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Topological classification of quantum solids often (if not always) groups all trivial atomic or normal insulators
(NIs) into the same featureless family. As we argue here, this is not necessarily the case always. In particular,
when the global phase diagram of electronic crystals harbors topological insulators with the band inversion
at various time-reversal invariant momenta KTI

inv in the Brillouin zone, their proximal NIs display noninverted
band-gap minima at KNI

min = KTI
inv. In such systems, once topological superconductors nucleate from NIs, the

inversion of the Bogoliubov de Gennes bands takes place at KBdG
inv = KNI

min, inheriting from the parent state.
We showcase this (possibly general) proposal for two-dimensional time-reversal symmetry-breaking insulators.
Then, distinct quantized thermal Hall conductivity and responses to dislocation lattice defects inside the paired
states (tied with KBdG

inv or KNI
min), in turn, unambiguously identify different parent atomic NIs.

DOI: 10.1103/PhysRevB.108.L041301

Introduction. The world of insulators fragments into two
sectors according to the topology and geometry of the bulk
electronic wave function in quantum crystals: topological
insulators (TIs) and normal insulators (NIs) [1,2]. TIs mani-
fest bulk-boundary correspondence, featuring robust gapless
modes at crystal interfaces, such as edge, surface, corner, and
hinge, for example. When combined with the crystal sym-
metry, the family of TIs hosts a rich fair showcasing strong,
weak, crystalline, higher-order, and atomically obstructed TIs
[3–23]. By contrast, atomic or normal insulators, although
abundant in nature, do not accommodate any gapless topo-
logical boundary modes. Naturally, within the topological
classification scheme of quantum materials, NIs are grouped
into a single featureless family. A question, therefore, can
be raised. Can we topologically distinguish such NIs? leav-
ing aside their nontopological spectroscopic characterization
based on the band-gap minima momenta (KNI

min).
Here, we provide an indirect affirmative answer to this

question by considering a paradigmatic toy square lattice
model for two-dimensional (2D) time-reversal symmetry-
(T -) breaking insulators [24]. We show if the global phase
diagram of quantum materials supports TIs featuring the
hallmark band inversion at different time-reversal invariant
momenta KTI

inv in the Brillouin zone (BZ), then, their respec-
tive proximal NIs display a band-gap minima at KNI

min=KTI
inv

(Fig. 1). In such systems, when topological superconductors
(TSCs) nucleate from NIs [Fig. 2(a)], the inversion of the
Bogoliubov de Gennes (BdG) bands takes place at KBdG

inv =
KNI

min (Fig. 3). Although half-quantized thermal Hall con-
ductivity (κxy) reveals the topological nature of the paired
states [Fig. 2(b)], dislocation lattice defects, sensitive to KBdG

inv ,
in turn, underpins KNI

min (Fig. 4). Therefore, responses of
TSCs allow us to identify and distinguish their parent NIs.
Specifically, when a TSC, characterized by a half-quantized
κxy, stems from a NI with the band-gap minima at a finite
momentum, only then robust zero-energy localized Majorana

modes appear near the dislocation core. We present a simple
mathematical proof to generalize this proposal to arbitrary
dimensions (larger than one) and symmetry class to classify

FIG. 1. (a) Phase diagram of the normal-state Hamiltonian
[Eq. (1)] in terms of the Chern number C [Eq. (2)] for t = t0 = 1. In
each insulating phase, the band structure displays parity polarization
of the eigenvectors in red (+) and blue (−) for (i) m0 = −2.25, (ii)
m0 = −0.75, (iii) m0 = 0.75, and (iv) m0 = 2.25. Bands are nonin-
verted (inverted) in NIs (TIs). Here, we follow the path � → X →
M → � in the BZ. (b) The six-terminal electrical (σxy) and thermal
(κxy) Hall conductivities as a function of m0, computed in a rectan-
gular system (see the insets) of length L = 200 and width W = 100.
In TIs, both σxy = C and κxy = C [in units of κ0 = π 2k2

BT/(3h)] at
T = 0.01. Dotted lines are guide to the eye.
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FIG. 2. (a) Phase diagram of HBdG(k) [Eq. (4)]. Phases are col-
ored according to the total Chern number (Ctot) and “weak TSC”
possesses a weak invariant, the Zak phase. Circled phases with sin-
gle (double) dot(s) support one (two) pair(s) of dislocation modes
(Fig. 4). (b) Thermal Hall conductivity (κxy) and longitudinal thermal
conductance (Gth) as a function of m0 for � = 0.5, computed in a
system of L = 2W = 80 [Fig. 1(inset)] at T = 0.01. In units of κ0,
κxy = Ctot/2 and Gth = |kxy|. But, in the weak TSC phase Gth = 1 (in
units of κ0). Arrows show two TSCs resulting from two NIs, distin-
guished from the paired state responses [(b) and Fig. 4], confirming
KBdG

inv = KNI
min (Fig. 3).

