev. X 9, 041059 (2019).

[72] M. V. Gvozdikova and M. E. Zhitomirsky, JETP Lett. 81, 236
(2005).

[73] J.-X. Yin, B. Lian, and M. Z. Hasan, Nature (London) 612, 647
(2022).

[74] T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz,
C. Pfleiderer, K. Everschor, M. Garst, and A. Rosch, Nat. Phys.
8, 301 (2012).

[75] K. Everschor-Sitte and M. Sitte, J. Appl. Phys. 115, 172602
(2014).

L060402-7

https://doi.org/10.1007/s10955-005-8071-1
https://doi.org/10.1103/PhysRevX.12.011043
https://doi.org/10.1103/PhysRevE.48.R3240
https://doi.org/10.1103/PhysRevLett.76.2910
https://doi.org/10.1103/PhysRevB.43.865
https://doi.org/10.1016/0370-1573(93)90119-X
https://doi.org/10.1126/science.267.5197.476
https://doi.org/10.1073/pnas.1600296113
https://doi.org/10.1103/PhysRevLett.61.2229
https://doi.org/10.1126/science.1166767
https://doi.org/10.1103/PhysRevB.87.134407
https://doi.org/10.1103/PhysRevLett.110.177207
https://doi.org/10.1103/PhysRevX.9.041059
https://doi.org/10.1134/1.1921323
https://doi.org/10.1038/s41586-022-05516-0
https://doi.org/10.1038/nphys2231
https://doi.org/10.1063/1.4870695

