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We investigate the effect of quantum noise on the measurement-induced quantum phase transition in monitored
random quantum circuits. Using the efficient simulability of random Clifford circuits, we find that the transition
is broadened into a crossover and that the phase diagram as a function of projective measurements and noise
exhibits several distinct regimes. We show that a mapping to a classical statistical mechanics problem accounts
for the main features of the random circuit phase diagram. The bulk noise maps to an explicit permutation
symmetry-breaking coupling; this symmetry is spontaneously broken when the noise is switched off. These
results have implications for the realization of entanglement transitions in noisy quantum circuits.
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Introduction. From the point of view of entanglement en-
tropy, ground states of one-dimensional many-body quantum
systems with short-range interactions mostly fall into two
classes: those with area law entanglement, where entangle-
ment entropy saturates to a constant independent of system
size, and critical phases with entanglement entropy scaling as
ln L, with L the system’s linear extent. Out of equilibrium, it
also becomes possible to generate volume law entanglement
and to induce area to volume law transitions. Examples have
been found in disordered spin chains between thermalizing
and localized phases [1–4] and in systems subject to measure-
ments. One example of a measurement-induced entanglement
transition is a spin chain under local random unitary gates and
projective measurements [5–18]. In the absence of measure-
ments, repeated application of gates to an initial product of
local pure states leads to a linear build-up of the entanglement
entropy [19–21] saturating at the Page value [22]. The effect
of carrying out local projective measurements with rate p, in
the limit where p is large, is to suppress the spread of quantum
information completely so that the entanglement obeys an
area law. In between there is a continuous quantum phase tran-
sition at which the volume law coefficient vanishes [5,6,8].
Measurement-induced entanglement transitions of different
sorts have by now been observed in various other quantum
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circuits [23–33], in free fermion systems [27,34–37], in sys-
tems with continuous monitoring [34,38–43], and long-range
interactions [32,36,44–48]. The weight of evidence is that
these continuous phase transitions are much like their equi-
librium counterparts with emergent conformal invariance and
associated critical exponents, though a complete field theory
description is lacking.

Since any physical system is always coupled to an en-
vironment, it is natural to ask what becomes of these
measurement-induced entanglement transitions in the generic
case where the system is noisy. References [27,49] made the
case that quantum noise breaks down a symmetry present in
the noise-free case, Refs. [43,49] studied effects of boundary
noise, and Refs. [50,51] studied a model with depolarization.
In this Letter, we address the effect of noise in the bulk with
projective measurements applied at rate p and with some
additional noise rate q. We find that the known transition
at p = pc, q = 0 is broadened and the finite p, q phase dia-
gram exhibits three quantitatively distinct regimes separated
by crossovers, Figs. 1(a) and 1(b). At small q this is reminis-
cent of a phase diagram where q = 0 displays spontaneous
symmetry breaking and where q plays the role of an explicit
symmetry-breaking field. We show, through a replica con-
struction, that this picture can be made precise: the quantum
noise appears as a new effective coupling in an effective
classical model that explicitly breaks a replica permutation
symmetry. Using the classical picture, we can account for the
main features of the random circuit phase diagram. In the
following, we introduce the protocol, discuss our numerical
findings, and motivate a classical model that allows for their
qualitative understanding.

Circuit and observables. We consider a circuit model
consisting of a chain of L qudits with local Hilbert space
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FIG. 1. (a) |IAB(L, p, q) − IAB(L, p, q = 0)|/IAB(L, p, q = 0)
and (b) |IAB(L, p, q) − f (L, p, q)|/IAB(L, p, q) for a system with
L = 500. For each p, f (L, p, q) = b(L, p) log(1/q) + c(L, p) is
fitted to IAB(L, p, q) with q in region I, where IAB ∼ log(q). The
three marked regions correspond to IAB ∼ log(1/q) (I), IAB ∼ q0

(II), and IAB ∼ exp(−q) (III). (c) A 1D qubit chain is evolved by
applying random uniformly distributed Clifford gates (red blocks) to
neighboring pairs of sites in a brick wall pattern. After each Clifford
bilayer, an unmonitored measurement is performed on each site
with probability q (blue circles), and then a monitored measurement
is performed on each site with probability p (yellow circles).
(d) The model with p = q = 0 has a SQ × SQ � Z2 symmetry,
where SQ × SQ refers to permutations of the Q copies of U and,
separately, permutation of U ∗ while Z2 corresponds to swapping
U and U ∗. This symmetry spontaneously breaks down to SQ � Z2

when p < pc, q = 0 and explicitly breaks down to SQ � Z2 when
q �= 0, ∀p ∈ [0, 1].

