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Phase diagram of the ν = 2 quantum Hall state in bilayer graphene

Udit Khanna ,1,* Ke Huang,2 Ganpathy Murthy ,3 H. A. Fertig,4 Kenji Watanabe ,5 Takashi Taniguchi ,6

Jun Zhu ,2 and Efrat Shimshoni 1

1Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
2Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

3Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
4Department of Physics, Indiana University, Bloomington, Indiana 47405, USA

5Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
6International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

(Received 16 May 2023; accepted 28 June 2023; published 26 July 2023)

Bilayer graphene exhibits a rich phase diagram in the quantum Hall regime, arising from a multitude of internal
degrees of freedom, including spin, valley, and orbital indices. The variety of fractional quantum Hall states
between filling factors 1 < ν � 2 suggests, among other things, a quantum phase transition between valley-
unpolarized and polarized states at a perpendicular electric-field D∗. We find that the behavior of D∗ with ν

changes markedly as B is reduced. At ν = 2, D∗ may even vanish when B is sufficiently small. We present a
theoretical model for lattice-scale interactions, which explains these observations; surprisingly, both repulsive
and attractive components in the interactions are required. Within this model, we analyze the nature of the ν = 2
state as a function of the magnetic and electric fields and predict that valley coherence may emerge for D ∼ D∗

in the high-B regime. This suggests the system supports Kekulé bond ordering, which could, in principle, be
verified via scanning tunneling measurements.

DOI: 10.1103/PhysRevB.108.L041107

Introduction. The quantum Hall (QH) regime of two-
dimensional electronic systems with several internal degrees
of freedom presents an intriguing many-body problem where
the interplay of interactions and degenerate Landau levels
(LLs) often leads to a multitude of possible ground states
[1–5]. Graphene and its few-layer variants offer compelling
material platforms to explore this interplay due to their rich
Landau spectra, involving approximate SU(4) symmetry in
spin and valley sectors as well as relatively high mobilities
and wide gate tunability [6–12].

Graphene systems, uniquely, support QH phases around
charge neutrality, whose nature has been investigated exten-
sively. Previous theoretical studies [13–18] have clarified that
the order underlying the ground state depends crucially on
lattice-scale corrections to the (long-range) Coulomb interac-
tion, which reduce the valley SU(2) symmetry to U (1) × Z2.
The precise form of these corrections is unclear and may de-
pend on the device configuration. In light of this, the standard
approach, introduced by Kharitonov [14–16], is to include
phenomenological terms consistent with the symmetry. Con-
ventionally, these terms are assumed to be independent of
the magnetic-field (B) and have a range of order the lattice
constant, which is much smaller than the magnetic length
[� = √

h̄/eB]. In what follows, we will refer to this as the
orthodox model (OM) of the lattice-scale interactions.

Generally, the OM has been in accordance with exper-
imental observations. In particular, for the ν = 0 phase of

*Corresponding author: udit.khanna.10@gmail.com

monolayer graphene (MLG) and bilayer graphene (BLG),
this model supports the interpretation of transport [19–23]
and magnon transmission [24–26] experiments in terms of a
magnetically ordered ground state. However, recent scanning
tunneling measurements [27–29] in MLG find charge-ordered
ground states at ν = 0 with a Kekulé bond-order (BO) or a
charge-density wave order. Given the difficulty in reconciling
these conflicting observations (within the OM), recently one
of us [30,31] reevaluated the ν = 0 phase diagram allowing
the lattice-scale interactions to assume a more generic form.
These studies find that coexistence phases with both spin and
charge order may appear if interactions have a structure on the
scale of �.

As a matter of principle, and irrespective of specific fill-
ing factor and device details, the phenomenological terms in
the low-energy model may have a complicated form due to
quantum fluctuations involving other (positive and negative
energy) LLs [32–36]. This LL mixing is largely controlled by
the parameter κ = Ec/h̄ωc, the ratio of the Coulomb energy
scale (Ec) to the cyclotron gap (h̄ωc). In general, LL mixing
introduces a nontrivial component with a range of � to the
effective interactions, which may be attractive or repulsive.
Moreover, the B dependence of these emergent terms may
be different from that of the bare terms. References [30,31]
demonstrate that such considerations not only affect the ener-
getics, but also add to the set of possible ground states [37].

