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The non-Hermitian skin effect (NHSE) refers to the extensive number of eigenstates of a non-Hermitian
system that are localized in open boundaries. Here, we predict a universal phenomenon that the local
particle-hole(-like) symmetry (PHS) leads to nonlocal pairs of skin modes distributed on different boundaries,
manifesting a nonlocalization of the local PHS, which is unique to non-Hermitian systems. We develop a generic
theory for the emergent nonlocal symmetry-protected NHSE by connecting the non-Hermitian system to an
extended Hermitian Hamiltonian in a quadruplicate Hilbert space, which maps the skin modes to the topological
zero modes, and the PHS to an emergent nonlocal symmetry in the perspective of many body physics. The
predicted nonlocal NHSE is robust against perturbations. We propose optical Raman lattice models to observe
the predicted phenomena in all physical dimensions, which are accessible with cold-atom experiments.

DOI: 10.1103/PhysRevB.108.L060204

Introduction. The non-Hermitian physics are ubiquitous
in the systems effectively described by the non-Hermitian
Hamiltonians, such as open quantum systems [1–3], quasipar-
ticles in many body systems [4–7], the acoustic and photonic
systems with gain and loss [8–11], and so on. There are three
important topics attracting theoretical interests: (i) the va-
lidity of non-Hermitian Hamiltonians in characterizing open
systems [12–14], (ii) the topological classification of the
non-Hermitian lattice systems [15–24] or exception points
(EPs) [11,25–27], as the generalization of the well-known
classification theory for Hermitian topological insulators or
semimetals [28–30], and (iii) the nonperturbative breakdown
of the Bloch theorem due to the sensitivity to the boundary
conditions [18,31–56]. The key result of the last one, termed
non-Hermitian skin effect (NHSE), is a phenomenon describ-
ing the localization of a volume-law number of eigenstates at
the boundary under the open boundary condition (OBC). The
skin modes refer to those localized states that are absent in
Hermitian systems.

Being localized states on the boundary, the skin modes
share similarities with, but also have differences from, topo-
logical boundary modes. A skin mode can be determined by
the winding number of the complex spectrum under the peri-
odic boundary condition (PBC) [39,56], while such winding
number is defined for each fixed mode, rather than on the
whole bulk. The skin mode may also be interpreted by the
topology of a related extended Hermitian Hamiltonian, which
the non-Hermitian system is one-half of [49–51], while the
skin modes and topological boundary modes are different
in nature. Further, while the existence of the NHSE could
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be characterized without symmetries, the effects of time-
reversal symmetry and spatial symmetry on the NHSE are also
recently investigated [49,50,52–56], showing that the symme-
tries may enrich the features of the NHSE.

In this letter, we predict a universal phenomenon for
non-Hermitian system that when the local particle-hole(-like)
symmetry (PHS) is present, the non-Hermitian skin modes
must appear in nonlocal pairs, localized in spatially separated
open boundaries, and further propose realistic models for
experimental observation. While the PHS is local, we show
with a sophisticated proof that the PHS emerges as a nonlocal
one on the skin modes, and transforms the skin mode in
one boundary to that in another (in the opposite boundary if
under rectangular geometry). This result manifests a profound
nonlocalization of the local PHS on the non-Hermitian skin
modes, which can be further interpreted with the many-body
physics in the Hermitian counterparts. Moreover, the two skin
modes on different boundaries and connected by the PHS are
not degenerate, but have opposite eigenvalues. Thus the skin
modes with emergent nonlocal correspondence are robust to
the perturbations. The experimental realizations of the present
study are proposed.