dimension d . Each single discrete time step of the circuit
is composed of four layers [Fig. 1(c)]. The first two layers
consist of local random unitary gates

∏
r u2r,2r+1 followed

by
∏

r u2r−1,2r in a brick wall pattern that ensures all sites
communicate given enough time. After the random unitary
bilayer, unmonitored measurements are performed on each
site, r, with probability q. These take the state ρ to the mixed
state

∑
a Ma†

r ρMa
r , where Ma

r = |r, a〉〈r, a| for outcomes a =
1, . . . , d [52,53]. The final layer performs monitored (projec-
tive) measurements with probability p, taking the mixed state
ρ to Ma†

r ρMa
r /‖Ma†

r ρMa
r ‖ with probability pa = ‖Ma†

r ρMa
r ‖.

The output state of the circuit with measurement outcomes
m = (m1, m2, . . . , mT ) is

ρm =
d∑

μ1,...,μT =1

KμT MmT UT . . . Kμ1 Mm1U1ρ0

× U †
1 M†

m1
K†

μ1
. . .U †

T M†
mT

K†
μT

, (1)

where T is the circuit depth, M0 = √
1 − p, Mi=1,...,d =

p|i〉〈i|, K0 = √
1 − q, and Ki=1,...,d = q|i〉〈i|.

We characterize the system using the entropy of subsys-
tem A, SA = −TrA(ρA log ρA), with ρA = TrBρ the reduced
density matrix of subsystem A, obtained by tracing out its
complement, B. Since the overall state of A ∪ B is no longer
pure, we also consider the mutual information, IAB = SA +
SB − SAB, with SAB the entanglement entropy of the sub-

system A ∪ B. We note that IAB = 2SA when q = 0 as SAB

vanishes in this case.
Numerical phase diagram. In order to achieve system sizes

up to a few hundred sites, we set d = 2 and make use of
the efficient simulability of Clifford circuits with both above-
mentioned single-site measurements, i.e., of stabilizer circuits
[54]. As uniformly sampled gates within the stabilizer group
constitute a t design of order t = 3 [55,56], the second Renyi
entropy of local random Clifford gates with monitored and
unmonitored measurements reproduce the same result as their
local Haar-distributed counterpart [9,11,57]. For convenience
we take an entanglement cut dividing the chain exactly in two.

We now analyze the numerical results of Figs. 1(a) and
1(b), starting from the previously known p = 0 line. For
p = q = 0, the circuit as probed by local observables rapidly
reaches a steady state and the entanglement entropy grows
linearly saturating at a value that is proportional to L. For
q = 0, p = 1, there is a projective measurement at each site
for every time step so the state is a product state with short-
range entanglement. There is a transition in the entanglement
at 0.30 < pc < 0.31, q = 0 [58]. The entanglement entropy
obeys an area law for p > pc and varies as SA(L, pc, q =
0) = β(pc) log L at criticality. Empirically, for p < pc, there
is a volume law with a logarithmic correction, SA(L, p, q =
0) = α(p)L + β(p) log L + γ (p), with limp→p−

c
β(p) �= 0 and

limp→p+
c
β(p) = 0, and α(p) = (pc − p)ν�(pc − p) with

ν ≈ 1.3 [9].
Now we turn to the finite q behavior. For p = 0, q �= 0,

the state asymptotes to the infinite temperature mixed state
essentially because the unmonitored measurements prolifer-
ate branches of measurement outcomes in the density matrix
leading to rapid decoherence. The circuit does not distinguish
between measurement outcomes so the diagonal entries in the
measurement basis become equal.