In this Letter, we explore the QH phases of BLG and
provide further evidence for the crucial role of such modified
interactions. We consider a dual-gated device, which allows
the application of a transverse electric-field (D) as an experi-
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FIG. 1. (a) False color map of Rxx (ν, D) between ν = 1 and 2 at B = 18 T (obtained in Ref. [42]). The red dashed lines mark the positive
and negative critical electric-fields (D∗

±) at which a first-order transition occurs, as illustrated in the inset of (c). The black dashed line marks
the true D = 0. (b) Line scans of Rxx vs D obtained at fixed ν = 4/3 (blue), 3/2 (green), and 5/3 (violet) at B = 28 T. The resistance peaks
(marked by ∗) correspond to D∗

−. Note that |D∗| increases/decreases with ν at B = 28/18 T. (c) B-field dependence of D∗ for different ν. The
dashed lines are guide to the eye. (d) Line scans of Rxx vs D for ν = 2 at different B’s. The transitions D∗

± are marked by ∗. The average of D∗
±

at ν = 2 is plotted as squares in (c). D∗
− for ν = 4/3 (5/3) are obtained using similar measurements and shown as triangles (circles). All data

are from device 002.

mental knob to tune between different ground states at fixed
filling factor ν. Close to charge neutrality, the chemical poten-
tial lies within a set of eight (nearly) degenerate LLs labeled
by spin, valley, and an orbital index, supporting a variety
of broken-symmetry states in the range of |ν| < 4. Indeed,
transport [23,40–42] and capacitance [43] measurements pro-
vide evidence for a complex sequence of phase transitions
driven by D for both integer and fractional fillings. The num-
ber of transitions and the values of D at which they occur are
functions of ν and B. As shown below, the complete phase
diagram in the {D, B, ν} space encodes vital information on
the underlying many-body effects.

Notably, the OM is consistent with many earlier measure-
ments, restricted to certain regions of the parameter space
such as a fixed value of B [43] or integer ν [41]. Our present
Letter is based on transport measurements over a wide range
of parameters, including moderate and high B where exper-
imental data in higher-quality samples are now available.
Specifically, we focus on filling factors 1 < ν � 2 and track
the variation of the critical electric-field (D∗) at which a phase
transition occurs with B and ν [Fig. 1]. We find that D∗(ν)
is an increasing (decreasing) function of ν at high- (low-) B
fields, and that D∗ may even vanish at sufficiently low fields.
It is worth emphasizing that because the chemical potential is
pinned to the same LL for this filling factor range, the behavior
of D∗(ν, B) is controlled by the lattice-scale interactions and
imposes significant constraints on their form. The elucidation
of these interactions is the main purpose of this Letter.

The main finding of this Letter is that the OM of lattice-
scale interactions cannot account for the observed behavior of
D∗(ν, B). Our Hartree-Fock (HF) analysis demonstrates that
the symmetry-breaking interactions must have both repulsive
and attractive components with different B dependences in
order to explain the measurements [Fig. 2]. These results
suggest that corrections arising from the LL mixing play a
significant role in BLG, particularly, at lower B. We further
employ this model to construct the phase diagram of the

ν = 2 QH state in the B–D plane [Fig. 3]. Interestingly, we
find the emergence of an interorbital valley-coherent phase
around D ∼ D∗ for sufficiently large B. The existence of such
a valley-orbital entangled (VOE) phase at high B implies that
the transport gap at ν = 2 does not close around D = D∗.
Additionally, valley-coherence points to the presence of a
Kekulé BO phase, which may be observed in tunneling mea-
surements, similar to those reported in Refs. [27–29].

