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Robustness of half-integer quantized Hall conductivity against disorder in an anisotropic Dirac
semimetal with parity anomaly
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Two-dimensional Dirac semimetals with a single massless Dirac cone exhibit a parity anomaly. Usually, such
a kind of anomalous topological semimetallic phase in real materials is unstable where any amount of disorder
can drive it into a diffusive metal and destroy the half-integer quantized Hall conductivity as an indicator of
parity anomaly. Here, based on a low-energy effective model, we propose an anisotropic Dirac semimetal which
explicitly breaks time-reversal symmetry and carries half-integer quantized Hall conductivity. This topological
semimetallic phase can be realized on a deformed honeycomb lattice subjected to a magnetic flux. Moreover,
we perceptively investigate the disorder correction to the Hall conductivity. The results show that the effects
of disorder can be strongly suppressed and thereby the nearly half-integer quantization of Hall conductivity
can exist in a wide region of disorder, indicating that our proposed anisotropic Dirac semimetal is an exciting
platform to investigate the parity anomaly phenomena.
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Introduction. The discovery of Dirac matter is one of
the particularly impressive achievements of modern con-
densed matter physics. Dirac materials, in which low-energy
electronic excitations are governed by the Dirac equation,
provide a natural playground for exploring exotic phenomena
in relativistic quantum field theory. A prominent example
is the parity anomaly, which occurs in two-dimensional
(2D) Dirac semimetals with a single Dirac cone [1–3]. In
this case, the Dirac fermions in (2 + 1) space-time dimen-
sions interacting with a fluctuating gauge field lead to the
breaking of time-reversal symmetry or reflection symme-
try [1–7]. A remarkable consequence of the parity anomaly
is the half-integer quantized Hall conductivity as predicted
by anomaly-induced Chern-Simons theory [8–13]. In recent
years, the parity anomaly has been intensely investigated in
the context of topological insulators (TIs) and even artificial
periodic structures [14–24]. On the other hand, the no-go
theorem of fermion doubling forces Dirac fermions to come
in pairs, which hinders the experimental detection of par-
ity anomaly phenomena. Very recently, evidence of a parity
anomaly with half-integer quantized Hall conductivity was
observed in semimagnetic TIs [25,26] where the massless
Dirac fermions are only present on one surface while the
Dirac state on the opposite surface is massive. These exper-
imental observations demonstrated that the single-node Dirac
semimetal provides a promising platform to realize the parity
anomaly in condensed matter physics [27].

The stability of Dirac semimetals in the presence of dis-
order is a long-sought question of fundamental importance.
The disorder usually destroys the Dirac semimetallic states
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and thereby induces a finite density of states at the Fermi
level [28–31]. In 3D Dirac semimetals, a renormalization
group analysis shows that weak disorder is an irrelevant
perturbation, and thus these systems remain stable up to a
critical strength of disorder [32–34]. However, the disorder
is (marginally) relevant in 2D Dirac semimetals, in which
any finite amount of disorder can generate a low-energy scale
Ec, below which the density of states approaches a finite
value [28,35–41]. In this regard, 2D Dirac semimetals are
unstable against disorder and will evolve into diffusive metals.
Therefore, the unique phenomenon of parity anomaly can
always be smeared in the presence of disorder. To investigate
various intrinsic topological effects derived from the parity
anomaly, it is desirable to suppress the influence of disorder
and stabilize the Dirac semimetallic states with half-integer
quantized Hall conductivity in 2D systems.