We develop a generic theory, which is valid in arbitrary
dimensions, without relying on the details of the Hamiltonian,
applicable to amorphous systems and fractals, nor on the
generalized Brillouin zone (GBZ) theory, which is not reliable
in high dimensions [18,38–40]. Figure 1 outlines the basic
idea of the theory. We construct an extended Hermitian topo-
logical Hamiltonian in a quadruplicate Hilbert space, which
the generic non-Hermitian system under consideration is one-
quarter of. The skin modes and the PHS of the non-Hermitian
Hamiltonian are mapped to topological zero modes and a new
symmetry of the extended Hermitian system, respectively. In
the many-body physics level, one shall show that the local
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FIG. 1. The mapping between the skin modes of non-Hermitian
Hamiltonian and the topological zero modes of the extended Her-
mitian Hamiltonian in the 1D and 2D cases. In (a1) and (b1) the
blue (red) regions denote the right (left) eigenstates’ wavefunction
distributions of the skin modes. The right eigenvector |E〉skin and
the left eigenvector 〈〈−E |skin (the subscripts are omitted in the fig-
ures) are locally related by the PHS S = UP and so do 〈〈−E |skin

and | − E〉skin. By the construction of the extended Hamiltonian in
Eq. (2), these right (left) eigenvectors are mapped to the topological
zero modes |χ3〉topo and |χ1〉topo (|χ2〉topo and |χ4〉topo) in (a2) and
(b2). And the PHS S is mapped to the emergent nonlocal symmetry
S̃′ that relates the spatially separated zero modes when all negative
energy bands of the Hermitian Hamiltonian are filled [denoted by the
colored background in (b2)].

symmetry emerges as a nonlocal one if projected onto the
topological zero modes on boundaries. This further transforms
the skin modes localized on different boundaries when map-
ping back to the non-Hermitian system.

The generic non-Hermitian system and the extended Hamil-
tonian. We start with a generic non-Hermitian system whose
first-quantized Hamiltonian H respects the PHS S = UP as
[57]

UHT U −1 = −H, UU ∗ = 1, (1)

where U is unitary and local, and P is the transpose op-
eration. If |E〉skin is a right eigenstate with eigenvalue E ,
i.e., H |E〉skin = E |E〉skin, then there is a locally related left
eigenstate 〈〈−E |skin = (U †|E〉skin )T with eigenvalue −E , i.e.,
〈〈−E |skinH = −E〈〈−E |skin. We shall prove that |E〉skin and
| − E〉skin (the right eigenvector dual of 〈〈−E |skin) are al-
ways localized at opposite boundaries, rendering an emergent
nonlocal correspondence of the skin modes originated from
the local PHS. This prediction is universal and is nontrivial,
since the microscopic Hamiltonian does not have any nonlocal
symmetries to relate the spatially separated skin modes.

Our main idea to prove the emergent nonlocal correspon-
dence is based on an extended Hermitian Hamiltonian we
construct in this paper that

H̃E =

⎛
⎜⎜⎝

H† + E∗
H − E

H† − E∗
H + E

⎞
⎟⎟⎠. (2)

Note that E �= 0 for the present consideration, since the de-
generacy of |E = 0〉skin and 〈〈−E = 0|skin will force them to
be extended in general [58]. Before proceeding to the rigorous
proof of the emergent nonlocal correspondence, we point out

several important properties of the extended Hamiltonian. We
start with three properties associated with the first-quantized
Hamiltonian H̃E . Firstly, from the PHS of the original Hamil-
tonian H , we obtain the PHS of the extended Hamiltonian,
S̃ = Ũ P̃, satisfying Ũ H̃T

E Ũ −1 = −H̃E , where P̃ is the trans-
pose operation on the extended Hamiltonian and

Ũ =

⎛
⎜⎜⎝

U
U

−U
−U

⎞
⎟⎟⎠. (3)

Further, the Hermitian Hamiltonian H̃E has four topological
zero modes mapped from the skin modes |E〉skin and | − E〉skin

that

|χ3〉topo = (0, 0, |E〉skin, 0)T ,

|χ1〉topo = (| − E〉skin, 0, 0, 0)T ,
(4)

and |χ2〉topo = Ũ |χ1〉∗topo, |χ4〉topo = −Ũ |χ3〉∗topo. Finally, the
extended Hermitian Hamiltonian can be decomposed into two
copies with a proper unitary transformation H̃E → H+E ⊕
H−E , where H±E are the two decoupled blocks [58] re-
specting the artificial chiral symmetry �a(b)H+E (−E )�

