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Maxwell lattices, where the number of degrees of freedom equals the number of constraints, are known to
host topologically protected zero-frequency modes and states of self-stress, characterized by a topological index
called topological polarization. In this Letter, we show that in addition to these known topological modes, with
the help of a mirror symmetry, the inherent chiral symmetry of Maxwell lattices creates another topological
index, the mirror-graded winding number (MGWN). This MGWN is a higher-order topological index, which
gives rise to topological zero modes and states of self-stress at mirror-invariant domain walls and corners between
two systems with different MGWNs. We further show that two systems with the same topological polarization
can have different MGWNs, indicating that these two topological indices are fundamentally distinct.
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Introduction. Bulk-boundary correspondence is a defining
feature of topological states where the nontrivial topology
of the bulk gives rise to modes localized at the boundary
[1,2]. Early research on topological band theory focused on d-
dimensional topological systems with localized states at (d −
1)-dimensional boundaries (e.g., the quantum Hall effect [3],
quantum anomalous Hall effect [4], and quantum spin Hall
effect [5,6]); this type of topology is now called first-order
topology. A new kind of topological states, called higher-
order topological states (HOTS), has been proposed in the last
five years [7–9]. Here, instead of having (d − 1)-dimensional
topologically protected boundary modes, the d-dimensional
nth-order topological system has (d − n)-dimensional (n > 1)
boundary modes. The boundary modes corresponding to
n = d and n = d − 1 are generally called corner and hinge
modes, respectively. These higher-order states are generally
protected by crystalline symmetries such as mirror [10], in-
version [11], rotation [12,13], product of time reversal (TRS)
and rotation [9], etc. (see Ref. [14] for an exhaustive literature
survey). Along with realizations in electronic systems, crys-
talline symmetry protected HOTS have been implemented in
mechanical/elastic systems too, offering a class of materials
in which elastic energy can be selectively confined to low-
dimensional regions [15–20].

One key challenge in the study of HOTS lies in the
stability of topological corner modes. For example, in con-
trast to the quantum Hall effect, where the topological edge
modes remain stable for any boundary conditions, for a two-
dimensional (2D) HOTS, unless a certain special ingredient
is introduced (e.g., a chiral symmetry), the frequency of the
topological corner modes is in general not pinned to a partic-
ular value. Thus, depending on the microscopic details, such
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as boundary conditions and disorder near the corners, these
topological modes can disappear into bulk bands [21,22]. To
overcome this challenge, recently, a generalized chiral sym-
metry was introduced to realize corner modes in a breathing
kagome lattice acoustic metamaterial [20], while there are still
some open discussions about the topological origin of these
modes [22,23]. Another attempt [24] showed the existence of
corner modes pinned at zero frequency in an overconstrained
system made of rigid quadrilaterals connected by free hinges,
however, this can be understood within the framework of
boundary obstructed topological phases [25].

In this Letter, we provide a different approach towards
HOTS using Maxwell lattices [i.e., lattices with equal num-
bers of degrees of freedom (DOF) nd and constraints nc

[26,27]], and show that the intrinsic chiral symmetry pro-
tected by this counting extends robustness to topological
corner modes in these lattices, without requiring any detailed
matching at the boundaries. As shown by Kane and Lubensky
[28], Maxwell systems can be mapped to a superconducting
Bogoliubov–de Gennes (BdG) Hamiltonian, which naturally
has a chiral symmetry. With the BdG Hamiltonian, a first-
order topological index, the topological polarization, can be
introduced [28], resulting in topologically protected edge
modes at zero frequency. We find that in addition to this
first-order topological index, a nontrivial higher-order topo-
logical index [the mirror-graded winding number (MGWN)
[29–31]] can be introduced to Maxwell lattices, controlling
zero-frequency topological domain-wall/corner modes, with
robustness originating from the intrinsic chiral symmetry of
the locking of degrees of freedom and constraints in Maxwell
lattices.