In this Letter, we first propose a 2D topological Dirac
semimetal which avoids the fermion doubling problem and
thus only hosts a single Dirac cone of massless fermions.
Specifically, as a signature of parity anomaly, intrinsic half-
integer quantized Hall conductivity σ int

xy = e2

2h is directly
obtained in the absence of disorder. We then construct a lattice
model, which explicitly breaks time-reversal symmetry, to re-
alize this topological Dirac semimetal with a parity anomaly.
The presence of disorder imposes a correction δσxy, which is
proportional to a damping parameter η, to the intrinsic Hall
conductivity. Using the Kubo-Streda formula, we derive an
explicit expression for the correction δσxy, which guides us on
how to preserve half-integer quantized Hall conductivity. We
observe a crossover from a diffusive metal to the topological
Dirac semimetal. Remarkably, we find that the nearly half-
integer quantization of Hall conductivity can exist in a wide
region of disorder and in a relatively wide energy window
around the Fermi level.
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Realization of 2D Dirac semimetals with a parity anomaly.
First, we propose that the parity anomaly can be realized in
a 2D topological semimetal with a single anisotropic Dirac
cone. The low-energy effective Hamiltonian relative to the
Dirac point D reads

h(k) = dx(k)σx + dy(k)σy + dz(k)σz

= (
cxk2

x + cyk2
y

)
σx + vkyσy + λkxσz, (1)

where σ = (σx, σy, σz ) are the Pauli matrices acting on the
sublattice space, and model parameters cx, cy, v, and λ depend
on the realistic lattices. It is worth noting that the spin degrees
of freedom trivially double the Hilbert space and thus we here
only focus on one spin sector [42]. In the absence of the λkxσz

term, the effective Hamiltonian Eq. (1) returns to the usual
semi-Dirac model [43,44] which displays linear dispersion
along one direction and quadratic dispersion along the other.
Moreover, the presence of the λkxσz term breaks time-reversal
symmetry T and thus can lead to distinct topological phases.
To reveal the topological features, we calculate the anomalous
Hall conductivity using Berry curvature as

�(k) = −dk · ∂kx dk × ∂ky dk

2d3
k

= −vλdx(k)

2d3
k

, (2)

where the vector dk = (dx, dy, dz ) is given by Eq. (1). Then,
we obtain the intrinsic Hall conductivity as

σxy = e2

h̄

∫
d2k

(2π )2
�(k) = − e2

2h
sgn(v)sgn(λ), (3)

where we assume parameters cx and cy in Eq. (1) are positive.
As shown in Eq. (3), it is found that the λkxσz term dominates
the emergence of half-integer quantized Hall conductivity and
thus brings a distinct topological phase.

The continuum model Eq. (1) can be realized on a de-
formed honeycomb lattice as depicted in Fig. 1(a), and
the corresponding tight-binding Hamiltonian with anisotropic
hopping parameters can be written as Ĥt = ∑

nn ti jc
†
i c j +∑

nnn t2eiφi j c†
i c j + H.c., where ti j are the nearest-neighbor

(NN) hopping energies t (t1) and t2eiφi j is the next-nearest-
neighbor (NNN) hopping with a staggered magnetic flux. The
lattice model is similar to Haldane’s model [8], and we also
propose a possible realization of such a model Hamiltonian
as discussed in the Supplemental Material (SM) [45]. In re-
ciprocal space, the Hamiltonian can be represented by the
two-component Bloch states ψ

†
k = (c†

Ak, c†
Bk ) as

Ĥt (k) =
∑

k

ψ
†
k

(
�k fk

f ∗
k −�k

)
ψk, (4)

where we define fk = t1 + te−ik·a1 + te−ik·a2 and �k =
−t2/

√
3

∑
i sin(k · νi ). The primitive vectors of a Bravais lat-

tice a1, a2 and the vectors of NN neighbors ν1, ν2, ν2 are
shown in Fig. 1(a). In the absence of a NNN hopping term t2,
the two-band Hamiltonian Eq. (4) returns to the usual model
of graphene with two Dirac points respectively located at
K = ( 2π

3
√

3a
, 2π

3a ) and K′ = (− 2π

3
√

3a
, 2π

3a ) in the Brillouin zone
when t1 = t [see Fig. 1(b)]. When deforming the honeycomb
lattice as t1 → 2t , the two Dirac nodes will merge into a single
Dirac point at D = (0, 2π

