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One-dimensional (1D) chains with nonreciprocal tunneling realizing the non-Hermitian skin effect (NHSE)
have attracted considerable interest in the last years, whereas their experimental realization in real space remains
limited to a few examples. In this Letter, we propose a generic way of implementing nonreciprocity based on a
combination of Rashba-Dresselhauss spin-orbit coupling, existing for electrons, cold atoms, and photons, and a
lifetime imbalance between two spin components. We show that one can realize the Hatano-Nelson model, the
non-Hermitian Su-Schrieffer-Heeger model, and even observe the NHSE in a 1D potential well without the need
for a lattice. We further demonstrate the practical feasibility of this proposal by considering the specific example
of a photonic liquid-crystal microcavity. This platform allows one to switch on and off the NHSE by applying
an external voltage to the microcavity.
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Introduction. The last decades have been marked by a
growing interest in non-Hermitian physics [1], which ap-
pears reasonable due to the ubiquitous nonequilibrium nature
of physical systems. Many phenomena without Hermitian
analogs have been found. From a mathematical perspective,
these are exceptional points and their nodal phases, non-
Hermitian symmetry operators and classes [2], anomalous
bulk-boundary correspondence [3] (BBC), and related non-
Hermitian skin effect [4] (NHSE). From the physical point
of view, these mathematical concepts became a foundation
for unidirectional invisibility [5], enhanced sensitivity [6–8],
high-performance lasing [9], etc.

The BBC [10–12] relates the topologically nontrivial struc-
ture of bulk states with the presence of topologically protected
edge states. It relies on the assumption that the introduction of
the boundary does not induce any effects on the bulk. While
the BBC is valid in Hermitian systems, it was found to be
broken in many classes of non-Hermitian systems [3,13–15].
The BBC breakdown is always accompanied by the piling up
of the bulk states of the system at the boundary (skin modes),
the effect which was dubbed NHSE in analogy with the skin
effect in electromagnetism [4,16–18]. The simplest model
demonstrating NHSE is the Hatano-Nelson (HN) model [16],
a one-dimensional (1D) chain with nonreciprocal couplings.
However, the breakdown of BBC cannot be observed in the
HN chain since its Hermitian analog, a monomer chain, does
not possess edge states. Thus the simplest model where the
BBC breakdown was first investigated is the non-Hermitian
Su-Schrieffer-Heeger (SSH) model [Fig. 1(d)] [4,18–20], a
non-Hermitian extension of a 1D SSH dimer chain possessing
topologically protected edge states [21,22]. The two main and
complementary ways to restore the BBC were suggested: us-
ing special topological invariants for non-Bloch Hamiltonians
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of infinite systems [4,23] or calculating the biorthogonal po-
larization for finite systems with an open boundary condition
(OBC) Hamiltonian [18,24,25].

The two frameworks exist as well to describe the NHSE:
The first is based on the non-Hermitian winding number cal-
culated for a Bloch Hamiltonian with a periodic boundary
condition (PBC) [see Eq. (5)] [26,27]. The other utilizes the
concept of the generalized Brillouin zone (GBZ) [23,28].
Even though the two approaches are equivalent [29], combin-
ing both is helpful to visualize the complementary information
about the system eigenstates and eigenenergies.

A set of theoretical papers establishing the fundamentals
of NHSE has triggered several experimental implementations,
mostly in acoustics [30,31], mechanics [32,33], and electrical
circuits [34–38]. Theoretical suggestions for NHSE systems
in the field of photonics are based mostly on coupled ring
resonators [39–41], exciton-polariton lattices [42–45], and
photonic crystals [46–48]. According to our knowledge, ex-
perimental realizations of NHSE in photonics involve only
discrete-time quantum walks in coupled optical fiber loops
[49] and bulk optics [50], a synthetic frequency dimension
in an optical ring resonator [51,52], and a single realization
in a real space utilizing a chain of active ring resonators [53].
Therefore, the field still lacks a generic theoretical proposal of
NHSE in real space that could be applied to a large range of
platforms.

