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The dynamics of non-Hermitian quantum systems have taken on an increasing relevance in light of quantum
devices which are not perfectly isolated from their environment. The interest in them also stems from their fun-
damental differences from their Hermitian counterparts, particularly with regard to their spectral and eigenvector
correlations. These correlations form the fundamental building block for understanding the dynamics of quantum
systems as all other correlations can be reconstructed from it. In this Letter, we study such correlations across
a localization transition in non-Hermitian quantum systems. As a concrete setting, we consider non-Hermitian
power-law banded random matrices which have emerged as a promising platform for studying localization in
disordered, non-Hermitian systems. We show that eigenvector correlations show marked differences between the
delocalized and localized phases. In the delocalized phase, the eigenvectors are strongly correlated as evinced
by divergent correlations in the limit of vanishingly small complex eigenvalue spacings. On the contrary, in
the localized phase, the correlations are independent of the eigenvalue spacings. We explain our results in the
delocalized phase by appealing to the Ginibre random-matrix ensemble. On the other hand, in the localized
phase, an analytical treatment sheds light on the suppressed correlations, relative to the delocalized phase.
Given that eigenvector correlations are fundamental ingredients towards understanding real- and imaginary-time
dynamics with non-Hermitian generators, our results open an avenue for characterizing dynamical phases in

non-Hermitian quantum many-body systems.
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Ergodicity or the lack thereof, manifested in localization,
in disordered, interacting quantum many-body systems is a
question of immanent interest [1-6]. As many-body local-
ized (MBL) systems fail to thermalize under their dynamics,
they raise fundamental questions with regard to the statistical
mechanical description as well as the precise nature of their
dynamics when thrown out of equilibrium (see Refs. [3—6] for
reviews on MBL and further references therein). Convention-
ally, these questions have been studied in the context of closed
quantum systems where the dynamics is unitary.

More recently, however, understanding the dynamics of
interacting quantum many-body systems described by non-
Hermitian Hamiltonians has emerged as an extremely relevant
question [7-16]. This is, in part, due to the advent of noisy
intermediate-scale quantum (NISQ) devices [17-20], wherein
the non-Hermiticity induced by external noise, or coupling
to environments or measurement apparatuses, is inevitable
and understanding its effect is of utmost importance. From
a theoretical point of view, the interest lies in their funda-
mental differences from their Hermitian counterparts owing
to the former’s complex eigenvalue spectrum. This offers the
possibility of realizing phase structures of quantum systems
quite different than those in Hermitian systems [13,21-37].
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FIG. 1. Left: Schematic phase diagram of non-Hermitian power-
law banded random-matrix (NH-PLBRM) ensemble in the p-W
plane, where W denotes the disorder strength of the complex di-
agonal elements and p is the exponent of the power-law decay of
oft-diagonal, hopping matrix elements. The behaviors of the eigen-
vector and spectral correlations in the two phases are summarized.
Right: The eigenvector correlations [Eq. (5)] as a heat map in the
plane of complex eigenvalue spacings, in the localized (top) and
delocalized (bottom) phases. Besides the difference in their scaling
with |€2|, another stark difference is that in the delocalized phase the
correlations are isotropic, whereas in the localized phase we find that
they are strongly anisotropic.
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Under the umbrella of dynamics of non-Hermitian quan-
tum systems, the physics of non-Hermitian many-body
localization and the associated localization transition has been
under intense investigation of late [8—11,38]. Spectral and
eigenvector correlations constitute the basic building block
for a theory of dynamics of any quantum system as all other
dynamical correlations can be reconstructed from it. As far as
spectral properties are considered, the ergodic phase of such
systems displays universality, manifested in level repulsion
[8,10] in the complex eigenvalue spectrum as well as a ramp in
the dissipative spectral form factor [11,39,40], akin to Ginibre
random-matrix ensembles [41-43]. On the other hand, the
spectral properties in the localized phase show starkly dif-
ferent behavior and deviate significantly from random-matrix
behavior. In fact, these as well as the participation ratios of
eigenstates [44—46], which are a measure of how (de)localized
are the eigenstates, have been extremely insightful diagnostics
of the ergodicity or localization in disordered, non-Hermitian
systems. However, one of the most fundamental ingredients
to get a complete understanding of the dynamics of quantum
systems are dynamical eigenvector correlations. While they
have been studied extensively for Hermitian systems across
localization transitions [47-49], they have been hitherto un-
explored in non-Hermitian settings with results available only
for random matrices [50,51]. This leads us to the central
motivation of our work, namely, the behavior of eigenvector
correlations across localization transitions in non-Hermitian
systems.