3a ) at the transition point t1 = 2t .
Intriguingly, in sharp contrast to the usual semi-Dirac

FIG. 1. The evolution of the band structure of a deformed
honeycomb lattice. (a) The deformed honeycomb model. The
primitive vectors of a Bravais lattice are a1 = (−√

3/2, 3/2),
a1 = (

√
3/2, 3/2). The vectors of next-nearest neighbors are

ν1 = (
√

3, 0), ν2 = (−√
3/2, 3/2), ν3 = (−√

3/2, −3/2). The
(anisotropic) nearest-neighbor hopping amplitude t (t1) and the
next-nearest-neighbor hopping amplitude t2 are also denoted.
(b) Two Dirac cones in the Brillouin zone for the isotropic
honeycomb case (i.e., t = t1). (c) The semi-Dirac semimetal arising
from the merging of two Dirac nodes as t1 → 2t with t2 = 0. (d) A
topological Dirac semimetal with a single Dirac cone occurs when
t1 = 2t and t2 �= 0.

semimetal with anisotropic dispersion [see Fig. 1(c)], this de-
formed honeycomb lattice model gives a distinct Dirac cone as
shown in Fig. 1(d). To illustrate this, we expand the function
fk and �k near the Dirac point D and obtain the low-energy
effective Hamiltonian as

ht (k) = (
δ + cxk2

x + cyk2
y

)
σx + vkyσy + λkxσz, (5)

where the wave vector k = (kx, ky) is relative to the Dirac
point D. The parameters in Eq. (5) are given by δ = −2t + t1,
cx = 3ta2

4 , cy = 9ta2

4 , and the Fermi velocities along the x and
y directions are defined as λ = 4t2a, v = −3ta. We note that
the NNN hopping t2 is responsible for the presence of a topo-
logical phase with half-integer quantized Hall conductivity.
Using Eqs. (2) and (3), the Hall conductivity can be expressed
as σxy = e2

2h [1 − sgn(δ)]. Therefore, the effective Hamiltonian
Eq. (5) describes the transition from a normal insulator when
δ > 0 into a Chern insulator when δ < 0. At the transition
point δ = 0 (i.e., t1 = 2t), we obtain a topological semimetal
carrying a half-integer quantized Hall conductivity σxy = e2

2h .
Diffusive transport of topological Dirac semimetals with

disorder. For a 2D insulating system, the Hall conductivity
remains at a plateau inside the band gap. In contrast, for
the Dirac semimetallic system described by the Hamiltonian
Eq. (1), the half-integer quantization of Hall conductivity
σxy = e2

2h can only exist at a Fermi energy εF = 0, which is
strongly affected by the presence of disorder. Here, we will
investigate the stability of the topological Dirac semimetallic
system described by Eq. (1) against disorder. Let us start by
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FIG. 2. The disorder-dependent transport properties as a function
of Fermi energy εF. (a) The density of states. (b) The Fermi sea
part of Hall conductivity σ II

xy. (c) The Fermi surface part of Hall
conductivity σ I

xy. In (d) and (e), the longitudinal conductivity along
the x and y directions σxx and σyy, respectively. (f) The anomalous
Hall resistivity ρxy. The disorder strengths denoted by γ are also
inserted, as shown in (b) and (d). We set λ = 0.1 in (a)–(f).

considering the disorder potential given by

V̂ =
∑

r

[VA(r)|r, A〉〈r, A| + VB(r)|r, B〉〈r, B|], (6)

where VA/B(r) = ∑
i UA/B(Ri )δ(r − Ri ) and UA/B(Ri ) de-

note the sublattice uncorrelated impurity potential (see the
SM [45]) at position Ri, which is uniformly distributed in the
interval [−U,U ]. The disorder-averaged retarded (advanced)
Green’s function GR(A) can be expressed as

GR(A)(ε, k) = 1

ε − h(k) − �R(A)(ε)
, (7)

where the retarded (advanced) self-energy �R(A)(ε) rep-
resents the interaction between quasiparticles and dis-
order. Based on the self-consistent Born approximation
(SCBA) [46], the self-energy function is determined by