NIs from the responses of their proximal TSCs, operative
under the only assumption that a half-filled system always
describes an insulator.

Normal state. The Hamiltonian for 2D T -breaking insu-
lators on a square lattice reads H = ∑

k �
†
kH(k)�k, where

��
k = [c+

k , c−
k ], and cτ

k is the fermionic annihilation operator
with momentum k and parity τ = ± [24]. The k-dependent
operator is given by H(k) = τ · d(k) with

d(k) =
⎛
⎝t sin(kxa), t sin(kya), m0 − t0

∑
j=x,y

cos(k ja)

⎞
⎠. (1)

Vector Pauli matrix τ = (τx, τy, τz ) operates on the parity
indices (±). Throughout, we set t = t0 = 1, and the lattice
constant a = 1. Then, this model hosts TIs in the regime
−2 < m0 < 2, and NIs otherwise. Each TI supports one chiral
edge mode, encoding the first Chern number C = ±1, defined
within the first BZ as [25]

C =
∫

BZ

d2k
4π

[∂kx d̂(k) × ∂ky d̂(k)] · d̂(k), (2)

FIG. 3. Band structure of HBdG(k) [Eq. (4)] in a semi-infinite
system with k j , where j = x or y and 120 unit cells in the y or x
direction for � = 0.5. The values of m0 are (a) 3.0, (b) 0.0, (c) 2.0,
(d) −2.0, (e) 1.0, and (f) −1.0. The total Chern number (Ctot) is
quoted in each panel [Fig. 2(a)]. In (b), counterpropagating edge
modes result from a weak invariant (Zak phase). To display doubly
degenerate edge modes in (e) and (f), we plot one of them for odd
and the other one for even momentum grids. Red (blue) and green
colors indicate states that are localized on the left (right) edge and in
the bulk of the system, respectively.

manifesting the bulk-boundary correspondence, where
d̂(k) = d(k)/|d(k)|. In NIs, C = 0. The nontrivial Chern
number gives rise to quantized electrical and thermal Hall
conductivities, which we discuss shortly. This model breaks
the sublattice symmetry (S) as there exists no unitary operator
that anticommutes with H(k) and the T symmetry [8,9]. A
charge-conjugation symmetry (C), generated by τ1K where
K is the complex conjugation [26], arises solely because
we neglect the particle-hole asymmetry for simplicity as it
does not play any role in determining the topology of the
insulators.

Various phases of this model Hamiltonian in terms of the
Chern number and the associated band structures are shown
in Fig. 1(a). The topological regime fragments into two sec-
tors depending on the band inversion momentum in the BZ
(KTI

inv). Specifically, KTI
inv = (0, 0) (� point) for 0 < m0 < 2,

and KTI
inv = (π, π ) (M point) for −2 < m0 < 0. In these two

phases, C = +1 and −1, respectively. The transition between
them takes place through a band gap closing at the X = (π, 0)
or Y = (0, π ) point when m0 = 0. Two NIs are born from
these TIs via bulk gap closings at the M and � points when
m0 = −2 and +2, respectively. Even though the bands are
noninverted in NIs, the parity-polarized conduction (valence)
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FIG. 4. Energy spectra of HBdG(k) [Eq. (4)] in the presence of an edge dislocation-antidislocation pair with Burgers vectors b = ±aêx ,
placed symmetrically in a periodic system with linear dimensions L = 24 in the x and y directions, for � = 0.5, and (a) m0 = −1.0, (b) m0 =
−2.0, and (c) m0 = 0.0, yielding Ctot = +2, +1, and 0 (with nontrivial Zak phase) [Fig. 2(a)], respectively. The insets show near-zero-energy
states, whose local density of states is highly localized around the defect cores.

band displays band minima (maxima) near the � and M
points, respectively, for m0 > 2 and m0 < −2. In this respect,
the band-gap minima in NIs occurs at KNI

min = KTI
inv of their

proximal parent TIs. Although plays no role in topological
classification, H(k) enjoys an emergent inversion symmetry
τzH(k)τz = H(−k), resulting from the opposite parities of
two involved orbitals that also pins KTI

inv and, thus, KNI
min at

the high-symmetry points of the BZ [27], typically the case
in topological materials and models [8,9]. Throughout, we as-
sume that there is no translational symmetry breaking causing
doubling of unit cell or folding of the BZ. Before address-
ing the proposal to distinguish NIs with different KNI

min’s, we
characterize the normal state in terms of the electrical (σxy)
and thermal (κxy) Hall responses to facilitate the forthcoming
discussion.