As a concrete setting, we use power-law banded random
matrices (PLBRMs), but in their non-Hermitian incarnation.
For Hermitian systems, PLBRMs have long been used as
an archetypal model for localization transitions in quan-
tum systems [52-57]. In a very recent work, non-Hermitian
power-law banded random matrices (NH-PLBRMs) were also
shown to exhibit localization transitions [58]. In fact, NH-
PLBRMs were shown to exhibit localization in parameter
regimes where localization is forbidden in their Hermitian
counterparts.

Our results show that eigenvector correlations (as well as
spectral correlations) show stark differences in the delocalized
and localized phases (see Fig. 1 for a summary of our main
findings). In the delocalized phase, we find that the results for
the correlations fall in the universality class of Ginibre ran-
dom matrices [50,51,59]. An appropriately defined correlation
between eigenvectors diverges as the complex eigenvalue
spacing decreases, suggesting that the eigenvectors are very
strongly correlated. By contrast, in the localized phase, we
find that the correlations are independent of the spacing be-
tween the eigenvalues at small spacings which suggests that
the correlations are strongly suppressed relative to those in the
delocalized phase. We explain this behavior via an analytical
calculation based on a simple perturbation theory where the
bare resonances are renormalized appropriately. Within the
limits of our numerical calculations we find an anomalous,
intermediate behavior of the correlations in the critical regime.

The importance of our results lies in that the transient
dynamics of non-Hermitian systems are controlled by the
eigenvector correlations. Our results constitute a firm step to-
wards understanding the spectral and dynamical properties of

local observables across localization transitions in disordered,
interacting, non-Hermitian quantum many-body systems.

To set the stage formally, consider a N x N non-Hermitian
Hamiltonian matrix H with complex eigenvalues z,. The cor-
responding left and right eigenvectors, (L,| and |R,), which
satisfy

(LolH = (Lalza,  HIRy) = zalRa), ey

form a complete, biorthonormal set with (L, |Rg) = d,4. Re-
quiring that eigenvector correlations are invariant under scale
transformations, the simplest nontrivial measure of the Wcor-
relations can be defined as [50]

Oup = (Lo|Lg)(Rg|Ry). @)

The definition in Eq. (2) directly implies that Oyp = Oj,,
and also from completeness, Za Oup = 1. It will be useful to
resolve the correlations in Eq. (2) in terms of the eigenvalues,
and define averaged diagonal and off-diagonal correlations,
0% and 0°4, respectively, as

0%2) = <N1 Y 0wz —za)>, 3)

Ooff—d(z’ Q) — <N1 Z Oaﬁ(S(Z _ Za ;Zﬂ)
aFp

X 8(R — 74 + z;;)>. “4)

The off-diagonal correlation, as defined above, depends on
both the mean of the eigenvalues, Z, as well as their differ-
ence 2. However, for simplicity, we will be interested in two
specific versions of it. The first is where the mean is integrated
over,

0°(Q) = / dzo°™(z, Q)

= <N—1 > 0upd(2 — 2 +zﬂ)>, &)
aFp

and the second is where we restrict the sum over pairs of
eigenvectors in Eq. (4) such that the mean of their eigenvalues
is vanishing,

095(2) = 0°™(Z = 0, Q). 6)

Note that the averaged eigenvector correlations in Egs. (5)
and (6) are functions of €2 which is complex. In much of
the following, we will find that it is sufficient to consider and
focus on the respective correlations as a function of |2|. With
Q = |Q|e, they are defined as

2
o =12 f do0°™(Q), )
0
and similarly for O%fi'g,mr

As we will show later, both Off¢ as well as O9Lf o
exhibit the same universal behavior at small |2|. However,

L060201-2



EIGENVECTOR CORRELATIONS ACROSS THE ...