Transport measurements. We employ a high-quality dual-
gated BLG device, device 002, described previously in
Ref. [42], to examine the behavior of D∗ as a function of
B at different filling factors. Figure 1(a) shows a color map
of Rxx(D) in the range of 1 < ν < 2 at B = 18 T and T =
20 mK. (See the full dataset covering a wider range of ν in
Ref. [42]). Regions with darker colors correspond to vanish-
ingly small Rxx indicating QH phases. The black dashed curve
marks the true inversion symmetric line, i.e., where D = 0
is. Device asymmetry causes a slight asymmetry between D∗

+
and D∗

¬ (the red dashed lines), where two (noninteracting) LLs
with different valley and orbital indices cross, as depicted in
the inset of Fig. 1(c). Figure 1(b) depicts traces of Rxx(D) at
B = 28 T and T = 0.33 K for different ν’s. D∗

¬ manifests as
resistance peaks marked by ∗. Figure 1(d) plots Rxx(D) for
ν = 2 at different B’s taken at T = 3 K, where D∗

± (marked by
∗) becomes more readily observable for ν = 2. The closing of
the transport gap signals a first-order phase transition, similar
to previous observations in GaAs [44], the position of which
evolves with B. Figure 1(c) depicts the evolution of D∗ with B
for ν = 2, 5/3 and 4/3 obtained through a similar analysis.

A salient feature of the color map [Fig. 1(a)] is that at
B = 18 T, D∗ (defined as the average of |D∗

±|) is monoton-
ically decreasing with increasing ν. This is not always the
case: Figure 1(b) shows that D∗ increases with increasing ν at
B = 28 T. This change in behavior is illustrated in Fig. 1(c),
which shows the variation of D∗ with B for different values of
ν. Strikingly, the various curves appear to cross around B =
Bs ∼ 26 T, implying that D∗(ν) is an increasing (decreasing)
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FIG. 2. Constraints on the interactions vi(q) [i = z, xy] dictated by transport measurements. The parameters g(i)
0 , g(i)

LL, and ξ are defined
in Eq. (3). (a) g(z)

LL as a function of g(z)
0 for different Bs’s (the field at which the slope of D∗ vs ν changes sign). Consistency with experiments

rules out negative values of g(z)
0 . (b) g(xy)

LL vs g(xy)
0 for different values of g(z)

0 . The cross marks the smallest value of g(xy)
0 at which the theoretical

model remains consistent with experiments. Notably, vz and vxy may comprise both repulsive and attractive components. (c) Contour plot of
g(xy)

LL on the g(z)
0 -g(xy)

0 plane. The dark gray region (below the dashed curve) is forbidden by experimental constraints. Here, we used ξ = 0.3 and
ε = 6. In (b) and (c), we used Bs = 26 and B∗ = 11 T.

function of ν for B > Bs (B < Bs). Furthermore, D∗(ν) de-
creases monotonically upon lowering B and appears to vanish
for sufficiently small B. For example, D∗(ν = 2) vanishes

FIG. 3. Phase diagram at ν = 2. The solid lines mark a first-order
transition between the valley-polarized and orbital-polarized phases
(corresponding to D∗); the blue (green) curves correspond to g(xy)

0 =
−2.0 (g(xy)

0 = −2.5). The plus signs (at B = Bc ∼ 20 and 30 T) mark
a critical point where the first-order phase boundary terminates. The
dashed lines at higher B mark the region where an intervening valley-
orbital entangled phase (denoted by VOE-1) emerges around D∗,
which allows for a continuous transition between the two polarized
phases. The color map shows the variation of the order parameter
〈ηx〉 in the VOE-1 phase (see the text) for g(xy)

0 = −2.0. The VOE-1
phase is characterized by a density matrix with the form in (5) with
θA ∈ (0, π ) and θB = 0. The inset shows the variation of Bc (the field
at which the first-order transition ends) with g(xy)

0 for different g(z)
0 ’s.

Here, we used ε = 6, ξ = 0.3, and g(z)
0 = 6.0. g(i)

LL were chosen such
that Bs = 26 and B∗ = 11 T.

at B = B∗ ∼ 11 T. This can be seen clearly in Fig. 1(d)
where the two resistance peaks observed at higher B (which
mark D∗

±) merge into one at B = B∗ ∼ 11 T, implying D∗
+ =

D∗
− = 0.
The theoretical challenge here is to account for the two

most prominent features observed in the data: (a) the change
in the slope of D∗ vs ν from positive for B > Bs to negative
for B < Bs, and (b) the vanishing of D∗(ν = 2) at B = B∗. A
subsidiary puzzle is the nature of the ν = 2 ground state as D
is tuned close to D∗. Additionally, the theoretical model has to
be consistent with previous observations at ν = 0, such as the
canted antiferromagnet and layer polarized phases.