For finite p and q, the steady state density matrix is non-
trivial as there is competition between branch proliferation
generated by q and branch reduction driven by p. We find
three distinct finite p, q regimes as indicated in the phase
diagram of Fig. 1. The q = 0 transition is broadened into a
crossover at finite q. In addition, the mutual information obeys
an area law for all finite q. For p > pc and small q, the mutual
information IAB is q independent and equal to the area law
entanglement SAB for q = 0. In the region I of Fig. 1 (spanning
p < pc) and small q all the way to p > pc and large q there is a
logarithmic regime IAB(L, p, q) = b(L, p) ln(1/q) + c(L, p).
This scaling is shown in Fig. 2(a) for p < pc and above the
saturation regime for p > pc in panel (d). At the transition
point itself, the finite size cuts off the logarithmic scaling at
b(L, pc) ln L. We find that the coefficients b(L, pc) and β(pc)
are compatible, as shown in Fig. 2(c). This has the important
implication that the underlying correlation length grows as a
power law ξ ∼ 1/qν with exponent ν = 1. For p < pc, the
logarithmic divergence is cut off by the volume law entangle-
ment implying logarithmic growth of the correlation length. A
third scaling regime is observed for small p and q close to 1
where IAB falls off exponentially in q [59].

Mapping to a classical statistical mechanics model. The
smearing of the phase transition into a crossover at finite q
is reminiscent of a classical equilibrium statistical mechan-
ics model where q explicitly breaks the symmetry that is
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FIG. 2. (a) Mutual information, IAB(q), for a system with
L = 500 and for p ∈ {0.02, 0.08, 0.14, 0.22, 0.3}. Solid lines are
f (L, p) = b(L, p) log(1/q) + c(L, p) fits to the points with q =
0.00008, 0.0008, 0.002, 0.004. (b) Parameter b(L, p) of the fit in (a).
(c) Zoom in of (b): the critical point of the transition at q = 0 is
pc ∈ [0.30, 0.31]. The horizontal dashed line is β(pc ) ∼ 1.6 [9] in
SA(L, p, q = 0) = α(p)L + β(p) log L + γ (p). (d) Mutual informa-
tion, IAB(q), for a system with L = 500 and for p ∈ {0.34, 0.4, 0.5}.
Solid lines are b(L, p) log(1/q) + c(L, p) fits to the points in region
I of Fig. 1. One can see that IAB(q) ∼ q0 for small q.

spontaneously broken by tuning p. We now make this connec-
tion more concrete by mapping the p, q model to a classical
statistical mechanics problem building on work from Ref. [60]
for random unitary circuits and Ref. [14] for the q = 0 model.
It will turn out that this mapping accounts for many other
features of the p, q phase diagram.

For this section, we generalize the qubit (two states per
site) model considered above to a model of qudits (d states
per site). We consider the nth Rényi entropy S(n)

A = 1/(1 −
n) ln[TrA(ρn

A)], averaged over Haar random unitaries {U }
within each layer of the circuit and measurement outcomes,
m, taken to include both monitored and unmonitored mea-
surements

S̄(n)
A =

∫
dU

∑
m

1

1 − n
ln

[
TrA

(
ρn

A,m

)
Tr(ρm)n

]
Tr(ρm). (2)

We introduce the swap operator 	
(n)
A =∑

[i] |iA
gn

cyc(1)i
B
1 , . . . , iA

gn
cyc(n)i

B
n 〉〈iA

1 iB
1 , . . . , iA

n iB
n |, which performs

a cyclic permutation of n replicas on A while leaving B sites
invariant. We also use the identity ln x = limk→0

xk−1
k to

rewrite the logarithms, introducing an additional replica index
k, giving

S̄(n,k)
A = 1

k(1 − n)
Tr

{[
	⊗k

n,A ⊗ 1−1⊗(nk+1)][∫dU
∑

m

ρ⊗(nk+1)
m

]}
.

(3)

FIG. 3. Top: mapping from the quantum random circuit (a) with
both projective and unmonitored measurements to a classical model
with permutation degrees of freedom living on the sites of an
anisotropic honeycomb lattice (b). The vertical bonds carry weights
coming from the random unitaries and the half-shaded bonds carry
weights depending on p and q. Panel (c) is the schematic phase dia-
gram arising from the classical model. Panel (d) shows two domain
wall configurations with pinning on the upper boundary to g(k, n, 1)
on the left and e on the right. In the spontaneously broken phase both
configurations can arise with equal weight whereas in the explicitly
broken phase the state is biased towards the upper plot with e across
the system.

In this form one may integrate over the random unitaries and
the measurement outcomes. Details are spelled out in [59].
Here we report the outcome of the averaging.