In this Letter, we present a generic implementation of
nonreciprocity and NHSE, not related to fabricating mi-
crostructures or complicated lattices, and achievable in several
platforms. The approach is based on coupling between spin
and propagation direction by Rashba-Dresselhaus spin-orbit
coupling (RDSOC) (existing for electrons [54,55], cold atoms
[56], and photons [57]) and an in-plane effective magnetic
field. By adding a spin-dependent lifetime [realized as well for
electrons [58], cold atoms [59–61], and photons (see Supple-
mental Material [62] and also Ref. [63] therein)] we introduce
non-Hermiticity into the system and obtain nonreciprocal
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FIG. 1. (a), (b) Spinful monomer and SSH chains with RDSOC,
(effective) in-plane magnetic field, and spin-dependent loss; (c) non-
Hermitian HN and (d) SSH models.

couplings. This allows us to model the HN and non-Hermitian
SSH chains. Furthermore, with these ingredients, we obtain
the NHSE without any lattice, in a single 1D trap. In a partic-
ular case of photonics, RDSOC, in-plane magnetic field, and
spin-dependent lifetime are equivalent to optical activity [64],
linear birefringence, and circular dichroism, respectively. The
two first ingredients appear naturally in microcavities filled
with liquid crystals (LCs) [57]. The circular dichroism can
be produced by embedding a chiral optical absorber [65,66]
or with spin-dependent gain [67]. We present realistic sim-
ulations showing NHSE using LC microcavity parameters.
Finally, we show how the localization of skin modes can be
controlled by an external voltage applied to LC microcavity,
up to switching off the NHSE.

1D monomer chain. We start by considering the Hamilto-
nian of a spin- 1

2 particle in a 1D monomer chain of coupled
potential wells (sites), in the presence of RDSOC, in-plane
(effective) magnetic field, and spin-dependent loss in the tight-
binding approximation [Fig. 1(a)],

Ĥ1 =
∑

n

δσ̂xa†
nan + iγ σ̂za

†
nan

+ teiβσ̂z a†
n+1an + te−iβσ̂z a†

nan+1, (1)

with an (a†
n) the annihilation (creation) operator of a parti-

cle at lattice site n, σ̂i the ith Pauli matrix, t the tunneling
coefficient, and δ an in-plane magnetic field. The RDSOC
can be represented as a constant gauge potential that enters
the tunneling coefficient as a spin-dependent phase βσ̂z (see
details in Ref. [68]), the so-called Peierls phase [69]. The
additional ingredient here is the on-site spin-dependent loss
which was absent in our previous work [68] and which makes
the Hamiltonian non-Hermitian. The average lifetime is not
included in the Hamiltonian since it does not affect the physics
related to the NHSE. The presence of the average lifetime will
simply shift the whole spectrum in Fig. 2(d) in the region of
the negative imaginary part Im[E ] < 0, which is equivalent to
a global decay of modes.

We first look at the limit of a large in-plane magnetic
field: |δ| � |t |, |γ |. The spin-subspace components of zero-
order eigenstates are the ones of the σ̂x matrix [the first
term in Eq. (1)], while their perturbation is defined by the
remaining terms. In this case the effective Hamiltonian (1) for

FIG. 2. (a) Transition from Eq. (1) to Eq. (2) for a 40-site chain
with an increase of δ displaying NHSE [blue (red) color shows the
right (left) edge localization]; (b) normalized density of eigenstates
for the lower band of (a) depending on the real part of the energy
Re[E ] and site number n; (c) BZ and GBZs of Eqs. (1) and (2);
(d) PBC spectrum of Eq. (2), and OBC spectra of Eqs. (1) and
(2). Parameters: t = 1, γ = 1, δ = 5, β = 0.2π .

|n〉 ⊗ |σx; −〉 subspace reads

Ĥ eff
1 = Ĥ eff

1,on-site + Ĥ eff
1,NN + Ĥ eff

1,NNN, (2)

where

Ĥ eff
1,NN =

∑
n

t−a†
nan+1 + t+a†

n+1an, (3)

t± = t

(
cos β ± γ

δ
sin β

)
. (4)

Ĥ eff
1,on-site, Ĥ eff

1,NN, and Ĥ eff
1,NNN stand for on-site, nearest-

neighbor (NN), and next-nearest-neighbor (NNN) Hamilto-
nians, respectively (see exact formulas in the Supplemental
Material [62]). As one can see from Eqs. (3) and (4), for-
ward and backward tunneling coefficients t± differ by a factor
γ

δ
sin β. In this limit, the chain is equivalent to the nonrecip-

rocal HN model up to the NNN tunnelings [Fig. 1(c)].
We next consider a 40-site chain. Figure 2(a) shows the

real eigenenergies of the full Hamiltonian (1) versus δ. With
increasing δ, a single band splits into two (|n〉 ⊗ |σx; −〉 and
|n〉 ⊗ |σx; +〉 for big δ). Each of the two bands shows a strong
localization of right eigenstates (from here on just eigenstates)
on the edge of the chain (opposite edges for different bands).
Figure 2(b) demonstrates for δ = 5 the spatial distribution of
modes of the lowest band, which confirms localization on the
right edge. In a system where δ can be tuned experimentally,
as in LC microcavities, NHSE can be turned on and off as
shown by Fig. 2(a).