PHYSICAL REVIEW B 108, L060201 (2023)

this universal behavior is starkly different between delocal-
ized and localized phases. In particular, in the thermodynamic
limit N — oo for |2] « 1, in the delocalized phase both
Of&d, O%fidmm ~ —|Q2|~3 whereas in the localized phase, we
find that both of them scale ~— |2|°. This constitutes the
central result of this Letter.

It is important to note here that if H were to be Hermitian,
the eigenvector correlation defined in Eq. (2) would have been
trivial with Oy = 8qp. As such the diagonal correlation O
in Eq. (3) would have simply been the density of states and
the off-diagonal ones in Eq. (4) would have been identically
zero. The nontriviality in the correlations arises purely from
the non-Hermiticity. However, the crucial point is that the
nature of the correlations depends on the phase in which the
non-Hermitian system lies.

We now delve into the details of our results and start with
describing the NH-PLBRM ensemble [58]. In an instance of
the Hamiltonian from the ensemble, the element H,,, is given
by

Hmn = 6n‘smn + jmna (8)

where j' = ju, and €,, jn, are complex random num-
bers. The real and imaginary parts of the diagonal elements
are both chosen from uniform distributions, Re[e,], Im[¢,] €
[—W, W]. The real (Re) and imaginary (Im) parts of the inde-
pendent off-diagonal elements j,,, (m > n) are chosen from
uniform distributions, Re[ ], Im[jun] € [=0jm—n|, Opm—n|].
The width o, decays with r = |m — n| following a power law,

or = 207 + )72, ©)

where b is the bandwidth of the decay (b~ 1) and p
is the power of the off-diagonal power-law decay term. Here,
the imaginary parts of the diagonal elements bring about the
non-Hermiticity in the Hamiltonian. In the absence of those,
the random matrices become Hermitian and the chaotic limit
of the underlying model corresponds to the Gaussian unitary
ensemble (strictly speaking, a complex Wigner matrix ensem-
ble since they are sampled from uniform distributions). In an
analogous way, the chaotic limit of the NH-PLBRM is shown
to correspond to the Ginibre unitary ensemble (GinUE) [41].
The NH-PLBRM has a rich localization phase diagram in the
p-W plane (see Fig. 1). While the model was introduced and
studied in detail in Ref. [58], we summarize its salient features
for completeness. Unlike its Hermitian counterpart where lo-
calization is forbidden for p < 1 [57], the NH-PLBRM hosts
a localized phase and a disorder-driven localization transition
for 1/2 < p < 1. However, the localized phase is algebraic in
nature, again in contrast to the Hermitian PLBRM. Finally,
we note that the NH-PLBRM does not host a localized phase
for p < 1/2 which can be understood via simple resonance
counting argument [58].! Also, we find that the density of
states of the NH-PLBRM in the complex eigenvalue plane is
uniform (wherever finite) to a very good approximation [60]

'Since the complex energies live on a two-dimensional plane, the
mean-level spacing of sites at distance  from any given site ~W/r!/2
which when compared to the power-law decaying matrix element
(~1/r?) implies that localization is forbidden for p < 1/2.

p=10
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FIG. 2. Off-diagonal eigenvector correlations for three different
values of p in the delocalized (left), critical (center), and localized
(right) regime. The top and bottom rows correspond to Of5 [Eq. (7)]
and O;fgg,ml, respectively. The dashed lines indicate the power laws,
|2]~3 (delocalized), |2]~! (critical), and |2|° (localized). The dif-
ferent color intensities correspond to different system sizes, N =
128,256, 512, 1024, 2048 (lighter to darker). Data are for W = 3.

which lets us conveniently avoid spectrum unfolding while
defining the eigenvector correlations in Eq. (4).