†
a(b) =

−H+E (−E ), with �a/b = diag{1, 1,∓1,±1} in the basis before
decomposition. Note that �a(b) are not symmetries of the
first-quantized Hamiltonian H̃E . However, from �a(b) we can
define symmetries of H̃E in the second quantization: �̂a(b) =
�a(b)K̂a(b)P̂a(b), with the complex conjugation K̂a(b) and P̂a(b) =∏

js(c
†
js,a(b) + c js,a(b) ) being the particle-hole transformation

[59] on the H+E (H−E ), where j is position index and s denotes
the remaining degree of freedom [e.g., the (pseudo)spin].
Combining S̃ and �̂a we reach then an important symmetry
S̃′ = �̂aS̃ of H̃E in second quantization, which is essential to
our proof and relates |χ3〉topo and |χ1〉topo (and thus |E〉skin and
|−E〉skin) nonlocally. Unlike �̂a, we note that S̃′ is a symmetry
directly mapped from the PHS of the original Hamiltonian
H . Bearing these features in mind, we are now ready to
establish the generic nonlocal correspondence between these
topological zero modes and that between the non-Hermitian
skin modes.

Emergent nonlocal correspondence of the skin modes. Now
we turn to the rigorous proof of our key result, which is
organized in three basic steps. Firstly, we determine the lo-
calization properties of the topological zero modes and skin
modes. For convenience we consider first the one-dimensional
(1D) case, in which the bulk spectrum of H̃E is fully gapped
[58] and the topological zero modes are protected by the chiral
symmetries �a(b) of the decoupled blocks. Since U (or Ũ ) is a
local operation, |χ1,2〉topo must localize in the same end and so
do |χ3,4〉topo. The topological zero modes |χ2〉topo and |χ3〉topo

of the Hamiltonian H+E have opposite chiralities of �a. Thus
they must be localized in the opposite ends (i.e., left-hand
and right-hand boundaries) [51,60–63], similar for |χ1,4〉topo.
These results naturally hold for d-dimensional systems (d >

1), but the difference is that the bulk of the extended Hermitian
system is gapless if |±E〉skin are first-order skin modes [56,58]
and is usually fully gapped if |±E〉skin are dth-order skin
modes [33,50,54] (see a detailed discussion for different sce-
narios in the Supplemental Material, SM [58]), manifesting
a mapping between the non-Hermitian skin modes and zero
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corner modes of higher-order topological semimetals [64–66]
or insulators [64,67,68] (see also Fig. 1). In general, we can
conclude that |E〉skin and 〈〈−E |skin localize in one boundary,
while | − E〉skin and 〈〈E |skin in a different boundary.

Secondly, we show the emergent nonlocal correspondence
between the topological zero modes given by the symmetries
S̃′ = �̂aS̃ mapped from the PHS of the original non-Hermitian
system. To show the emergent nonlocal nature of S̃′, we exam-
ine its action on the many-body state γ

†
3 |�bulk〉, with γ

†
i being

the creation operator of the topological zero mode |χi〉topo and
|�bulk〉 = ∏

E ′<0 c†
E ′,a

∏
E ′′<0 c†

E ′′,b|vac〉 characterizing all the
bulk states with negative energies. The two products denote
the creation of the states for H+E and H−E , respectively. With
some algebra we can show that [58]

S̃′γ †
3 |�bulk〉 = γ

†
1 |�bulk〉. (5)

The key feature is that S̃′ leaves the many-body bulk state
invariant, while transforms the zero modes. The underlying
physics is that the symmetry connects the eigenmodes of
opposite energies and thus operates differently on the bulk and
zero boundary modes (see SM [58]). This renders a nonlocal
correspondence between the two zero boundary modes. To
characterize the relation directly, we project the symmetry
onto the boundary as Sproj = �S̃′�, with � denoting projec-
tion of the many-body state onto the subspace of boundary
zero modes. It follows then