As discussed in the Introduction, the GBZ is a powerful
tool to characterize the NHSE. In 1D Hermitian systems,
the Brillouin zone (BZ) can be represented as the trigono-
metric circle z = eik , where k is a real wave number. In
non-Hermitian systems, it is appropriate to consider an imag-
inary wave number characterizing exponentially localized
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wave functions. This defines new eigenenergies where a por-
tion of the imaginary part is transferred to the wave number,
resulting in the GBZ represented by z = reik . If a part of the
GBZ plotted on a complex z plane falls inside (outside) the
BZ, corresponding eigenstates have r < 1 (r > 1) and would
therefore experience the NHSE with localization on the right
(left) side of a finite chain. The GBZs of the full Hamilto-
nian (1) and of the effective Hamiltonian (2) are shown in
Fig. 2(c) by yellow and red lines, respectively. The GBZ of
the full Hamiltonian (1) consists of two yellow solid lines
corresponding to two bands localized on opposite edges. The
GBZ of the reduced Hamiltonian (2) is in perfect agreement
with the inner part of GBZ of full Hamiltonian (1), confirming
their equivalence in this limit. In contrast to a pure HN model,
red and yellow circles are not centered at z = 0 due to the
presence of NNNs [Eq. (2) and Supplemental Material [62]].

The specificity of the non-Hermitian systems is that the
spectra of infinite and finite systems differ profoundly. In-
deed, the use of periodic boundary condition (PBC) requires
considering only real wave numbers, and the imaginary part
is carried by the complex eigenenergies. Figure 2(d) depicts
the OBC spectra of Eq. (1) (yellow) and Eq. (2) (red) form-
ing real-valued segments and the complex PBC spectrum of
Eq. (2) (blue). One can see that the effective Hamiltonian (2)
perfectly approximates the OBC spectrum of the lower-energy
band of the full Hamiltonian (1). The complex PBC spectrum
can be used to compute the non-Hermitian spectral winding
number:

WEb := 1

2π

∮
BZ

d

dz
arg[H (z) − Eb]dz, (5)

with H (z) the PBC (Bloch) Hamiltonian, and Eb ∈ C a ref-
erence point. NHSE, therefore, occurs if the loop of the PBC
spectrum encircles a nonzero area, which is clearly the case
for the blue line in Fig. 2(d).

SSH chain. We continue by considering the SSH model—
the celebrated model in topological physics first suggested to
describe the dimer structure of a polyacetylene chain [21]. The
chain contains two sublattices (A and B), and the Hamiltonian
is written as [Fig. 1(b)]

Ĥ2 =
∑

n

δσ̂x(a†
n,Aan,A + a†

n,Ban,B)

+ iγ σ̂z(a†
n,Aan,A + a†

n,Ban,B) + (t1eiβ1σ̂z a†
n,Ban,A

+ t2e−iβ2σ̂z a†
n,Ban+1,A + H.c.), (6)

where t1 (t2) is intracell (intercell) tunneling with a corre-
sponding RDSOC phase β1 (β2), and all other parameters as
in Eq. (1). By considering the |σx; −〉 subspace again, one can
transform the Hamiltonian Eq. (6) to

Ĥ eff
2 = Ĥ eff

2,on-site + Ĥ eff
2,NN + Ĥ eff

2,NNN, (7)

Ĥ eff
2,NN =

∑
n

t+
1 a†

n,Ban,A + t−
1 a†

n,Aan,B

+ t−
2 a†

n,Ban+1,A + t+
2 a†

n+1,Aan,B,

(8)

t±
i = ti

(
cos βi ± γ

δ
sin βi

)
. (9)

FIG. 3. (a) BZ and GBZs of Eq. (7) for two values of β1; (b) PBC
spectra of Eq. (7), and OBC spectra of Eq. (7) for two values of β1,
each showing two coinciding topological edge states; (c) normalized
density of eigenstates of a 40-site chain depending on the real part
of the energy Re[E ] and site number n; (d) Eq. (7) real spectrum
vs β1 displaying NHSE [blue (red) color shows the right (left) edge
localization] as well as a topological transition (bottom) confirmed
by topological invariant ν (top). Parameters: t1 = 2, t2 = 1, γ = 1,
δ = 5, β2 = 0.