The numerical results for the eigenvector correlations, ob-
tained from exact diagonalization (ED) of the Hamiltonians
in Eq. (8), are shown in Fig. 2. The top row corresponds to
Of5¢ defined in Eq. (7) and the bottom row to 094 . In
the delocalized phase (left column), we find that both of them
scale as —|2| 3. By contrast, in the localized phase (right col-
umn) they scale approximately as —|2|°. In the critical regime
between the two phases (p =~ 0.7 for W = 3), our numerical
results suggest an anomalous scaling ~— |2|~'. In Fig. 3
(left), we show the off-diagonal correlation Ofgl‘d for a fixed
N = 2048 and W = 3 but for several values of p € [0.5, 1.0]
straddling the critical point at p. & 0.7. For a finite system, we
observe that Ofy ~ —|Q|™" where the exponent v sharply
changes from v = 3 in the delocalized phase to vanishingly
small (v — 0) in the localized phase. The right panel shows
the variation of v with p for several values of N with the data
for different N showing a crossing at the putative critical point.
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FIG. 3. Left: Oft-diagonal correlations as a function of || for
different values of p for N = 2048 and W = 3. As we move from
the delocalized to the localized phase by increasing p from 0.5 to 1
(as indicated by the color bar), the correlation gets suppressed and the
exponent v (defined via Of§* ~ —|€2|™") changes from 3 to 0. Right:
Variation of the exponent v as a function of p for different N showing
a crossing at the putative critical point p, =~ 0.7 with v, & 1.5.
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FIG. 4. Diagonal correlations O%(z) defined in Eq. (3) in the
delocalized (left), critical (center), and the localized (right) regime.
The blue data points show the variation of O%(Re[z], Im[z] = 0)
with Re[z], while the orange lines show the variation of 0‘Re[z] =
0, Im[z]) with Im[z]. As in Fig. 2, the different color intensities
indicate different system sizes N.

While our main focus is on the off-diagonal eigenvector
correlations, we also find sharp distinctions in the diago-
nal correlations, 0%(z) [defined in Eq. (3)] between the two
phases, as shown in Fig. 4. In the delocalized phase (left col-
umn) we find an inverted parabolic profile of O¢ symptomatic
of GinUE universality [50]. By contrast, in the localized phase
(right), 0Y is significantly flatter and approximately mirrors
the density of states profile. This can be understood as deep in-
side the localized phase the eigenvectors are sharply localized
around O(1) nearby sites which gives rise Oy, ~ O(1) for all
« irrespective of its eigenvalue. In the critical regime (center),
we again observe an intermediate behavior in a similar spirit
as the off-diagonal correlations.

Having established the numerical results for the eigen-
vector correlations, we next provide analytical insights into
the results for the off-diagonal correlations in both the de-
localized and localized phases. The delocalized phase of the
NH-PLBRM can be understood by appealing to the GinUE
universality class. The off-diagonal eigenvector correlations
in GinUE matrices are given by [50,51]

Z.7F —
Oinbe(Z: ) = = 5501 = |Z:DOd = 1Z-D. (10)

where Z, = Z 4+ /2. In the limit of || < 1, Eq. (10) can
be used to obtain
O?gfﬁdy 0%“3‘9‘ '\’_|Q|_31 (11)

which explains our results in the delocalized phase of the NH-
PLBRM and demonstrates that it indeed lies in the GinUE
universality class.

Deep in the localized phase, the eigenvectors can be well
approximated by leading-order perturbative corrections to the
site-localized states at infinite disorder. Denoting by |«) a state
localized on a single site,” the eigenvectors to leading order
are given by

a H o
IRa)=ler) + 3 | —==1y). =+ vl (12)

y#a Aay y#a

Deep in the localized phase, since every eigenvector is expected to
be closely tied to a site, we use the same notation to index the sites
and eigenvectors.

where Ay, =€, — €,. Also, at leading order, z, = ¢€,. Using
Eq. (12) and the definition in Eq. (2), we obtain

O0l% = —4|Hyp > (Im[A,1])”, (13)

for the eigenvector overlaps in the localized phase. Since the
expression in Eq. (13) is obtained from an unrenormalized
perturbative expansion [Eq. (12)], it allows for bare reso-
nances due to Im[A;l] — 0o which can result in a divergent
overlap. While a mathematically rigorous renormalized per-
turbation theory, for example, a la Feenberg [61], is outside
the scope of this Letter, we account for the bare resonances
by imposing an empirical cutoff on the overlaps. Physically,
this corresponds to setting the O,g for the resonant pairs to
an empirical O(1) threshold which is what a proper renormal-
ization of the resonances would have done self-consistently,
and leave the other O,4’s as they are. To this end, we define a
renormalized overlap as

