
PHYSICAL REVIEW B 108, L060101 (2023)
Letter

Statistical singularity energy in ferroelectric phase transitions
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The ferroelectric phase transitions described by Landau-Devonshire’s phenomenological theory can be sta-
tistically simulated using the effective Hamiltonian (Heff ) based on first-principles calculations. In a Monte
Carlo (MC) simulation, we observe a statistical singularity energy caused by a subtle difference between the
macroscopic phenomenological model and the microscopic statistical model in the mathematical space of the
phase transition point. This statistical singularity energy is measured according to the parameters of the Heff

model and introduced by the transition probability of the MC algorithm, which greatly improves the accuracy
of the prediction of the phase transition temperatures and restores the true fluctuations near the phase transition
point. For the cubic-tetragonal phase transition for BaTiO3 and PbTiO3, we obtain a good estimation of the
thermal hysteresis corresponding to the experiments. We further reproduce the difference of the phase transitions
between heating and cooling sequences, which is verified by the experimental observations.
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The effective Hamilton (Heff ) based on first-principles cal-
culations has been successfully used to simulate ferroelectric
phase transitions by statistical approaches, such as the Monte
Carlo (MC) method, without any empirical or semiempiri-
cal coefficients [1–18]. The crucial advantage of Heff is that
it can be formulated flexibly by the expansion in power
of the order parameters to describe the short-range interac-
tion between the nearest neighbors, long-range interactions,
and the couplings between different order parameters. This
has reproduced and predicted the phase transitions of ferro-
electrics in which the couplings are complex, especially for
those with subtle intermediate phases involving small energy
differences [19–21].

A discrepancy still exists, however, between the theoreti-
cal and experimental phase transition temperatures. The most
common drawback of the Heff -based MC simulations is the
underestimated or overestimated phase transition temperature,
which is generally attributed to the deviation of the lattice
constant from the experimental value. Apart from improv-
ing the accuracy of exchange-correlation functionals [10],
two adjustments have been made most often: (1) negative
hydrostatic pressure [5,9] and (2) coupling between the soft-
mode phonon and high-frequency optical phonons [9,10,22].
Noted that those improvements have not solved the problem
of accurately predicting phase transition temperatures, and
information about the true fluctuations of the order parameter
is also missing.

In the present study, we find that such discrepancy be-
tween the theoretical and experimental observations is due
to the slight difference in the mathematical space between
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the macroscopic phenomenological model and the micro-
scopic statistical model at the singularity point of the phase
transition. From the mathematical point of view, the math-
ematical space of the macroscopic phenomenological model
derived from experimental observation is the {Etot, u} space
with respect to the total energy Etot and order parameter
u, while the space of the microscopic statistical model is
constructed by the MC algorithm based on the {�Etot,�u}
space. The integral of the microscopic Heff statistical model
is generally believed to recover the thermodynamic po-
tential of the macroscopic phenomenological model [23].
In fact, the two mathematical spaces are not identical.
Thus, we compensate a statistical singularity energy for this
slight difference of the mathematical space through a dy-
namic mechanical differential equation. We also show that
this slight difference works only at the phase transition
point.

In the framework of Landau-Devonshire’s theory, the ther-
modynamic potential F at each temperature point T during
the ferroelectric phase transition (including first-order and
second-order transitions) is described as follows [24,25]:

F =
{

F0 + A(T − T0)u2 + Bu4 + Cu6, first-order

F0 + A(T − TC)u2 + Bu4, second-order
,

(1)

where F is the thermodynamic potential of the system, u is the
amplitude of the local soft mode, T0 is the Curie-Weiss tem-
perature, and TC is the Curie temperature (T0 = TC in the case
of second-order phase transition). The coefficients A, B, and C
depend on experiments. By decreasing the temperature from
a high-symmetry paraelectric phase to a low-symmetry ferro-
electric phase, the total energy surface of F at u = 0 changes
from minimum to maximum and crosses the singularity (see
Fig. 1). From the viewpoint of modern algebraic geometry,
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FIG. 1. Change of thermodynamic potential landscape from the
high-symmetry paraelectric phase to the low-symmetry ferroelectric
phase through (a) first-order phase transition and (b) second-order
phase transition. The cyan lines are the potentials at (a) T = T0 and
(b) T = TC. The singularity is marked as red segments.

the singularity derives from the “general point” that corre-
sponds to the whole potential surface. For any infinitesimal
temperature change �T = (T1 − T2) → 0, the property of the
singularity depends on the intersection of the two potential
surfaces of T1 and T2. When T1 and T2 are away from the
phase transition point (in the high-symmetry or low-symmetry
phases), the intersection forms a point in which the {Etot, u}
space constructed by the statistical {�Etot,�u} space fully
reproduces the {Etot, u} space of the macroscopic thermody-
namic potential. As �T crosses the phase transition point, the
intersection expands to an infinitesimal segment, resulting in
the slight difference between the constructed {Etot, u} space
and the macroscopic {Etot, u} space.