Next, we investigate the case when β2 = 0 for simplic-
ity [Fig. 1(d)]. Consequently, the NNN term vanishes (see
Supplemental Material [62]), and the chiral symmetry of
the Hamiltonian (7) is restored. We stress that the NHSE
is present for other values of β2 as well. The Hamiltonian
Eq. (7) then can be transformed into the conventional SSH
Hamiltonian by a similarity transformation ĤSSH = ŜĤ eff

2 Ŝ−1

with Ŝ = diag{1, rs, r, r2s, . . . , rN−1, rN s}, r = √
t−
1 t−

2 /t+
1 t+

2 ,
s = √

t+
1 /t−

1 , where 2N defines the number of lattice sites.
The topology of the chain is then described by a Hermitian
winding ν such that ν = 1 for |t+

2 t−
2 | > |t+

1 t−
1 |, and ν = 0

otherwise. The biorthogonal polarization invariant [18] shows
the same transition for the initial non-Hermitian chain (7).

In Fig. 3(a) we show GBZs for two different values of
β1: β1 > π/2 (yellow) and β1 < π/2 (red). They indicate
the NHSE effect with accumulation on different edges, which
is also confirmed by Fig. 3(d), demonstrating a finite chain
spectrum for different values of β1 with a blue (red) color
corresponding to the right (left) edge localization. The OBC
spectra for the aforementioned values of β1 are depicted in
Fig. 3(b) (yellow and red lines) together with two PBC spec-
tra (blue and purple lines). The individual dots between two
bands of each OBC spectrum are the topological states. These
topological states are localized at the edge of the chain (as the
bulk states), but they are located inside the real gap of the OBC
spectrum. They appear in Fig. 3(c), where we plot the nor-
malized density of eigenstates versus the lattice site number.
In the Hermitian limit (γ → 0), the origin of the topological
transition related to the formation of the edge states is the
modulation of the tunneling amplitudes by the combination
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FIG. 4. Normalized eigenstate density for the lower-energy
states of the potential well depending on the real part of the en-
ergy Re[E ] and real-space coordinate x. Parameters: d = 20 µm,
U0 = 10 meV, m = 1.6 × 10−5me, me is the electron mass, α =
1 meV µm, δ = 5 meV, (a) γ = 0 meV and (b) γ = 0.25 meV.

of RDSOC β with the in-plane field δ, as described in our
previous paper [68]. Here, this transition is modified by
non-Hermiticity and described by the invariant ν plotted in
the top panel of Fig. 3(d).

1D potential well. Finally, we show that the NHSE can be
observed in a potential well, without the use of a lattice. To do
so, we solve numerically the 1D spinor stationary Schrödinger
equation with the Hamiltonian

Ĥcont(x) = − h̄2

2m

∂2

∂x2
σ̂0 − 2iα

∂

∂x
σ̂z

+ δσ̂x − iγ0σ̂0 + iγ σ̂z + U (x)σ̂0, (10)

with x the real-space coordinate, m the mass, γ0 the com-
mon loss, γ the spin-dependent loss, and α the RDSOC
magnitude. U (x) = {0, if |x| < d;U0, otherwise} is the real-
space potential with parameters d = 20 µm, U0 = 10 meV.
We plot the normalized eigenstate density for the Hermitian
case γ = 0 meV in Fig. 4(a) and for the non-Hermitian case
γ = 0.25 meV in Fig. 4(b). The parameters used correspond
to realistic LC microcavities [57]. In particular, the broaden-
ing for every state is taken as γ0 = 2 meV [70] in full width
at half maximum which exceeds the quantization energy, so
the individual lines are indistinguishable. Nevertheless, it does
not prevent a clear observation of NHSE: One can see that
the non-Hermiticity drives the density of all lowest eigenstates
to the right edge of the well. A similar effect was suggested
for cold atoms [71–73]. The inversion of either the RDSOC
direction (α → −α) or of the spin-dependent loss (γ → −γ )
changes the NHSE so that the eigenstates localize at another
edge. This property provides the tunability of the effect. We
provide additional analysis of the Hamiltonian (10) in the
Supplemental Material [62] (see also Refs. [2,63,64,70,74,75]
therein).