�R(A)(ε) = γ

∫
d2k

(2π )2
GR(A)[ε − �R(A)(ε), k], (8)

where γ = U 2/3 denotes the strength of disorder. As dis-
cussed in the Supplemental Material [45], the self-energy is
diagonal �R(A)(ε) = �0σ0, which does not give any correc-
tion to the gap parameter δ in Eq. (5). Therefore, the Dirac
semimetallic state at δ = 0 will not be shifted by the disor-
der. The density of states can be derived from the retarded
Green’s function Eq. (7) as ρ = − 1

πγ
Im Tr GR(A). As shown

in Fig. 2(a), it is found that the disorder induces a finite density

of states at the initially gapless point (i.e., εF = 0), which
transforms the semimetal into a diffusive metal [40].

To characterize transport properties in the presence of
disorder, we calculate the Hall conductivity based on the
Streda-Smrcka decomposition of the Kubo formula σxy =
σ I

xy + σ II
xy [49,50], where

σ I
xy = −e2 h̄

4π

∫
dε

df (ε)

dε
Tr[vx(GR(ε) − GA(ε))vyGA(ε)

− vxGR(ε)vy(GR(ε) − GA(ε))], (9)

and

σ II
xy = e2h̄

4π

∫
dε f (ε)Tr

[
vxGR(ε)vy

dGR(ε)

dε
− vx

dGR(ε)

dε

×vyGR(ε)− vxGA(ε)vy
dGA(ε)

dε
+ vx

dGA(ε)

dε
vyGA(ε)

]
.

(10)

The longitudinal conductivity along σμμ can be obtained from
the Kubo-Greenwood formula as

σμμ = −e2 h̄

π

∫
dε

df (ε)

dε
Tr[vμ Im G(ε)vμ Im G(ε)], (11)

where Im G(ε) = GR (ε)−GA(ε)
2i and GR(A) are the disorder-

averaged retarded (advanced) Green’s functions defined by
Eq. (7). Based on the effective Hamiltonian Eq. (1), the veloc-
ity operators are vx,y = h̄−1∂kx,y hk. We note that the calculation
of the trace (Tr) is preformed over the sublattice space and
momentum space [45]. The f (ε) = [e(ε−εF )/kBT + 1]−1 is the
Fermi-Dirac distribution with the Fermi energy εF and tem-
perature T . Here, we focus on the disorder dependence of
conductivity σμν and set the temperature as T = 0. In this
case, the function − df (ε)

dε
is reduced to δ(ε − εF) at zero

temperature. In this case, the Fermi surface term σ I
xy and

longitudinal conductivity along σμμ are determined by the
quantities at the Fermi energy εF. By substituting GR(A)(ε, k)
into Eq. (9), we have

σ I
xy(εF) = e2h̄

2π
Tr[vxGR(εF)vyGA(εF)]

= 2e2

h
(ZA − ZR)

∫
d2k

(2π )2
ivλdx(k)gR

k (εF)gA
k (εF),

(12)

where ZR(A) = εF − �R(A)(εF). We define gR(A)
k =

[(ZR(A))2 − d2
k]−1 for conciseness. Notice that the other

terms in Eq. (9) vanish Tr[vxGR(A)vyGR(A)] = 0 by setting
A = R in Eq. (12). From Eq. (10) we can derive

σ II
xy(εF) = 2e2

h

∫
dε

∫
d2k

(2π )2
ivλdx(k)

[
gA

k (ε) − gR
k (ε)

]
,

(13)
where the integration

∫
ε

in Eq. (10) is restricted to the interval∫ εF

−∞, since the Fermi sea term σ II
xy accepts all the contributions

below the Fermi energy εF.
We first calculate the anomalous Hall conductivity σ I

xy and
σ II

xy in the low-energy region. As shown in Fig. 2(b), the Fermi
sea term σ II

xy exhibits a peak at εF = 0 where the half-integer
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quantized Hall conductivity σ II
xy = e2