Near the phase transition point, a finite �u causes an error
of the total energy, which could be regarded as the perturba-
tion of an external field to the system [23]:

�F = 1

2
(u − ū)2 ∂2F

∂u2
= 1

2
(�u)2 ∂2F

∂u2
, (2)

where ū is the equilibrium value of u, and �F represents the
minimum work needed to bring the system out of equilibrium
[23]. In the original MC algorithm, the transition probability
of a move �u in ith unit cell is

pi = exp [−βEtot,i(ui + �ui )]/Z

exp [−βEtot,i(ui )]/Z

= exp {−β[Etot,i(ui + �ui ) − Etot,i(ui )]}, (3)

where Z = ∑N
i=1 exp[−βEtot,i(ui )] is the partition func-

tion, N is the number of unit cells in the system, and

β = (kBT )−1 with the Boltzmann constant kB. Thus, the
actual transition probability near the phase transition point
should be

pi = exp{−β[Etot,i(ui + �ui ) − Etot,i(ui ) + �F ]}. (4)

In Eq. (2), the 1/2(�u)2 is the statistical bias, and the sec-
ond partial derivative is the coefficient of �F and is positive
throughout the temperature range. The latter can be obtained
through first-principles calculation s:

�F = 1

2
(�ui )

2 ∂2 Etot

∂u2

= 1

2
(�ui )

2|2κ + 12αu2 + 30k1u4 + 56k4u6|. (5)

The coefficients in Eq. (5) are derived from the second partial
derivative of Heff with respect to u, which will be explained
next.

Exemplified by the ferroelectric perovskites BaTiO3 and
PbTiO3, the total energy of the Heff includes the local soft
modes {ui} with ui = (uix, uiy, uiz ) and the strain tensor {η},
which is given by Ref. [5]:

Etot ({ui}, {η}) = E ({ui}) + E ({η}) + E ({ui}, {η})

= Eself ({ui}) + Eshort ({ui}) + Edpl({ui})

+ Eelastic({η}) + Eint ({ui}, {η}), (6)

where Eself ({ui}) is the in-site energy of local soft modes;
Eshort ({ui}) and Edpl({ui}) are the short-range interaction be-
tween nearest neighbors and the long-range dipole interaction
of local soft modes, respectively; Eelastic({η}) is the energy of
homogeneous strain tensor; and Eint ({ui}, {η}) is the energy of
the coupling between the local soft modes and homogeneous
strain tensor. The κ in Eq. (5) is the quadratic coefficient of
E ({ui}) in Eq. (6), including the quadratic terms of Eself ({ui}),
Eshort ({ui}), and Edpl({ui}). The coefficients of the quartic term
and higher order terms are from the Eself ({ui}) as given by
Ref. [9]:

Eself ({ui})

=
∑

i

Eself (ui )

=
∑

i

{
κ2u2

i + αu4
i + γ

(
u2

ixu2
iy + u2

iyu2
iz + u2

izu
2
ix

)
+ k1u6

i + k2
[
u4

ix

(
u2

iy + u2
iz

) + u4
iy

(
u2

iz + u2
ix

)
+ u4

iz

(
u2

ix + u2
iy

)] + k3u2
ixu2

iyu2
iz + k4u8

i

}
. (7)

We determine the parametrization of Heff by performing
density-functional theory (DFT) calculations [26,27] within
generalized gradient approximation (GGA) [28] with the
Perdew-Burke-Ernzerhof parametrization revised for solids
(PBEsol) [29], using Quantum ESPRESSO code [30,31]. In
particular, we use the climbing image-nudged elastic band
(CI-NEB) [32,33] method in the first-principles calculations
to determine the coefficients k1, k2, k3, and k4 of the cou-
pling between soft-mode phonon and high-frequency optical
phonons. For the MC simulations, we use the supercell system
of N = Lx × Ly × Lz = 14 × 14 × 14 to compute the finite-
temperature properties under heating and cooling processes.
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FIG. 2. Dependence of the supercell average 〈u〉 on the temperature of BaTiO3 and PbTiO3 in [(a),(b)] the original MC method and [(c),(d)]
the MC method with singularity energy compensation. The value of the maximum, middle, and minimum components of the supercell average
〈u〉 is denoted as 〈u1〉, 〈u2〉, and 〈u3〉, respectively. The phases are distinguished by the dashed lines. Heating (solid) and cooling (hollow)
sequences are shown.