Kane-Lubensky topological index of Maxwell lattices. The
linear mechanics of lattices made of point masses connected
by springs is characterized by the compatibility matrix C
which relates extensions of springs ei = Ci ju j to the displace-
ments ui of the point masses. Furthermore, fi = CT

i j t j relates
the forces fi on the point masses to the tensions ti in the
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springs. In Fourier space, the matrix C(q) has the size nc × nd .
The normal mode frequencies of these lattices ω2(q) are
the eigenvalues of the dynamical matrix D(q) = C†(q)C(q).
Kane and Lubensky [28] defined a “square root” of the dy-
namical matrix, which in reciprocal space takes the following
form:

H(q) =
(

0 C†(q)
C(q) 0

)
. (1)

For every nonzero eigenvalue ω2(q) of D(q), H(q) has
two eigenvalues ±ω(q). The zero modes of H(q) include
nullspace of C(q) [zero modes (ZMs)] and nullspace of C†(q)
[states of self-stress (SSS)], whereas the zero modes of D(q)
include the ZMs. The Maxwell-Calladine theorem [26,32]
dictates that the number of ZMs (n0) and number of SSS
(ns) are equal (n0 = ns) for a Maxwell lattice. The matrix
H(q) has the property that SH(q)S = −H(q), where S =
Diag{1,−1}. This property is known as the chiral (or sublat-
tice) (anti)symmetry in the literature. Also, it is easy to check
that H(q) has TRS, H(q) = H∗(−q), where ∗ is complex
conjugation. These two symmetries put the matrix H(q) in the
BDI class of Altland-Zirnbauer classification [33–36]. Along
a closed loop l in the Brillouin zone where the spectrum of
the matrix is gapped at zero, a topological invariant nl can be
defined, nl = 1

2π i

∮
l dq · ∇q log det C†(q), which controls the

number of topological ZMs at an open edge or domain walls.
Mirror-graded winding number. Interestingly, in mirror

symmetric Maxwell lattices, along the mirror-invariant lines
in the Brillouin zone, the mirror reflection operator M(q)
commutes with the matrix H(q). Consequently, M(q) and
H(q) can be simultaneously diagonalized. Since, M(q) only
takes eigenvalues ±1, using the eigenvectors of M(q) the
matrices C(q) and H(q) can be block-diagonalized into odd
(−) and even (+) sectors [Supplemental Material (SM) [37]
Secs. SM2 and SM3]:

C(q) =
(

C−(q) 0
0 C+(q)

)
, (2a)

H(q) =

⎛
⎜⎜⎝

0 C†
−(q) 0 0

C−(q) 0 0 0
0 0 0 C†

+(q)
0 0 C+(q) 0

⎞
⎟⎟⎠. (2b)

Now, using C±(q) we can define a topological invariant in
each sector, the MGWNs,

ν± = 1

2π i

∮
q→q+Gm

dq · ∇q log det C†
±(q), (3)

where Gm is the smallest reciprocal lattice vector along the
mirror plane [29–31]. Note that ν+ + ν− = nl , since in this
basis det C(q) = det C+(q) det C−(q). In other words, the
mirror symmetry allows us to split topological polarization
into two different topological indices ν+ and ν−. This ob-
servation expanded the topological classification of Maxwell
lattices, and allows us to realize HOTS.

It is worthwhile to highlight that to define a topological
index, the Hamiltonian [Eq. (2)] must remain gapped with
det C �= 0. Because a mirror plane in the momentum space
often passes through the � point (k = 0), it is necessary to
gap the acoustic phonon bands at �. As will be shown below,

FIG. 1. The mirror symmetric Maxwell lattice. (a) The unit cell
consists of three blue and three red point masses enumerated by bold
numbers. The blue points can move in both the x and y directions
whereas the red points can only move along the direction of the corre-
sponding double-directional black arrow. Parameter δi (i = 1, . . . , 3)
is the perpendicular distance of point i + 3 from the line joining
points i and i + 1. The numbers in italics enumerate the springs.
The partially transparent blue points are in adjacent unit cells. (b) A
3 × 3 lattice. The springs shown in gray at the edges are required
for a periodic boundary condition. The green arrows show the lattice
vectors. (c) First Brillouin zone with the high-symmetry points. The
noncontractible loop Li is invariant under mirror reflection when
δi = δi+1.

this can be achieved by restricting the motion of certain lattice
points, which break the translational invariance of the lattice.