It turns out that S̄(n,k)
A is related to the free energy cost of

a domain wall in a classical statistical mechanics model [60].
This classical lattice model has degrees of freedom gi on each
site, which are elements of the permutation group SQ of Q ≡
kn + 1 objects. The partition sum is

ZA =
∑

{gi∈SQ}

⎡
⎣ ∏

〈i, j〉∈EV

W
(
gig

−1
j

) ∏
〈i, j〉∈EZZ

WKM (gi, g j )

×
∏
i∈∂0

d |gi|
∏

i∈∂T ∩B

d |gi|
∏

i∈∂T ∩A

d|g(n,k,1)−1gi|
⎤
⎦. (4)

The anisotropic couplings are between nearest neighbors on
a honeycomb lattice [Fig. 3(b)]. With i, j as neighboring
honeycomb sites and EV denoting the vertical bonds and
EZZ the zigzag bonds, the W (g−1

i g j ) act on the EV bonds.
These are Weingarten functions originating from the average
over unitaries. On the EZZ bonds, the weights for q = 0 are
WKM (g, g′)|q=0 = (1 − p)Qd |g−1g′| + pQdQ. Here |g| means the
number of cycles in permutation g. The second line in Eq. (4)
consists of the boundary conditions that bias permutation de-
grees of freedom towards the trivial permutation on the early
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and late time boundaries except along A where they are fixed
to permutation g(n, k, 1) [59]. Crucially, boundaries aside,
the model has a global SQ × SQ � Z2 symmetry illustrated in
Fig. 1(d). The U and U ∗ originate from the two copies that ap-
pear Q = nk + 1 times when computing the nth Rényi entropy
with k replicas. The physics is invariant under permutations of
both sets of Q replicas and under the swap symmetry between
the U and U ∗. From Eq. (4) and weights one sees that, for
large p, the local degrees of freedom fluctuate wildly while,
for small p, permutations on neighboring bonds tend to lock
together breaking one of the global permutation symmetries.
In fact, there is a critical p, analogous to temperature, below
which there is long-range order that spontaneously breaks the
symmetry down to SQ � Z2.

In the mapping we note that the quantum model is recov-
ered in the Q → 1 replica limit. In this context, we briefly
mention one further case of interest where the probability
of an outcome is taken to be independent of the state and
a postselection is carried out over all circuits for a fixed set
of measurement outcomes. This “forced measurement” sce-
nario also has a measurement-induced transition. The major
difference in the classical mapping when the measurements
are forced is a simplification: the Born probability is not con-
sidered so the parameter Q = rn instead of rn + 1 meaning
that the physical replica limit is Q → 0 [26].

One may now understand features of the two phases from
the classical model as the averaged replicated Rényi entropy is
S̄(n,k)

A = n
1−n

ZA−Z∅
Q−1 where ZA is defined in Eq. (4) and Z∅ has

homogeneous boundary conditions corresponding to A → ∅.
The averaged Rényi entropy is related to the free energy cost,
FA − F∅, of a domain wall in the statistical mechanics model
via S̄(n)

A = limQ→1 S̄(n,k)
A = limk→0

FA−F∅
k(n−1) , with FA = log(ZA)

and F∅ = log(Z∅). In fact, the averaged Rényi entropy is the
free energy cost of a domain wall with fixed permutations
[Fig. 3(d) unbiased between the two configurations shown].
Evidently, this costs O(L) in the ordered phase and O(L0) in
the paramagnetic phase corresponding to the volume and area
law phases, respectively.

One may extend this calculation to include the unmoni-
tored measurements. The weights WKM then become

WKM (gi, g j ) = (1 − p)Q

[
(1 − q)Qd |gg′−1| +

Q∑
l=1

ql (1 − q)Q−l

×
∑

{r1,...,rl }∈Bl,Q

d |gg′−1h
t1
r1 ...h

tl
rl |

]
+ pQdQ, (5)

where Bl,Q is the set of subsets of 1, 2, . . . , Q with l ele-
ments and where hr = [g−1(r) r] is a two cycle that permutes
replica index r and g−1(r) and tk = 1/2 + sgn(|gg′−1| −
|gg′−1hrk |)/2, is either 0 or 1. Despite the notational complex-
ity, the hr insertions have a relatively simple effect. That is
to say if, in the permutation gg′−1, the elements g−1(r) and
r belong to different cycles, then gg′−1htk

rk
joins the cycles

to which g−1(k) and k belong and |gg′−1| − |gg′−1hrk | = 1.
If the elements g−1(k) and k already belong to the same
cycle, then |gg′−1| − |gg′−1hrk | = −1 and tk = 0, such that
gg′−1htk

rk
= gg′−1. Overall, Eq. (5) reduces to the q = 0 weight

quoted above.