Near the phase transition points, we use the temperature step
of ±1 K and 30 000 MC sweeps per temperature step in both
heating and cooling sequences. Additional computational de-
tails are presented in the Supplemental Material [34].

To include singularity energy specifically in the transition
probability as proposed in Eq. (4), the value of second partial
derivative for the heating and cooling sequences in Eq. (5)
is determined by the u when the transition is complete, as
follows:

∂2 Etot

∂u2
=

⎧⎪⎨
⎪⎩

∂2 Etot
∂u2

∣∣∣
u=0

= |2κ|, heating

∂2 Etot
∂u2

∣∣∣
u=umax

= ∣∣2κ + 12αu2
max + 30k1u4

max + 56k4u6
max

∣∣, cooling
, (8)

where u = 0 and u = umax are determined by ∂Etot/∂u = 0 at
the maximum and the minimum of the total energy Etot based
on first-principles calculations, respectively. We fix the value
of second partial derivative over the whole temperature range
and limit the singularity energy compensation corresponding
to the maximum value of the move �u to no more than h̄ω

(i.e., the energy of the soft-mode eigenfrequency). Therefore,
the compensation only affects the transition probability and
corrects the transition temperature near the phase transition
point, where the fluctuation of u is equivalent to the magnitude
of �u. Far from the transition point, where u is zero or a finite
value, the influence of the singularity energy compensation
on the transition probability does not change the statistical
distribution of u at that temperature. Because each trial move
of ui in the MC algorithm is only in one direction, the singu-
larity energy compensation is applied to the corresponding ui

component (�uix,�uiy, or �uiz ) in each move.

We employ this simulation approach to compute the zero-
pressure ferroelectric phase transition temperatures of BaTiO3

and PbTiO3, as shown in Table I. For clarity, the phase
transition temperatures yielded by MC simulation are all
considered to be Curie temperature TC. Figure 2 shows the
supercell average 〈u〉 of the {ui} as a function of tempera-
ture for BaTiO3 and PbTiO3. With decreasing temperature,
BaTiO3 experiences three transitions in the order of cubic
(C), tetragonal (T), orthorhombic (O), and rhombohedral (R)
phases, and PbTiO3 experiences one transition from cubic
to tetragonal phases. Comparing the transition temperatures
with and without �F, the simulated temperatures are very
close to the experimental values for the two materials after
the singularity energy compensation. Specifically, the TC of
PbTiO3 is in good agreement with experimental observation
compared with previous results. This justifies the applicable
compensation of singularity energy to improve the accuracy of

L060101-3



LUO, CAO, KE, LIU, AND ZHOU PHYSICAL REVIEW B 108, L060101 (2023)

FIG. 3. Mean square fluctuations of BaTiO3 and PbTiO3 in the T ↔ C phase transition obtained by [(a),(b)] the original MC method and
[(c),(d)] the MC method with singularity energy compensation. The TC of T ↔ C phase transition for (e) BaTiO3 and (f) PbTiO3 varying with
negative hydrostatic pressure after singularity energy compensation is shown.

TABLE I. Calculated phase transition temperatures (K) of BaTiO3 and PbTiO3 under zero external pressure. The data of this work are
obtained under heating (cooling) sequence.

Compound R ↔ O O ↔ T T ↔ C Interpretation

BaTiO3 193 (202) 230 (244) 295 (314) this work (with �F)
173 (130) 195 (169) 245 (243) this work (without �F)

230 278 375 [10]
102 160 288 [9]
200 230 297 [4] (−4.8 GPa)
183 278 403 expt. [35]

PbTiO3 739 (728) this work (with �F)
644 (575) this work (without �F)

675 [10]
625 [11]
635 [36,37] (experimental lattice constant)
763 expt. [38]
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simulated phase transition temperatures for the MC method.
When it is close to TC, the singularity energy compensation
increases the transition temperature towards the experimental
value by adjusting the transition probability as in Eq. (4).
Compared with the previous corrections of negative pres-
sure [5,9] and high-frequency phonon coupling [9,10,22], the
singularity energy compensation is fundamentally different.
The negative pressure enhances the coupling between the soft
mode and the strain, and the introduction of high-frequency
phonons corrects the higher order anharmonic term of the soft
mode. Those corrections improve the accuracy of simulated
phase transition temperatures by increasing the energy differ-
ence of the Heff in the transfer probability, without considering
the anomaly of the transition probability at the singularity
when approaching TC in the statistical space.