The mirror symmetric Maxwell lattice. We now illustrate
one Maxwell lattice that supports HOTS. As shown in Fig. 1,
each unit cell of this lattice contains six point masses with
coordinates

ri = 1

3

[
cos

(
2π i

3
− 5π

6

)
, sin

(
2π i

3
− 5π

6

)]
, (4a)

ri+3 =
(

1

6
+ δi

)[
cos

(
2π i

3
− π

2

)
, sin

(
2π i

3
− π

2

)]
,

(4b)

with i ∈ {1, 2, 3}. The three points i = 1, 2, and 3 can move in
both x and y directions, while the other three are restricted to
move along the direction marked by the black arrows shown
in Fig. 1(a),

ui = (uix, uiy), (5a)

ui+3 = ui+3

[
cos

(
2π i

3
− π

2

)
, sin

(
2π i

3
− π

2

)]
, (5b)

for i ∈ {1, 2, 3}. Consequently, there are nd = 9 DOF per unit
cell {u1x, u1y, . . . , u3y, u4, u5, u6}.

We then repeat this unit cell to form a 2D lattice
and connect the mass points with springs [solid lines in
Fig. 1(b)]. Here, we set the lattice vectors a1 = (1, 0) and
a2 = 1

2 (−1,
√

3), and the masses of all points and the stiff-
nesses of all springs are set to 1 for simplicity. Notice that
here we have nine springs per unit cell, which match the DOFs
nd = 9, making the system a Maxwell lattice.

Note that if we set δi = δi+1, the system is invariant under
mirror reflection about the perpendicular bisector of points
i + 3 and i + 4. The corresponding mirror-invariant lines Li

in the reciprocal space (Brillouin zone) are shown in Fig. 1(c).
Because all the mirror planes go through �, it is important to
gap out the phonon bands at � to define the topological index.
In this setup, this is automatically achieved because points
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FIG. 2. Spectrum of H for different values δ = δ1 = δ2 keeping δ3 = 1/3. The unit cell corresponding to each configuration is shown in
the inset. Each diagram has nc + nd = 18 bands. All systems except (c) are gapped along the line �-M ′ [L1 in Fig. 1(c)]. (c) has four flat bands
at zero frequency. The spectra in (b) and (d) are gapped at ω = 0 along the line �-M ′, but not gapped everywhere in the Brillouin zone. Only
(a) and (e) are fully gapped at ω = 0 over the entire Brillouin zone.

i = 4, 5, 6 can only move along the arrow directions, which
gaps out the acoustic modes.

The compatibility matrix C(q) is given in SM [37]
Sec. SM1. For simplicity we set δ3 = 1/3 and vary δ1 = δ2 ≡
δ. In this case, the lattice has one mirror mx per unit cell nor-
mal in the x direction. Along the mirror-invariant line qx = 0
[L1 in Fig. 1(c)], we calculate det C†

+|L1, det C†
−|L1 and inte-

grate them from q = (0,−2π/
√

3) to q + b2 = (0, 2π/
√

3)
along path L1 according to Eq. (3). We find

ν+ =
{

1 if δ > 0,

0 if δ < 0,
ν− =

⎧⎨
⎩

0 if δ > 0,

1 if − 5/12 < δ < 0,

0 if δ < −5/12.

(6)

Clearly, the phases with δ > 0 and 0 > δ > −5/12 are dis-
tinct with respect to the MGWNs but the same with respect
to the Kane-Lubensky index. We will call δ > 0 phase 1,
and 0 > δ > −5/12 phase 2. In Fig. 2, we show the spec-
trum of matrix H(q) for different values of δ. At δ = 0, the
DOF corresponding to points 4 and 5 are perpendicular to
the springs connected to them, hence displacements of these
points do not change the length of the springs to the linear
order. These give two ZMs at every wave vector q. Then, due
to the Maxwell-Calladine index theorem there are two SSS at
every q. Hence, there are four flat bands at ω = 0 of the matrix
H(q) for δ = 0. When δ �= 0, ω = 0 gapped along the C1 line,
allowing us to define the MGWNs ν±.