Sproj|χ3〉topo = |χ1〉topo. (6)

Finally, we obtain the nonlocal correspondence for the
skin modes of the non-Hermitian system. Note that the above
zero modes are constructed from the skin modes according to
Eq. (4), and their corresponding wave functions are identical.
Thus we know that the pair of skin modes |E〉skin and |−E〉skin

are localized in opposite boundaries, and the correspondence
Eq. (6) renders

Sproj|E〉skin = | − E〉skin. (7)

Similarly, one can prove Sproj relates the other two zero modes
Sproj|χ2〉topo = |χ4〉topo and so are the pair of skin modes for
the left eigenvectors 〈〈E |skinS†

proj = 〈〈−E |skin. Since the pro-
jective symmetry Sproj can always be constructed as long as the
PHS exists for the non-Hermitian system, we have established
the emergent nonlocal correspondence of the skin modes with
local PHS.

A few remarks are worthwhile to provide. From the generic
theory we know that the predicted symmetric NHSE does
not necessitate any nonlocal symmetry but manifests a non-
localization of the local PHS. Also, the proof and results
are broadly applicable to non-Bloch systems including qua-
sicrystals, amorphous systems, and fractals, because the above
theory exploits only local symmetries and does not rely on
spatial translational symmetry. See also numerical verifica-
tion in the SM [58]. Moreover, for completeness we discuss
the topological zero modes with E = 0, if existing for the
non-Hermitian Hamiltonian, for which the above proof using
extended Hermitian Hamiltonian no longer applies. We have
shown that in the SM [58], for such zero modes, the right
and left eigenstates |E = 0〉 and 〈〈E = 0| are localized in
the same boundary [Figs. 2(c1) and 2(c2)], in sharp contrast

to the skin modes. Thus the skin modes and the topological
boundary states are different in nature even they both exist as
boundary states for a non-Hermitian system. Finally, in real
experiment the symmetric NHSE can be observed even when
the PHS is not perfectly satisfied and deviates to a certain
extent [Fig. 2(d)]. This robustness stems from the nondegen-
eracy of the two skin modes |E〉skin and | − E〉skin, in sharp
contrast to the symmetric NHSE related by time-reversal sym-
metry [50,52,53] and the nonlocal spatial symmetry [54,55],
where the symmetry-related skin modes are degenerate and
thus unstable against infinitesimal perturbations.

Models and experimental proposals. We propose now mod-
els in 1D, 2D, and 3D with the PHS to observe symmetric
NHSE, which are experimentally feasible based on the Ra-
man optical lattices as broadly studied in quantum simulation
with ultracold atoms [63,69–74]. Denoting by | js〉 the single-
particle state at j′s site with spin s = (↑,↓), the Hamiltonian
of the 1D lattice model is

H1D =
∑

j

[(mz + iγ↓/2)(| j ↑〉〈 j ↑ | − | j ↓〉〈 j ↓ |)

− t0(| j ↑〉〈 j + 1 ↑ | − e−iK | j ↓〉〈 j + 1 ↓ | + H.c.)

+ tso(| j ↓〉〈 j + 1 ↑ | − eiK | j + 1 ↓〉〈 j ↑ | + H.c.)],

(8)

where the non-Hermiticity is given by γ↓ term, the Zeeman
term mz and spin-conserved(flipped) hopping coefficient t0(so)

are controllable constants and K is the projection of the
Raman beam’s wave vector on the axis of the optical lattice.
The PHS of this model is S = UP = e−iK jσxP, with P being
the transpose operation. The centrosymmetric spectrum and
the symmetric NHSE are shown in Figs. 2(a), 2(b), and 2(c1)–
2(c4), confirming the prediction from generic theory. The 1D
model can be easily extended to the 2D one with Hamiltonian

H2D =
∑

�j
{(mz + iγ↓/2)(| �j ↑〉〈�j ↑ | − |�j ↓〉〈�j ↓ |)