Electrical Hall conductivity. We compute σxy in a
six-terminal geometry at zero temperature [27]. Since
mesoscopic details of the device or scattering region and
leads play a pivotal role in obtaining meaningful transport
responses, here, we briefly discuss their geometry used
for the calculations [Fig. 1(b)]. A rectangular scattering
region containing the system is maintained at a voltage
V . It is connected to six terminals. All of them are
kept at different voltages with the help of reservoirs.
To generate transverse electrical response, we apply
a voltage gradient between lead 1 (V1 = −�V/2) and
lead 4 (V4 = �V/2), resulting in a longitudinal electrical
current (Iel) between them. No current is flowing between
the transverse leads. They serve as the voltage probes.
This setup allows us to calculate σxy, generated between
the transverse leads by extracting the scattering matrix
using Kwant [28]. The current-voltage relation is given
by Iel = GelV, with I�

el = (Iel, 0, 0,−Iel, 0, 0) and V� =
(−�V/2,V2,V3,�V/2,V5,V6). The conductance matrix Gel

contains only the transmission blocks of the scattering matrix.
Upon finding Gel, we extract different voltages from the
current-voltage relation. Subsequently, we compute the
transverse electrical resistance Rel

xy = (V2 + V3 − V5 −
V6)/(2Iel ) [29–31]. In units of e2/h, we find σxy = 1/Rel

xy = C
[Fig. 1(b)].

Thermal Hall conductivity. The same six-terminal geome-
try can be used to compute κxy. The scattering region is now
maintained at a temperature T . All six terminals are kept
at different temperatures. We apply a temperature gradient

between lead 1 (T1 = −�T/2) and lead 4 (T4 = �T/2). It
results in a longitudinal thermal current (Ith) from lead 1 to
lead 4. The current-temperature relation is captured by the ma-
trix equation Ith = AthT, where I�

th = (Ith, 0, 0,−Ith, 0, 0) and
T� = (−�T/2, T2, T3,�T/2, T5, T6). The matrix elements
of Ath are given by [32,33]

Ath,i j =
∫ ∞

0

E2

T

(
−∂ f (E , T )

∂E

)
[δi jμ j − Tr(t†

i jti j )]dE , (3)

where μ j denotes the number of propagating modes in the jth
lead, f (E , T ) = 1/{1 + exp [E/(kBT )]} is the Fermi-Dirac
distribution function, ti j is the transmission part of the scat-
tering matrix between the leads i and j, and the trace (Tr) is
taken over the conducting channels. Upon obtaining Ath, we
calculate the temperature at various leads from the current-
temperature relation. The transverse thermal resistance is
Rth

xy = (T2 + T3 − T5 − T6)/(2Ith ). For both electrical and
thermal Hall resistances, the average over different terminals
is taken to avoid contact resistance effects, giving rise to ro-
bust quantized values. Inverting Rth

xy, we obtain κxy = (Rth
xy)−1

[32–35]. Note that the integrand in Eq. (3) depends on the
derivative of the Fermi-Dirac function, which is valid in the
limit T → 0 [27]. We compute κxy for T = 0.01 (in the energy
unit). In units of κ0, we find kxy = C [Fig. 1(b)].

Superconductivity. Therefore, NIs with distinct KNI
min’s can-

not be distinguished from any response of charged fermions.
Such a goal can nevertheless be accomplished when the sys-
tem is conducive to Cooper pairing. The charge-conjugation
symmetry allows this system to support only one local pair-
ing [36]. The effective single-particle BdG Hamiltonian then
reads HBdG = 1

2

∑
k(�Nam

k )†HBdG(k)�Nam
k , where �Nam

k =
[�k, τ1�

�
−k]� is the Nambu-doubled spinor and

HBdG(k) = d1(k)�01 + d2(k)�02 + d3(k)�03 + ��13. (4)

The 4 × 4 Dirac matrices are �ab = ηa ⊗ τb. The new set of
Pauli matrices {ηa} act on the Nambu space. The factor of 1/2
in HBdG stems from the Nambu doubling.