Comparison of classical picture and quantum model. We
can now interpret the random circuit results from the point of
view of the classical model. The primary effect of introducing
quantum noise is an explicit breaking of the symmetry of the
model down to SQ � Z2 to which, we recall, it is sponta-
neously broken when q = 0. In one sense, one of the global
permutation symmetries is broken as quantum noise locks
together U and U ∗ copies. We may understand the explicit
symmetry breaking from another perspective by inspecting
the large d , small q limit. In this limit, the q = 0 model
reduces to a Q! state Potts model that for Q > 2 displays a
first-order phase transition and for Q � 2 a continuous phase
transition [61]. Expanding Eq. (5) linearly in q and collecting
the largest powers of d we obtain [59]

WKM (gi, g j ) = dQ((1 − p)Q[(1 − q) + q|g j |1]δgi,g j + pQ),
(6)

where |g|1 denotes the number of one cycles in g. Thus the
leading effect of q is to pick out the permutation with the
largest number of cycles—the trivial permutation from all Q!
states equivalent to applying directly a symmetry-breaking
field that biases the system towards the e permutation with
an extensive contribution to the free energy [Fig. 3(d), now
biased towards the upper configuration].

Thus, for finite p, quantum noise drives the system to the
infinite temperature fixed point of the classical model. This
accounts for the most prominent feature of the phase diagram:
the smearing of the transition into a crossover for q �= 0. For
p = 0, the system instead flows to the infinite-field fixed point
corresponding to the maximally mixed state.

Turning to the observables, we note that SAB vanishes for
q = 0 but exhibits a volume law for q �= 0. From the point of
view of the classical model, when q = 0, SAB is the free energy
difference of a system with boundary degrees of freedom
pinned to a nontrivial permutation across the entire system
and a system with a boundary pinned to the trivial permutation
[Fig. 3(d)]. But, for q = 0, the free energy is indifferent to
the precise pinning field so the free energy difference must
vanish. This ceases to be the case when q �= 0 because q
distinguishes the trivial permutation leading to an O(L) free
energy difference as observed in the quantum model. A simi-
lar argument allows us to understand why IAB has an area law
for q �= 0: the domain wall cost is a constant α times L in
SAB which is canceled off by the two αL/2 contributions in SA

and SB.
Finally the classical model provides some insight into the

log q dependence of the mutual information. In the vicinity
of the q = 1 line, one may carry out the analog of a high
temperature expansion with Boltzmann weights exp(c log q).
Since q is close to 1, the appropriate expansion parameter is
log q. Then for p < pc, the only further scale that enters the
problem is L but until this cutoff is reached there is nothing
to interfere with the log q growth from the high temperature
expansion.

Discussion and conclusion. We have introduced and stud-
ied a random circuit model subjected to both projective and
unmonitored measurements. We have shown that, at finite q,
the transition known for projective-only measurements (q =
0) is washed out and the phase diagram is reminiscent of that
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of a finite temperature ferromagnet with q playing the role
of an applied field. We have made this connection precise
through a mapping to a classical statistical mechanics model
with finite replica index Q (the quantum model corresponding
to replica index Q → 1). In the classical model, q explic-
itly breaks down the global permutation symmetry of the
model to SQ � Z2. Thus, quantum noise (originating, e.g.,
from coupling to a bath) is a relevant operator driving the
system to the infinite temperature fixed point. We have seen
that various features of the quantum model follow from the
classical statistical mechanics analog. It is amusing to note
that the passage from pure to mixed states by switching on
q is reflected in the classical model as a field that affects the
response of the system but not the state space. Indeed, in the
classical model the difference between the pure and mixed
states is only apparent through boundary conditions.

What is the broader significance of the main result of
this Letter? All quantum systems are subject to quantum

noise coming from the environment. Our result suggests
that, in a realistic setting, the entanglement transition driven
by monitored measurements will be smeared out by the
environment. In addition, our work shows that nonequilib-
rium mixed state dynamics in Hilbert space in the presence
of a quantum bath can be viewed as breaking a del-
icate symmetry that is only present for pure states. It
would be of considerable interest to devise a model with
an entanglement transition in the presence of bulk noise
[10]. Whether this is possible or not has a bearing on
the experimental simulability of these entanglement transi-
tions as well as implications for error-corrected quantum
computers [62].
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