−
∑

k=x,y

[t0(| �j ↑〉〈�j + �ek ↑ | − e−i �K ·�ek | �j ↓〉〈�j + �ek ↓ |)

+ t k
so(| �j ↓〉〈�j + �ek ↑ | − ei �K ·�ek | �j + �ek ↓〉〈�j ↑ |)

+ H.c.]}, (9)

where �K is the wave vector of the Raman beam in Fig. 3(d)
and t k

so, k = (x, y) are the spin-flipped hopping coefficients in
different directions. The corner skin effect shown in Fig. 3(b)
with most eigenstates being localized can be comprehended
by the first-order NHSE under cylinder geometry [56,58].
This model respects the PHS S = UP = e−i �K · �jσxP and thus
the corner skin modes appear in nonlocal pairs as illustrated
by Figs. 3(c1)–3(c4). Without the damping term (i.e., γ↓ = 0)
the above models are similar to the D class superconductors
and are topologically characterized by Z2 (for 1D) and Z (for
2D) indices [28–30]. We have also studied the non-Hermitian
2D Dirac semimetal and 3D Weyl semimetal models, and
confirmed the nonlocal symmetric NHSE. For simplicity we
have put the details in the SM [58].

To see the experimental feasibility of the proposed models,
we take the 2D model in Eq. (9) as example. The experimental
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FIG. 2. The spectra, symmetric NHSE, localized states, and the robustness of skin modes of the 1D model in Eq. (8). (a) The OBC (blue,
larger dots) and PBC (red, smaller dots) spectra of the model in Eq. (8) with t0 = tso = 1.0, mz = 0.3, γ↓ = 0.6, K = 2π/3 and the size of the
system L = 50. (b) Density profile of eigenstates in the real space, summed over all eigenstates and spin degree of freedom, in which the inset
plots the profile of the two bands’ eigenstates respectively. [(c1),(c2)] The wavefunction distribution of the pair of topological zero modes’
right eigenvectors ψtopo1/2,R (c1) and left eigenvectors ψtopo1/2,L (c2). [(c3),(c4)] The wavefunction distribution of a pair of skin modes’ right
eigenvectors ψ±E ,R and left eigenvectors ψ±E ,L with eigenenergy ±E = ±(0.27 − 0.05I) (blue and red dashed respectively). (d) The OBC
spectrum of the same model but with spin-dependent spin-conserved hopping coefficients t0↑ = 0.5, t0↓ = 1.0 breaking the PHS. The inset
plots the density profile in this case, illustrating the skin modes distributed in opposite ends.

scheme illustrated by Fig. 3(d) realizes a cold-atom 87Rb
system with Hamiltonian

H ′
2D =

∫
d2�r

[ ∑
s=↑↓

|�rs〉
(

− h̄2 �∇2

2m
+ V (�r) + δ

2
(σz )ss

)
〈�rs|

− iγ↓|�r ↓〉〈�r ↓ | + (MR(�r)|�r ↑〉〈�r ↓ | + H.c.)

]
,

(10)

with the spin-up and -down states defined as |↑〉 = |1,−1〉
and |↓〉 = |1, 0〉 in the F = 1 manifold. The non-Hermiticity
comes from the damping of spin-down state that could be
effectively realized by the transition from spin-down state to
an excited atomic state with a short lifetime [74], as induced
by the σ+ polarized loss beam, and the loss rate could be
calibrated when the Raman beam is absent. The optical lattice
potential V (�r) = V0x cos2(k0x) + V0y cos2(k0y) (with V0x/y ∝
| �E2

x/y|) is driven by the standing waves along the 2D di-

rections, and the Raman potential MR(�r) = (M0x cos(k0x) +
M0y cos(k0y))ei �K ·�r describes the two-photon processes [inset
of Fig. 3(d)] induced by the standing waves and running wave
beam as (M0x, M0y) ∝ (EREx, EyER) (see more details in the
SM [58]). Here the running wave beam ER is tilted to avoid