Computation of the phase diagram of HBdG(k) is
greatly simplified by noting that a unitary rotation by
U = exp[−iπ�20/4] brings it to a block-diagonal form
U †HBdG(k)U = H+

BdG(k) ⊕ H−
BdG(k), where H±

BdG(k) = τ ·
d±(k) with d±(k) = (d1, d2, d±

3 )(k) and

d±
3 (k) = m0 ± � − t0[cos(kxa) + cos(kya)]. (5)
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The global phase diagram of HBdG(k) can now be constructed
in terms of the total Chern number Ctot = C+ + C− as shown
in Fig. 2(a), where C± are the Chern numbers for H±

BdG(k),
computed from Eq. (2). It features TSCs with Ctot = ±1 and
±2, besides the ones with Ctot = 0. The Ctot = 0 sector frag-
ments into two classes, which can be distinguished in terms of
a weak topological invariant, namely, the Zak phase [37–40].
The one with a nontrivial Zak phase is named weak TSC [27].

Thermal Hall effect. We now compute responses of the
paired states from Fig. 2(a), capturing the signatures of their
nontrivial topological invariants. At this point, we should note
that once superconductivity develops in the system, electri-
cal charge responses become ill defined as Cooper pairs do
not obey the charge conservation. However, as the energy of
the system is conserved, κxy serves as a bona fide topologi-
cal response to characterize the paired states. Details of the
computation of κxy in a six-terminal geometry has already
been discussed. So, here we only quote the final results. We
find that κxy is nonvanishing only when Ctot is nonzero and
half-integer quantized, namely, κxy/κ0 = −Ctot/2 [32–34].
Therefore, TSCs with Ctot = ±1 and ±2, give κxy/κ0 = ∓0.5
and ∓1, respectively, as shown in Fig. 2(b). However, κxy = 0
whenever Ctot = 0, irrespective of whether the superconduct-
ing phase possesses a nontrivial Zak phase or not. It should
be noted that the sign of κxy can be changed without altering
the nature of the TSC, namely, the BdG band inversion mo-
mentum (KBdG

inv ), by taking τ → −τ, for example. Thus, a full
characterization of TSCs also demands a smoking gun probe
of KBdG

inv .
In addition, we compute the longitudinal thermal con-

ductance Gth = (Rth
xx )−1, where Rth

xx = (T3 − T2)/Ith in the
six-terminal setup. In TSCs with nontrivial Ctot, Gth = |kxy|,
whereas, Gth = 0 in the trivial paired state. Most importantly,
in the weak TSC phase Gth/κ0 = 1. Therefore, Gth always
measures the number of edge modes equals to 2(G/κ0). Both
(half)-quantized Gth and κxy are robust against random charge
impurities of moderate strengths, except in the weak TSC
phase where Gth = κ0 survives only in the weak disorder
regime [27].

Edge band structure. The topological nature of the super-
conductors and the associated KBdG

inv can be established from
the band structure of HBdG(k) in a semi-infinite system with
only kx or ky as a good quantum number. One-dimensional
|Ctot|-fold degenerate edge modes then appear as dispersive
states along kx or ky, separated from the bulk states. See Fig. 3.
Furthermore, the edge modes cross the zero energy exactly at
KBdG

inv . We find that TSC with Ctot = −2 (+2) supports doubly
degenerate edge states with the BdG band inversion at the
� (M) point. The Ctot = ±1 TSCs replicate this outcome.
But the edge modes are, then, nondegenerate. The paired
state with Ctot = 0 supports counterpropagating edge modes,
crossing the zero energy at kx or ky = 0 and π , only when it
possesses a nontrivial Zak phase. Next we show that disloca-
tion lattice defects probe KBdG

inv .
Edge dislocation. Two-dimensional edge dislocations are

constructed from the so-called Volterra cut-glue procedure.
The main idea is to cut a line of atoms up to a site, called the
dislocation core as a first step. Subsequently, the sites across
the cut are glued. This way, the system regains translational
symmetry everywhere except near the dislocation core where

the missing translation characterizes the defect in terms of the
Burgers vector (b). Due to this, when a BdG fermion encir-
cles the defect core, it picks up a hopping phase exp[idis],
governed by the K · b rule [12,41–51], where dis = KBdG

inv · b
(modulo 2π ). Following this principle, we find that TSCs
with Ctot = −1 (−2) support one (two) pair(s) of zero-energy
dislocation modes. Furthermore, the TCS with Ctot = 0, but a
nontrivial Zak phase features two zero-energy defect modes.
See Fig. 4. In all these phases dis = π (nontrivial) when
b = aêx or aêy as KBdG

inv = (π, π ) therein, resulting in edge
modes crossing the zero energy at kx or ky = π (Fig. 3). For
all the other paired states dis = 0 (trivial). None of them,
thus, hosts any zero-energy dislocation mode.