We then explore the influence of singularity energy on the
fluctuation near the T ↔ C phase transition point of BaTiO3

and PbTiO3. We first study the mean square fluctuation of the
〈u1〉 component around TC, where the T ↔ C phase transi-
tion takes place as shown in Fig. 3. The fluctuation in the
paraelectric cubic phase is larger than that in the ferroelectric
tetragonal phase. The fluctuation in the ferroelectric phase
is reduced to approximately half of that in the paraelectric
phase within a small range near TC, which corresponds to
the relationship described by Landau [23]. For BaTiO3, the
thermal hysteresis after the singularity energy compensation
is 19 K [Fig. 3(c)], which is better than 2 K before com-
pensation [Fig. 3(a)], and the TC of the cooling sequence is
higher than that of the heating sequence. This phenomenon is
consistent with the experimental observations that the cooling
TC is higher than the heating TC and the thermal hysteresis of
∼6 K [39]. For PbTiO3, the thermal hysteresis after singular-
ity energy compensation is 11 K [Fig. 3(d)], which is less than
69 K before compensation [Fig. 3(b)] but more consistent with
the experimental value of ∼7 K [40].

The effect of negative hydrostatic pressure on the TC of
T ↔ C phase transition is shown in Figs. 3(e) and 3(f). For
both BaTiO3 and PbTiO3, the simulated TC has a linear rela-
tionship with pressure. The slopes dTC/dP in the heating and
cooling sequence are nearly the same. The average dTC/dP
for BaTiO3 and PbTiO3 is 49.4 and 30.3 K/GPa, respectively,
which is in agreement with experimental values of 52 and
84 K/GPa, respectively [41]. The discrepancy for PbTiO3 may
be due to the fact that the experimental data are obtained under
positive pressure [41].

Finally, we study the influence of singularity energy on
the mean square fluctuation of soft-mode u(k) in reciprocal
space near the T ↔ C phase transition, which we use to
evaluate the order-disorder degree of the soft mode near the
phase transition point. Following the treatment in Ref. [5],
the average Fourier modulus F (k, T ) = 〈|u(k)|2〉 represents
the mean square fluctuation. We calculate the mode hardness
quantity ρ(k) = 2ω2(k, T )/ω2(k, 2T ) of the LO, TO1, and
TO2 branches of the soft mode, where T is any tempera-
ture higher than TC and the square of the eigenfrequency
ω2(k) is proportional to T/F(k, T) [5]. Figure 4 shows the
ρ(k) of the optical transverse TO1 and TO2 modes along
the pathway of high-symmetry �, X, M, and R points in the
Brillouin zone (BZ) for cubic BaTiO3 and PbTiO3, with T
being 400 and 850 K, respectively. The optical longitudinal

FIG. 4. Mode hardness quantity ρ(k) of TO1 and TO2 modes for
(a) BaTiO3 and (b) PbTiO3 along the high-symmetry directions in
the BZ. The ρ(k) of the heating sequence is shown, whose trend is
the same as that of the cooling sequence.

LO mode is omitted. An optical branch is considered soft if its
ρ(k) < 1, and the extent to which it expands in the BZ
determines the degree of order-disorder [5]. As shown in
Fig. 4(a), the TO1 and TO2 modes quickly harden at the zone
boundary M and R points while they remain soft along the �-X
direction, indicating a partial order-disorder character of T ↔
C transition for BaTiO3. After compensating the singularity
energy, the ρ(k) of both TO1 and TO2 modes along the �-X
direction is reduced, which confirms that the degree of order-
disorder character is enhanced. In Fig. 4(b), TO1 and TO2
modes quickly harden throughout the BZ, indicating a full
displacive character in the T ↔ C transition for PbTiO3. After
the compensation of singularity energy, the order-disorder
character emerges as the ρ(k) of TO1 and TO2 modes along
the �-X direction is reduced below 1. This result conforms
to the experimental observation that the T ↔ C transition
of PbTiO3 demonstrates a strong degree of order-disorder
[42–45].

In summary, we compensate for the slight difference in
mathematical space between the macroscopic phenomeno-
logical model and the microscopic statistical model at the
singularity of phase transition point by means of statistical
singularity energy in Heff -based MC simulations of ferro-
electric phase transition. The phase transition temperatures
of BaTiO3 and PbTiO3 have good consistency with the ex-
perimental results. Near the T ↔ C phase transition point,
we accurately evaluate the thermal hysteresis and the order-
disorder degree of the soft mode by the fluctuation of the soft
mode in the real space and the reciprocal space. Our method is
expected to be applied to complex phase transitions with mul-
tiple singularities (sometimes the singularities are of different
spaces).
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