In addition to defining the MGWNs, in order to localize
ZMs at the junction of two different mirror-graded phases,
we require the bulk bands to be completely gapped at ω = 0
in addition to the path L1. We find that phase 1 is fully
gapped at ω = 0 over the entire Brillouin zone for δ > 5/42
[Fig. 2(a)], whereas phase 2 is fully gapped for −5/12 < δ <

−1/6 [Fig. 2(e)] (see SM [37] Sec. SM4 for details).
Mirror-protected zero-frequency edge states. To examine

the bulk-edge correspondence, we create a supercell in Fig. 3
with periodic boundary conditions in both directions, which
has domain walls separating δ = 1/3 and δ = −13/42. The
domain walls are horizontal—normal to the mirror mx, hence
invariant under reflection about the mirror mx. The spectrum
of the dynamical matrix D(qx ) of the system is plotted as
a function of surface wave vector qx. We find two ZMs
at qx = 0 [Fig. 3(a)]. Since the Kane-Lubensky indices of
both domains are the same, nδ=1/3 = ν

δ=1/3
+ + ν

δ=1/3
− = 1 =

ν
δ=−13/42
+ + ν

δ=−13/42
− = nδ=−13/42, the ZMs at the domain

walls are not given by the Kane-Lubensky index. How-
ever, since at qx = 0, matrix C(q) can be block-diagonalized
[Eq. (2)] as discussed above, we can use Eq. (3) on the +
and − sectors separately. Since matrix C(qx = 0, qy) is block-
diagonal, the ZMs of each sector are also ZMs of the full
system. Hence, at the top and bottom domain walls we get

top wall: ν<
+ − ν>

+ = 1 ⇒ ZM,

ν<
− − ν>

− = −1 ⇒ SSS, (7a)

bottom wall: ν<
+ − ν>

+ = −1 ⇒ SSS,

ν<
− − ν>

− = 1 ⇒ ZM, (7b)

FIG. 3. (a) Spectrum, (b) ZMs, and (c) SSS of a supercell con-
sisting of 2N0 unit cells among which N0 in the middle have δ = 1/3
and the other ones have δ = −13/42. A periodic boundary condition
is employed in the direction (1/2,

√
3/2), whereas a Bloch-periodic

boundary condition u[x + (1, 0)] = u(x)eiqx is employed in the (1,0)
direction. In (a), gray bands are bulk modes whereas the red and
the blue bands are localized at the top and bottom domain walls,
respectively. The left ZM in (b) is localized at the top domain wall
and is even under vertical mirror mx , whereas the right ZM in (b) is
localized at the bottom domain wall and is odd under vertical mirror
mx . The left SSS in (c) is localized at the bottom domain wall and
is even under vertical mirror mx , whereas the right SSS in (c) is
localized at the top domain wall and is odd under vertical mirror mx .
The red and blue colors of the bonds in (c) indicate the elongation
and compression of the bonds, respectively.
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FIG. 4. Corner modes in systems with a diamond-shaped island of one phase inside another phase. In each panel, the part of the system in
red (green) has δ = 1/3 (δ = −13/42). The vertical gray dashed lines show the line of mirror symmetry; it passes through the top and bottom
corners of the diamond-shaped island. We applied periodic boundary conditions in all cases. The black arrows show the displacement field
corresponding to the zero modes. In all cases, the zero modes are concentrated at the corners. The corner modes in (a) and (c) are even under
the vertical mirror reflection, whereas (b) and (d) are odd under the same reflection.

where < and > denote phases below and above the domain
wall, respectively. It must be emphasized here that because
rigid translation is not a zero mode in our lattice, in general
such a lattice is not expected to have zero modes and all
phonon modes should be gapped. However, at the domain
boundary between regions with different topological indices,
topological edge modes emerge with frequency pinned to zero
by the chiral symmetry.