the spatial symmetries coinciding with the boundary geometry
[56]. Within the s-band tight-binding approximation, we can
effectively reduce Eq. (10) to the lattice model in Eq. (9) (up
to an overall energy shift −iγ↓/2), with the coefficients given

by (see SM [58]) t0 = ∫
d2�rφs(�r)[ h̄2 �∇2

2m − V (�r)]φs(�r − a�ek )
and t k

so = ∫
d2�rφs(�r)MR(�r)φs(�r − a�ek ), where φs is the s-band

Wannier function. These coefficients are well controllable by
tuning the beams independently. Note that while the symmet-
ric NHSE exists as long as the damping term appears, the
loss rate γ↓ should be neither too small or large compared
with t0,so since the system recovers the Hermiticity in the two
extremes and the the skin effects are hard to observe [58].
According to the previous studies [71,74] and the calculation
with tight-binding approximation, here the appropriate param-
eters can be taken that V0x/y = 4, M0x/y = 1, δ = 0.1, γ↓ =
0.1 in the unit of the recoil energy Er = h̄2k2

r
2m , which give

t0 ≈ 0.17, t x/y
so ≈ 0.07 and mz = 0.05. The numerical results

of the model with similar parameters given in Fig. 3 show the
clear existence of NHSE in this regime. It is ready to know
that the 1D model of Eq. (8) can be realized by reducing the
above lattice and Raman induced spin-orbit coupling to the 1D
regime. Further, the 3D model can be obtained by introducing
the damping term to the 3D optical Raman lattice [72,73],
which shall realize the 3D non-Hermitian Weyl semimetal.
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FIG. 3. The numerical results and experimental scheme of the 2D model in Eq. (9). (a) The OBC (blue, larger dots) and PBC (red, smaller
dots) spectra of the model in Eq. (9) with t x

0 = t y
0 = 1.0, t x

so = −it y
so = 0.4, mz = 0.3, γ↓ = 0.6, �K = π/a(cos θ, sin θ ), θ = 50◦ and the size

of the system Lx = Ly = 30. (b) Density profile in the real space, summed over all eigenstates and the spin degree of freedom. [(c1),(c3)]
The real space distribution of right eigenvectors |ψ±E ,R|2 of a pair of skin modes with eigenenergies ±E = ∓(1.63 + 0.17i) respectively, and
[(c2),(c4)] the distribution of corresponding left eigenvectors |ψ±E ,L|2. (d) The scheme of Raman optical lattice experiment to realize the 2D
model in Eq. (9). The green beam propagates along z direction and is σ+ polarized, inducing the effective damping of the ground state. The
Raman beam’s (black running wave) electric field �ER ∝ ((�ex − �ey )/

√
2 + i�ez )ei �K · �j is circular polarized and the two linear components of it

couple with the two optical lattice beams (red and blue) respectively, inducing the spin-flipped hoppings in the two directions.

Conclusions. We have uncovered a universal and broadly
existing phenomenon of the emergence of nonlocal non-
Hermitian skin effect (NHSE) when the local particle-hole(-
like) symmetry (PHS) is present. For a non-Hermitian system
with PHS and of arbitrary dimension, we showed that the
skin modes always appear in pairs, with each being local-
ized in different open boundaries. With a generic theory
developed here, the non-Hermitian skin modes are mapped
to the zero boundary or corner modes of gapped or gap-
less topological phases, through which an emergent nonlocal
correspondence between the skin modes is established. This
phenomenon is a manifestation of the nonlocalization of local
PHS and is unique to the non-Hermitian systems. The uni-
versality of our prediction may open a new avenue to explore
symmetry-protection features of NHSE and the related novel

topological physics, and promote the investigation of NHSE
in the high dimensions, which is so far much less un-
derstood. We have proposed lattice models for realizing
the predicted symmetric NHSE, whose universality and ro-
bustness guarantee the high feasibility of the experimental
observation.
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