Theoretical model. The LL spectrum of BLG close to
charge neutrality (chemical potential |μ| � h̄ωc) consists of
eight nearly degenerate LLs, corresponding to the spin, valley,
and orbital degrees of freedom. Experimental evidence, e.g.,
the absence of any dependence on the in-plane field in the
activation energy gaps measured at ν = 2, 3 [19] and the rel-
atively large effective Zeeman coupling [41], indicate that in
the filling factor range of interest to us (ν ∼ 2) the electronic
states are spin polarized. We therefore restrict the Hilbert
space in the model to four LLs, labeled by the orbital (N =
0, 1) and valley (α = ±) indices. The two orbitals are not
degenerate as there is no symmetry relating them. On the other
hand, the two valleys are degenerate unless inversion symme-
try is broken by a perpendicular electric-field D (or sublattice
potentials, which are ignored here). The one-body part of
the Hamiltonian is, hence, given by H0 = ∑

Nαk εαN c†
NαkcNαk ,

where k is the guiding center index in the Landau gauge, and

εαN = N�10 + α
�D

2
|PNα|. (1)

Here, �10 is the energy gap between the two orbitals (for D =
0), PNα is the layer polarization, and �D ∝ D is the interlayer
potential difference generated by D.

To evaluate the energies and wave functions of the (nonin-
teracting) states, we employed an effective four-band model
(corresponding to the four sites of the unit cell) [45], which
includes all tight-binding parameters found to be finite in ab
initio studies [46]. In particular, our model incorporates both
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the trigonal warping and the hopping between Bernal-stacked
sites exactly (see Ref. [47] for details). Ignoring the Bernal
sites leads to perfect valley-layer locking such that PNα = α.
By contrast, in the full four-component spinor, the weight on
these sites increases with B and PNα depends on N [43]. This
orbital dependence has significant impact on the variation of
D∗. Trigonal warping modifies the density profile of the wave
functions at each site, which affects the interaction matrix ele-
ments and plays an important role in stabilizing novel ground
states (see, e.g., Ref. [18]).

The interacting part of the Hamiltonian comprises two
components Hc and Hv . Hc is an SU(4) symmetric (screened
Coulomb) density-density interaction. The (Fourier trans-
formed) pair potential for this is vc(q) = Ec

ε
veff (q), where

Ec = e2

4πε0

1
�

is the Coulomb energy scale, ε is the relative per-
mittivity of hexagonal boron nitride, and veff (q) = f (q)/q�

where f (q) is a form factor that accounts for screening from
the top and bottom gates as well as higher-energy LLs (within
the random phase approximation) [47]. Hv represents the
lattice-scale corrections, which reduce the valley symmetry to
U (1) × Z2. We assume that these corrections do not depend
on the orbitals, and only include the terms present in the
Kharitonov model of BLG [15,16], which may be expressed
as

2π�2 1

2A

∑
i=x,y,z

∑

q

vi(q):ρi(
q )ρi(−
q):, (2)

where A is the area of the sample and ρi(q) is the (Fourier
transformed) ith component of local isospin density [47]. Val-
ley U (1) symmetry leads to vx(q) = vy(q) ≡ vxy(q). While
vi(q) (i = z, xy) is replaced by a constant in the OM, here,
we assume the more general form,

vi(q) = g(i)
0

(
Ec

a

�

)[
1 − g(i)

LLκe–(ξ/2)(q�)2]
, (3)

where a is the lattice constant. In the limit κ → 0, vi(q)
reduces to the standard short-range form with strength
g(i)