This effect can be explained again by considering one band
|σx; −〉 in a limit of the large in-plane magnetic field δ. Then,
the Hamiltonian (10) is rewritten as

Ĥ eff
cont(x) = E0 + U (x) − ξ 2(∂x + τ )2, (11)

with E0 = −δ + γ 2

2δ
+ ( αγ

ξδ
)2 constant energy shift, ξ 2 = h̄2

2m −
2α2

δ
kinetic energy scaling, and τ = αγ

ξ 2δ
imaginary gauge

potential [76]. By considering the wave-function ansatz
ψ (x) = ϕ(x)e−τx, we arrive at a simple eigenvalue problem
of a single spinless particle in a potential well with a wave
function ϕ(x):

Ĥ eff
cont(x)ϕ(x) = [

E0 + U (x) − ξ 2∂2
x

]
ϕ(x). (12)

As one can see, τ−1 is a localization length of a wave function
ψ (x) and its finite value is a manifestation of NHSE. It is
achieved only when α, γ , δ all have nonzero values, which
confirms the necessity of each component in our model. The
sign of τ is controlled by the combination of signs of α and γ .

As said above, one of the possible experimental realiza-
tions of this proposal is to use a photonic microcavity filled
with LCs [57]. Here, the spin degree of freedom is represented
by the photon polarization. The angle of the LC molecule
director can be controlled via an external voltage. When the
splitting between the modes of different linear polarization is
big enough due to the rotation of LC molecules, two modes
of opposite parity can come into resonance, giving rise to
the RDSOC term in the Hamiltonian (10). A slight rotation
of the LC director out of this resonance adds a splitting
between these successive modes, entering the Hamiltonian
as δσ̂x (effective in-plane magnetic field). The presence of a
chiral absorber or spin-dependent gain in a nonlinear system
can create a polarization-dependent lifetime. The potential
well can be created by structuring the mirror of the microcav-
ity. This system possesses the continuous tunability of δ, as
well as the possibility to switch α between zero and nonzero
values. This allows one to tune the localization length τ−1 of
NHSE or switch it on and off.

The realization of our proposal in the electronic systems
is fully feasible as well. In the Supplemental Material [62]
(see also Refs. [55,77–87] therein) we show that the Hamil-
tonian (10) can be achieved in a 1D nanowire composed of
a ferromagnetic material and a semiconductor. In this case,
a ferromagnet provides the necessary spin-dependent lifetime
for electrons while a semiconductor offers the RDSOC and
in-plane magnetic field. The calculation with experimental
parameters shows the appearance of skin modes (see Supple-
mental Material [62]).

Conclusion. We propose a generic way to realize nonre-
ciprocal tunnelings. It allows the implementation of models
based on nonreciprocal couplings (HN model, non-Hermitian
SSH, etc.). The method is based on combining RDSOC, (ef-
fective) in-plane magnetic field, and spin-dependent lifetime.
Furthermore, we demonstrate that the NHSE can be observed
even without a lattice. This proposal is feasible for different
platforms in solid-state physics, cold atoms, or photonics.
In particular, we simulate a realistic LC microcavity where
NHSE can be tuned by voltage.

Acknowledgments. This work was supported by the Eu-
ropean Union Horizon 2020 program, through a Future and
Emerging Technologies (FET) Open research and innovation
action under Grant Agreement No. 964770 (TopoLight), by
the ANR project Labex GaNEXT (ANR-11-LABX-0014),
and by the ANR program “Investissements d’Avenir” through
the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25).

L041403-4



NON-HERMITIAN SKIN EFFECT INDUCED BY … PHYSICAL REVIEW B 108, L041403 (2023)

[1] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[2] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symme-
try and Topology in Non-Hermitian Physics, Phys. Rev. X 9,
041015 (2019).

[3] T. E. Lee, Anomalous Edge State in a Non-Hermitian Lattice,
Phys. Rev. Lett. 116, 133903 (2016).

[4] S. Yao and Z. Wang, Edge States and Topological Invariants of
Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803 (2018).

[5] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. Oliveira,
V. R. Almeida, Y.-F. Chen, and A. Scherer, Experimental
demonstration of a unidirectional reflectionless parity-time
metamaterial at optical frequencies, Nat. Mater. 12, 108 (2013).

[6] J. Wiersig, Enhancing the Sensitivity of Frequency and Energy
Splitting Detection by Using Exceptional Points: Application to
Microcavity Sensors for Single-Particle Detection, Phys. Rev.
Lett. 112, 203901 (2014).

[7] J.-H. Park, A. Ndao, W. Cai, L. Hsu, A. Kodigala, T. Lepetit,
Y.-H. Lo, and B. Kanté, Symmetry-breaking-induced plasmonic
exceptional points and nanoscale sensing, Nat. Phys. 16, 462
(2020).

[8] J. Wiersig, Response strengths of open systems at exceptional
points, Phys. Rev. Res. 4, 023121 (2022).
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