2h can be nearly preserved
for very weak disorder. However, an increase of disorder can
quickly reduce the conductivity and smear the half-integer
quantization. On the other hand, as shown in Fig. 2(c), the
Fermi surface term σ I

xy gives the positive contributions to the
anomalous Hall conductivity in the metallic regime but is
not enough to compensate the loss in σ II

xy. Nevertheless, the
total quantity σxy = σ I

xy + σ II
xy is still disorder dependent and

is reduced with increasing disorder.
In Figs. 2(d) and 2(e), we can see that the longitudinal con-

ductivities σxx and σyy behave very differently in the diffusive
regime due to anisotropy. The conductivity σxx is enhanced as
disorder increases, whereas the conductivity along the other
direction behaves adversely. By inverting the conductivity
tensor, the resistivity tensor can be expressed as

ρμν = [σμν]−1 = 1

σxxσyy + σ 2
xy

(
σyy −σxy

σxy σxx

)
. (14)

As shown in Fig. 2(f), the Hall resistivity ρxy is reduced with
increasing disorder. This is different from the insulating phase
where the longitudinal conductivity vanishes and ρxy acts as
the inverse of Hall conductivity.

Stability of half-integer quantized Hall conductivity against
disorder. To explicitly examine the influence of disorder,
we focus on the Hall conductivity σxy at εF = 0. Based on
Eqs. (12) and (13), we can decompose the disorder-dependent
σxy as

σxy = σ int
xy + δσxy, (15)

where δσxy = σ I
xy + δσ II

xy, and δσ II
xy is from the splitting of the

Fermi sea term as σ II
xy = σ int

xy + δσ II
xy. The intrinsic part can be

obtained from Eq. (3) as

σ int
xy = e2

2h
. (16)

The other two terms such as δσ II
xy and σ I

xy are disorder depen-
dent and given by

δσ II
xy = −2e2

h

∫ ∞

0
dxF (x)

[
xη

x2 + η2
+ arctan

η

x

]
, (17)

and

σ I
xy = 4e2

h

∫ ∞

0
dxF (x)

ηx3

(η2 + x2)2
. (18)

The damping parameter η in Eqs. (17) and (18) is defined
by the imaginary part of self-energy as Im �R/A = ∓η(λ, γ ),
and we introduce a function F (x) related to the density of the
Berry curvature F (x) = 2

∫
k δ(x − dk )�(k). We provide the

calculation details of the Hall conductivity and the derivation
of Eqs. (17) and (18) in the Supplemental Material [45].

The stability of half-integer quantized Hall conductivity is
controlled by the disorder correction δσxy in Eq. (15), which
is depicted in a parameter space (λ, γ ). In Fig. 3(a), we give
a phase diagram of σxy(λ, γ ) to characterize the competition
between the disorder γ and symmetry-breaking term λkxσz. In
the strong disorder limit η → ∞, we have σ I

xy = 0 and δσ II
xy =

− e2

2h which cancels out the intrinsic part of Hall conductivity

σ int
xy = e2

2h and annihilates the anomalous Hall effects, i.e.,

FIG. 3. (a) The phase diagram of the anomalous Hall semimetal
depicted by σxy(λ, γ ). (b) The Hall conductivity at εF = 0 as a func-
tion of damping parameter η at fixed λ = 0.1, 0.5, and 1. (c) The Hall
conductivity at εF = 0 as a function of λ at fixed disorder strength
γ = 0.3 and 1. (d) The suppressing of the damping parameters with
increasing λ at fixed γ = 0.2 and 0.3. (e) The normalized longitudi-
nal conductivity Cμμ = σμμ/σ 0

μμ as a function of λ.