0 (Ec
a
�

) ∝ B. For finite κ , the second term of (3), which
phenomenologically models corrections due to LL mixing,
becomes progressively more important with the characteristic
scale κ (Ec

a
�

) ∝ √
B. We emphasize that the two components

of vi(q) differ not just in their range, but also crucially in their
dependence on B, and may have different signs. The dimen-
sionless numbers g(i)

0 , g(i)
LL, and ξ , assumed to be independent

of B, are the tuning parameters of the model.
We treat the interactions in the self-consistent HF approx-

imation. The HF ground state, assumed to be translationally
invariant, is characterized by the single-particle averages
〈c†

N1α1k1
cN2α2k2

〉 = δk1k2�
N1α1
N2α2

, which minimize the variational
energy. All details (including the B dependence) of the in-
teraction potentials and the single-particle wave functions are
folded into the set of Hartree and Fock couplings [47].

Variation of D∗. The ν = 2 ground state corresponds to
complete filling of two of the four LLs included in the model.
Equation (1) suggests that the (noninteracting) ground state is
|0−, 0+〉 ≡ �kc†

0−kc†
0+k|0〉 for D ∼ 0 and a valley-polarized

phase |0−, 1−〉 at large (and positive) D. The transition occurs
at D = D∗(ν = 2) for which the energy of the two states

is equal. Comparing the HF variational energy of these two
states leads to an analytic equation for D∗(ν = 2) [47].

Upon reducing the filling factor to ν = 2 − δν, the highest-
energy occupied LL is partially depleted. For δν � 1, this
yields a linear equation D∗(2 − δν) = D∗(2) − mD∗δν where,
up to an unimportant prefactor, the slope of D∗ vs ν is

mD∗ = (
F (c)

0000 − F (c)
1111

) + (
F (z)

0000 − F (z)
1111

)
. (4)

Here, F (i)
NNNN is the Fock integral for Coulomb (i = c) and

vz (i = z) interactions, which couple electrons within one of
the |N, α〉 LLs [47]. For repulsive interactions F0000 � F1111
since the N = 0 states are more localized than those with
N = 1. Hence, mD∗ > 0 for all B’s if only Coulomb inter-
actions are present. In order to account for the experimental
observations, F (z)

0000 − F (z)
1111 must be sufficiently negative at

B < Bs and positive at higher B. We find that this cannot be
achieved without a finite g(z)

LL [Fig. 2(a)]. Our measurements
constrain both g(z)

0 and g(z)
LL to be positive, suggesting that

vz must have both short-ranged repulsive and longer-ranged
attractive components.

Next, we turn to the vanishing of D∗(ν = 2) at B = B∗ ∼
11 T. This can be achieved for generic values of g(z)

0 and g(xy)
0

if g(xy)
LL is also finite [Figs. 2(b) and 2(c)]. Interestingly, the

experimental results also constrain the possible values of the
bare lattice interaction parameters (g(z)

0 and g(xy)
0 ). Specifically,

g(z)
0 may only assume positive values, whereas, g(xy)

0 must be
larger than a certain cutoff [Fig. 2(c)].

Intervalley coherence. The analysis thus far considered
ground states for which α and N are good quantum numbers.
Since two LLs with different valley and orbital indices are
nearly degenerate in the D ∼ D∗ regime, the system may be
able to lower the variational energy by hybridizing these LLs
and forming a more complex ground state. We performed un-
restricted HF calculations over a wide range of parameters to
explore the nature of the ν = 2 phase. This analysis uncovered
a rich variety of possible ground states involving hybridization
between different pairs of LLs [47]. Here, we restrict the range
of parameters to g(z)

0 > 0 and g(xy)
0 < 0, which is consistent

with previous studies at ν = 0 in this system [21,23,26]. In
this regime, the state is well described for all B, D by an ansatz
for �

N1α1
N2α2

of the form

1

2

⎛
⎜⎜⎜⎝

1 + cos(θA) 0 sin(θA)
0 1 + cos(θB) sin(θB) 0
0 sin(θB) 1 − cos(θB) 0

sin(θA) 0 0 1 − cos(θA)