It is also worthwhile to highlight that these topological
zero modes are fundamentally different from the zero modes
protected by topological polarization. First, they are due to a
totally different topological index. Second, in contrast to zero
modes from topological polarization, the supercell spectrum
of which has flat bands at zero frequency [28], the topological
modes here are dispersive. Because the mirror symmetry is
broken away from the mirror plane (qx �= 0), the frequency of
the edge modes moves away from zero at qx �= 0 as shown
in Fig. 3. Finally, in contrast to the deformed kagome lattice
[28] where the SSS and ZMs are localized on opposite domain
walls, in our systems the ZMs and SSS are on the same
domain wall. Typically, ZMs and SSS cannot be localized on
the same domain wall, because they will be lifted to finite
frequency in the presence of hybridization between them. In
our system, such hybridization is prohibited by the mirror
symmetry, because for each domain, its ZMs and SSS have
opposite mirror parity (even versus odd).

To conclude this section, we would like to point out that
this topological index and zero modes can also be character-
ized by a low-energy continuum theory (SM [37] Sec. SM5)
using a Dirac Hamiltonian and the Jackiw-Rebbi analysis
[38,39].

Mirror-protected corner states. Mirror symmetric systems
in the BDI class where the mirror reflection operator com-
mutes TRS and chiral symmetry operators can have mirror
symmetry protected zero-frequency corner modes [10,40]. To
look for such corner states, we create a diamond-shaped island
of one phase inside another rhombus-shaped phase with peri-
odic boundary conditions for the rhombus in both directions
(Fig. 4). The top and the bottom corners of the diamond are
invariant under a vertical mirror passing through them. In
Figs. 4(a) and 4(b), we see that when the inner island phase
is δ = −13/42 and the outer phase is δ = 1/3, there are zero-
frequency corner modes localized at the top and the bottom

corners, the top (bottom) one being odd (even) under the
vertical mirror reflection. The situation is more curious when
the inner island is δ = 1/3 and the outer phase is δ = −13/42
[Figs. 4(c) and 4(d)]. There are still two zero-frequency corner
modes, one of the odd and the other even under the vertical
mirror reflection, but they are both localized at the right and
left corners.

The topological nature and the origin of these corner modes
can be easily understood using the standard approach of
HOTS (SM [37] Sec. SM6). When the domain wall between
the two phases is tilted such that the domain wall is not
invariant under reflection, the localized states at the domain
wall become massive, meaning that the spectrum is gapped
at ω = 0. Moreover, two oppositely tilted domain walls have
opposite sign of the mass m; the sign of the mass m depends
on the sign of the angle of tilt of the domain wall. Therefore,
at the corner both δ (across the domain boundary) and m
(along the domain boundary) change sign. As is elaborated
in the SM [37] Sec. SM6, depending on the sign of the
mass m, the amplitude of the zero-frequency mode (∼e−mx)
may either decrease or increase as we move away from the
corner point (x = 0). If the amplitude increases exponentially
as we move away from this corner, it implies that this zero
mode is localized at the next corner along the direction of the
increasing amplitude. This theory analysis is in perfect agree-
ment with numerical simulations. Furthermore, these corner
modes persist even when the corner is not mirror invariant,
as long as the bulk structures have mirror symmetry (see SM
[37] Sec. SM7), which implies that this HOTS is “intrinsic”
[10,40].

Conclusions. In this Letter we demonstrated how spatial
symmetries can protect the higher-order topological phase in
Maxwell frames and give rise to zero-frequency topological
edge and corner modes. Furthermore, these edge and corner
modes are pinned to zero frequency due to the inherent chiral
symmetry of Maxwell frames pointed out in Ref. [28]. This
chiral symmetry is often used as an approximate symmetry in
fermionic systems (except in the case of superconductors), but
in the case of Maxwell lattices it is exact. As mentioned ear-
lier, our system falls under the BDI class of Altland-Zirnbauer
classification; it has been known in the literature [10,40] that
mirror symmetry that commutes with time reversal and chiral
symmetry can protect corner modes in two dimensions in this
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class. Our structure is an example of this in classical sys-
tems. This system should be straightforwardly experimentally
realized using hard plastic parts and hinges similar to what
was done in Ref. [41] for a deformed kagome lattice, with the
three extra point masses [red points 4–6 in Fig. 1(a)] in our

system needing to be put on fixed rails such that they can only
move along the corresponding rails.
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