These observations can be supported from an alternative
explanation. Note that two edges, introduced during the cut
procedure, support counterpropagating edge modes. Once
these two edges are glued, the associated edge modes hy-
bridize and suffer level repulsion. When n number of edge
modes cross the zero energy at momentum π or 0, such a
level repulsion can be modeled by a domain wall or uniform
Dirac mass, acting on the edge subspace. Then, the Jackiw-
Rebbi mechanism applies [52], and in the former situation,
the dislocation core supports n pairs of localized Majorana
zero modes.

Discussions. From a paradigmatic toy square lattice model,
featuring T -breaking TIs with distinct topological invariant
(C) and KTI

inv, here, we argue that their proximal NIs with
band-gap minima at KNI

min = KTI
inv can be distinguished, but

only when TSCs develop in the system. In particular, κxy and
the response to the dislocation lattice defects inside the paired
states (governed by KBdG

inv = KNI
min) unambiguously distinguish

parent NIs with different KNI
min’s. A generalization of this pro-

posal possibly rests on the answer to the following question.
Can two NIs realized in the limits m0 → ±∞ be

adiabatically connected? In these two limits, the kinetic
energy becomes unimportant and NIs can be modeled by
a simple Hamiltonian HNI = m0�2N , where �2N is a 2N-
dimensional traceless Hermitian matrix and 2N is the total
number of bands in the system, with N = 1 in our model. The
mass term HNI is always accompanied by a single Hermitian
matrix as it does not break any fundamental or discrete lattice
symmetry and, thus, transforms under the trivial singlet A1g

representation under the crystallographic space group [8,9].
At half-filling, there are N-filled valence and N empty conduc-
tion bands with a band-gap 2m0 between them. Irrespective
of the representation, eigenvalues of �2N are +1 and −1
(named generalized parity eigenvalues), and each of them
is N-fold degenerate. The corresponding wave functions are
parity eigenstates. When m0 → ∞, the conduction (valence)
band is constituted by positive (negative) parity eigenstates.
In the m0 → −∞ limit, the situation is exactly the opposite.
See, for example, Fig. 1(a). As the parity eigenstates are
orthogonal to each other, two atomic insulators realized in the
limits m0 → ±∞, therefore, cannot be smoothly deformed
into each other. This proof allows us to, at least, conjecture
that our proposal to distinguish trivial atomic insulators by
inducing TSCs should be applicable to systems of arbitrary
dimensionality (above one) belonging to arbitrary symmetry
class as long as it can support distinct TIs with different KTI

inv’s.
A further rigorous mathematical proof of this statement (if it
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exists) is beyond the scope of the present Letter. See, however,
Refs. [16,17].

Outlook. Nature harbors a plethora of TIs with the hallmark
band inversion at various points in the BZ [3–23]. In these
systems, TI-NI quantum phase transitions can be triggered
by changing the quantum well width [53] or via chemical
substitutions [54–58] or by applying a hydrostatic pressure
[59,60]. When doped, these quantum materials typically ac-
commodate TSCs [61]. Here, only for the sake of simplicity,
we set the chemical potential to zero. Our proposal holds even
when the insulators are doped, which favors nucleation of
TSCs by forming a Fermi surface. Most importantly, doping
lowers the threshold pairing amplitude to realize TSC and
when the attractive pairing interaction resides only in the
close proximity to the Fermi surface (the BCS pairing mech-
anism), realized within the valence or conduction band upon
doping the insulators, TSCs appear for an infinitesimal pair-
ing amplitude [27,62], making our proposal operative even
away from the TI-NI critical point. Inclusion of longer-range
hopping in the normal state often accommodates crystalline
topological phases [12] without removing the NIs with the
band minima near the � and M points nor the candidate TSC,
promoting our proposal beyond the paradigm of toy models.
Therefore, the task is to induce TSCs in doped topological

materials with different KNI
inv’s after driving the system into

a NI. Although the thermal Hall conductivity is intimately
tied with the breaking of the T in the paired state (class D),
responses to dislocation lattice defects are applicable across
all symmetry classes. Although challenging, κxy nowadays is
routinely measured with extremely high accuracy [63–68],
and Majorana dislocation modes can be detected via scanning
tunneling microscope [69–71]. Therefore, our proposal to dis-
tinguish NIs from the responses of their proximal TSCs can
be tested in well-characterized topological quantum materials
with existing experimental tools. Despite abundance of topo-
logical materials with the inversion symmetry in nature, which
is only an emergent symmetry in our Letter, it will be worth an
attempt to extend the jurisdiction of our proposal to systems
where the inversion symmetry is broken at the microscopic
level.
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