Gop = 05O (1 - [0g5]) —O(|0Z5 1), (4

and compute the off-diagonal correlations as O°T4(Q) =

NI Za# Gapd(Q2 — Agp)), and similarly for 0%, Since
the matrix elements of the Hamiltonian, {H,g} and {e,}, are
independent of each other, the eigenvector correlation can be
expressed as 0°T4(Q) = "V y,(Q) where

Y,(Q) = / deoP.(cq) / desP.(cp)

X [a(sz - Aaﬂ)/dH,PH,(H,)G(Hr, Aaﬂ)]. (15)

with G(H,, Ayp) = Gop and Hyg set to H,. The notation H,
refers to a hopping matrix element of the Hamiltonian be-
tween sites separated by distance r such that it is a random
complex number with real and imaginary parts drawn from
uniform distributions, Re[H, ], Im[H,] € [—o,, 0,] where o, is
given by Eq. (9). Using the distributions for the €,’s and H,’s,
we obtain®

v@= | RO~ sommy)
R0,

> 2Im[~"1D~,
o, < 2[Im[Q~"ID7,
(16)

where R(S2) is the probability that two uncorrelated random
€’s are separated by 2 and it is given by

2 gt (12121
T2W? 2w 2w 2w ’

7)

R(Q) =

with P.(e) = (xW?)"'®@(W — |¢|). Using Eq. (16), an an-
alytical expression for 0°T¢(Q) in the localized phase can
be obtained. It is, however, rather cumbersome and opaque
and hence we omit it for brevity. Instead, we plot the result

3For simplicity of expressions, we used a circular distribution of
€,’s and H,g’s. However, using numerical integration of Eq. (15), we
checked that the results in the universal || < 1 regime are identical
for a box distribution.
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FIG. 5. Left: 0°™4(Q) in the localized phase obtained from the
analytic theory [from Eqgs. (16) and (17)] as a color map in the
complex 2 plane. Right: Comparison of Ofg"d as a function of |2|
from the analytic calculation with that from ED. Results are for deep
in the localized phase with W = 10, « = 1, and N = 1024.

for 0°4(Q) obtained analytically using Eqs. (16) and (17)
as a color map in the complex 2 plane in Fig. 5 (left).
The qualitative features of the exact ED result (see Fig. 1) are
well captured. For a quantitative comparison, we derive the
corresponding Ofg(|2]) and plot it in Fig. 5 (right); we find
a remarkable agreement with the exact numerical results and
the analytic calculation does indeed yield the approximately
|2|-independent behavior of O 4(|2]) at small |£2].

To conclude, we demonstrated that eigenvector correla-
tions are starkly different between delocalized and localized
phases in disordered, non-Hermitian systems. Using NH-
PLBRM as a prototype, we showed, via extensive numerical
calculations and analytical arguments, that eigenvectors are
strongly correlated in the delocalized phase and the same are

suppressed in the localized phase (see Fig. 1 for a summary).
While eigenvector correlations were the focus of this Letter,
for the sake of completeness, we also calculated spectral
correlations, which were characterized by the presence and
absence of complex level repulsion in the delocalized and
localized phase, respectively [60].

Our findings will have a significant bearing on the char-
acterization of dynamical phases of non-Hermitian, locally
interacting quantum many-body Hamiltonians [62]. While
eigenvector correlations, such as the ones discussed here, are
definitely interesting in this context, it is equally interesting to
understand the spectral properties of local observables in the
same spirit. In particular, these quantities are expected to play
a pivotal role in understanding fundamental issues such as (i)
eigenstate thermalization (or lack thereof) in non-Hermitian
systems [63,64] and (ii) non-Hermitian many-body localiza-
tion. In fact, extending these ideas to open quantum systems
in general, such as via the eigenvector correlations of the
underlying Liouvillian operators [24-26,65-70], is topically
interesting.
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