⎞
⎟⎟⎟⎠,

(5)

in the (Nα) = (0+, 0−, 1+, 1−) basis. The angles θA,B ∈
[0, π ] parametrize the state [55]. The orbital-(valley-)
polarized state is described by θA = θB = 0 (θA = π , θB = 0).
θA,B = 0, π correspond to interorbital valley-coherent phases,
which smoothly interpolate between the two polarized states.
These VOE phases break the U (1)-valley symmetry and
are characterized by the order parameter 〈ηx〉 = 1

2 [sin(θA) +
sin(θB)]. Our analysis finds that for generic parameters (con-
sistent with experiments), the polarized phases are separated
by a first-order transition for low values of B. The first-order
boundary terminates at a certain magnetic field, and a VOE
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phase appears in a finite parameter range around D = D∗ for
higher values of B (Fig. 3 shows a typical phase diagram).
We refer to this phase as VOE-1 because (generically) valley
coherence emerges only in one of the sectors, i.e., θB = 0
and θA ∈ (0, π ) for D > 0. Such a valley coherent phase may
exhibit Kekulé BO. At the lattice scale, these phases break
translational symmetry, but upon coarse graining to the scale
�, they do not, in accordance with our original assumptions
regarding �.

Discussion. The results presented above rely on the HF ap-
proximation, which ignores the effect of quantum fluctuations
and correlations (beyond exchange). However, we believe that
the qualitative features of our results would remain unaltered
even when these effects are included. The cornerstone of our
analysis is the distinct behavior of D∗(ν) at low and high
B fields. Our measurements show that D∗(ν) is a relatively
smooth function for 1 < ν � 2. By contrast, correlation ef-
fects, which are crucial in stabilizing fractional QH phases,
strongly depend on the precise value of ν and may be wildly
different even for nearby fractions. This indicates that such
effects do not play an important role in determining the qual-
itative behavior of D∗(ν) over a broad range of filling factors,
which is apparently well captured by the HF approximation.
We emphasize that correlations beyond HF do affect D∗(ν, B)
quantitatively, even at higher B [43].

Our model further accounts for the vanishing of D∗(ν = 2)
at B = B∗. Its experimental value (B∗ ∼ 11 T) allows us to
constrain two of the four tuning parameters in the model, the
couplings of the components arising from LL mixing (gLL).
The fact that even the qualitative behavior of the measured
D∗ cannot be explained without finite gLL strongly implies
that LL mixing plays a crucial role in determining the ground
state, by introducing effective attractive interactions that scale
differently with B. These interactions become particularly
pronounced at low B.

We note that the U (1) valley symmetry is an artifact of the
continuum approximation, and the restriction to just two-body
interactions. LL mixing would not only modify the two-body
potential, but also introduce three and higher-body terms.
Since 3( 
K − 
K ′) (where 
K and 
K ′ are the locations of the
valley centers in the Brillouin zone) is a reciprocal lattice
vector, the lattice translation symmetry allows for three-body

Umklapp terms transferring three fermions from one valley to
the other. These terms reduce the U (1) symmetry, associated
with the conservation of the difference of charge between
the valleys, to Z3. Hence, the valley-coherent phase breaks
a discrete symmetry and may exist at finite temperatures. In
fact, it corresponds to a Kekulé bond-ordered phase, similar
to those observed in scanning tunneling microscope (STM)
experiments on MLG recently [27–29].

Conclusions. Using high-quality BLG devices, we ex-
plored the behavior of the critical electric-field D∗(ν, B) in
the range of 1 < ν � 2 and observed a qualitative difference
between the high- and low-B regimes. Remarkably, we found
that the standard theoretical models of BLG are not consistent
with these measurements. Instead, it is crucial to consider
the corrections to the lattice-scale interactions arising from
LL mixing, which we argued lead to an effective attraction
at short but finite length scales. We presented a phenomeno-
logical model of these which accounts for the experiments.
It moreover predicts an interorbital valley-coherent phase for
D ∼ D∗ at high B, which may be observed as a bond-ordered
state in STM experiments. Our Letter motivates a detailed the-
oretical analysis of the LL-mixing corrections to lattice-scale
interactions in MLG and BLG. Their effect on other integer
and fractional QH states is another interesting direction for
future investigations.
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