σxy = 0. On the other hand, one can enhance the anomalous
Hall conductivity σxy by increasing λ as shown in Fig. 3(c).
We find there is a crossover from the diffusive metal into
the topological Dirac semimetal where the value of σxy can
be nearly preserved to e2

2h . This process is accompanied by a
decrease of the damping parameter η as shown in Fig. 3(d).
We note that the function F (x) in Eqs. (17) and (18) be-
comes smooth near εF = 0 as λ increases and can be replaced
by its maximum value F0 = cx

2πλ2 + cy

2πv2 (at x = 0). Finally,
we complete the integration and Eq. (15) can be simplified
as

σxy ≈ e2

h

(
1

2
− 4F0η

)
. (19)

Generally speaking, the Hall conductivity of topological Dirac
semimetals with a parity anomaly cannot exactly be half-
integer quantized due to the existence of finite damping
induced by disorder. However, we can as much as possibly
weaken the disorder effects by choosing a larger value of
λ [see Fig. 3(b)]. In this case, the quantization of σxy = e2

2h
remains very stable in a wide region of disorder.

Next, we illustrate the behavior of Hall conductivity σxy

by tuning the Fermi level. As shown in Figs. 2(e) and 2(f),
the finite value of σμμ in the regime of diffusive metals can
affect the behavior of anomalous Hall resistivity ρxy, which
can also influence the half-integer quantization of σxy. With
suppressing damping parameter η, the transport behavior can
be substantially changed. To depict this, as shown in Fig. 3(e),
we introduce the normalized longitudinal conductivity Cμμ =
σμμ/σ 0

μμ with σ 0
xx = 2e2

πh
λ
v

and σ 0
yy = 2e2

πh
v
λ

[45], and we can
see that Cμμ approaches unity with increasing λ. That is to
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FIG. 4. (a) The longitudinal conductivity defined as σL =
√

σxxσyy and is measured by σ 0
L =

√
σ 0

xxσ
0
yy = 2e2

πh . (b) The anomalous

Hall resistivity ρxy with ρ0
xy = 2h

e2 (1 + 16
π2 )−1. (c) The Hall conductiv-

ity for different disorder strengths γ by tuning the Fermi level εF .
(d) The disorder dependence of Hall conductivity at different Fermi
energies εF. The disorder strengths in (a)–(c) are γ = 0.5, 0.6, 0.7,
and we set λ = 1 in (a)–(d).

say, the longitudinal conductivity σL = √
σxxσyy at εF = 0

approaches a finite value as a universal conductivity constant
σ 0

L = 2e2

πh [see Fig. 4(a)]. A similar phenomena can also be
observed in the resistivity curve ρxy [see Fig. 4(b)]. In this
case, the Hall resistivity at εF = 0 approaches a finite value
ρ0

xy = 2h
e2 (1 + 16

π2 )−1 which is not quantized due to the contri-

bution of longitudinal conductivity [see Eq. (14)]. Moreover,
the energy dependence of Hall conductivity σxy can be sig-
nificantly reduced by choosing a larger value of λ. As shown
in Figs. 4(c) and 4(d), the nearly half-integer quantization of
Hall conductivity can be observed in a relatively wide energy
window.

Summary. In summary, we have theoretically proposed a
strategy to realize the parity anomalous semimetal with a sin-
gle Dirac cone. Based on the Kubo-Streda formula, we show
that the half-integer quantized Hall conductivity, which is a
signature of parity anomaly, can be smeared by the damping
parameter in the presence of disorder. Through the control of
anisotropy of a deformed honeycomb lattice, we can minimize
the influence of the disorder and other random fluctuations,
maintaining that the Hall conductivity is weakly dependent on
the disorder and nearly remains half quantized as σxy = e2

2h .
Considering the rapid developments of topological states in
the artificial and periodic-driving Floquet systems [51,52], we
expect that our proposed anisotropic Dirac semimetal with a
parity anomaly can be realized in experiments. Especially, re-
cent studies show that a single massless Dirac cone can occur
at the phase boundary of external fields induced by topological
transitions in valley-polarized materials [53–55], indicating
that parity anomalous semimetallic states can be further
present in realistic materials and condensed matter systems.
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