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We investigate the crucial role played by a global symmetry in the purification timescales and the phase
transitions of monitored free fermionic systems separating a mixed and a pure phase. Concretely, we study
Majorana and Dirac circuits with Z2 and U(1) symmetries, respectively. In the first case, we demonstrate
the mixed phase of L sites has a purification timescale that scales as τP ∼ L ln L. At 1 � t � τP the system
attains a finite residual entropy, that we use to unveil the critical properties of the purification transition. In
contrast, free fermions with U(1) manifest a sublinear purification timescale at any measurement rate and an
apparent Berezinskii-Kosterlitz-Thouless criticality. We find the mixed phase is characterized by τP ∼ Lα(p),
with a continuously varying exponent α(p) < 1.
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Introduction. Preparing pure states in many-body sys-
tems is fundamental for quantum simulation [1–3], metrol-
ogy [4–8], and computation [9]. As a process, purification
is regulated by the principles of thermodynamics. Left alone,
quantum systems thermalize with the surroundings and reach
a mixed state with extensive thermodynamic entropy [10–16].
The second law implies that purification requires the sys-
tem to nonunitarily interact with an environment, while the
third principle states that the time needed to prepare a zero
entropy (pure) state diverges with the system size. This purifi-
cation timescale is in principle dictated by the microscopic
properties of the framework. Yet, it manifests a universal
behavior, with the functional dependence on system size
fixed by the system’s dynamical phases. For instance, generic
monitored many-body systems distinguish between mixed
and pure phases, with the purification timescale exponen-
tial and logarithmic in system sizes, respectively [17–21].
Additionally, the purification timescale reveals a power-law
divergence at the so-called measurement-induced phase tran-
sitions (MIPTs) governed by the underlying critical-field
theory [22,23]. Overall, the properties of generic systems re-
flects in the phenomenology of entanglement propagation and
transitions [22–84] with coinciding theoretical description in
statistical mechanics [85–92].

On the other hand, the case of monitored free fermions
is less understood. While the entanglement properties have
been extensively discussed [93–111], purification has been
only partially investigated. Reference [112] demonstrated that
monitored fermionic systems are not generic as they purify
at most quadratically (and not exponentially) in system size.
However, this derivation does not account for the interplay
between symmetry and locality in quantum systems. Indeed,
local unitary operations scramble less compared to the global
ones in Ref. [112], and thus are expected to shorten the purifi-
cation timescales.

This Letter tackles these issues by investigating the
prominent role of symmetry on monitored free fermions.

Concretely, we investigate Z2 parity preserving or U(1)
number-conserving circuits built of quadratic fermionic gates,
the so-called Gaussian circuits. We unveil the purification
timescale studying the entropy of an ancilla initially entan-
gled with the system [19]. Irrespectively of the symmetry,
frequent measurements drive the system in a pure phase,
with purification time logarithmic in system size L. Instead,
the purification timescale in the mixed phase at low mea-
surement rates depends crucially on the system’s symmetry.
For Z2 symmetric circuits, we find τP ∼ L ln L supporting
the recent analytical arguments based on the nonlinear sigma
models (NLSMs) [113] (cf. also Refs. [114–116]). Conse-
quently, the mixed phase preserves a residual thermodynamic
entropy at 1 � t � τP [117], enabling us to extract the cor-
relation length critical exponent of the measurement-induced
transition. Instead, U(1)-conserving circuits purify in a time
sublinear in system size at any finite measurement rate. In
the mixed phase, we find τP ∼ Lα(p) and continuously vary-
ing exponent 0 � α(p) � 0.87. As with the entanglement
transitions [94,105], U(1) circuits reveal a Berezinskii-
Kosterlitz-Thouless (BKT) measurement-induced transition
separating the mixed and the trivial phase.

Purification transition in Gaussian circuits. We con-
sider Gaussian circuits of free fermions with interspersed
unitary-measurement discrete-time dynamics. Such a circuit
is mappable to a random-tensor network [114,115], whose
N-replica field theory is described by a nonlinear sigma model

S = 1

2gB

∫
dx dt tr(∂μQ)T ∂μQ + . . . , (1)

with Q(x, t ) an N × N matrix, gB the bare coupling fixed
by timescales of the microscopic model, N the number of
replicas, and the ellipsis is on topological and symmetry-
enlarged terms. We note that Eq. (1) applies also to Anderson
localizing models [118–121], with the required replica limit
N → 0 instead of N → 1 as in the measurement problem.
Nevertheless, this draws an analogy between entanglement in
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Gaussian circuits and conductance in disordered systems, with
the running constant g−1

R (L) being a strength of entanglement
(conductance) at a length scale L. Generic parity-conserving
Majorana circuits correspond to the DIII Altland-Zirnbauer
symmetry class [113,116], with beta function dgR/d ln � �
(N − 2)g2

R/(8π ) + O(g3
R) known perturbatively at any N . We

see here the importance of the correct replica limit, as the
relevance of the flow is fixed by N . In particular, N < 2
implies a nontrivial stable phase governed by the gR � 0 fixed
point [113], with the N = 2 limit corresponding to BKT be-
havior (cf. Ref. [114]).

The running coupling gR affects entanglement and purifi-
cation, as well as the universality class of the MIPT. Consider
first a pure state |�〉 and a bipartition A ∪ B. The Rényi
entropy Sn(ρ) ≡ − ln tr(ρn) of the reduced density matrix
ρA ≡ trB|�〉〈�| measures the entanglement between A and
B [122–124]. The running coupling g−1

R � ln L leads to the
scaling in the entropy Sn(ρA) ∼ (n + 1)/(96n) ln2 �A, with �A

the length of A. The small prefactor hinders a precise entangle-
ment scaling identification, which is susceptible to significant
finite-size effects, resulting in conflicting numerical analy-
sis [113,116]. An equivalent picture emerges from studying
the purification of an initially mixed state ρ, revealed by the
evolution of the S2 of a monitored system [18,19,117]. While
rigorous arguments upper bound the purification timescale of
monitored free fermions to be quadratic in system size [112],
the renormalized constant affects the purification timescale as
τP ∼ L/gR(ln L). In particular, for the DIII class, the analytic
prediction is τP ∼ L ln L [113]. The advantage of consider-
ing the purification properties of the system is that they are
extractable from a single ancilla qubit initially maximally
entangled with the system [19,125,126], leading to practical
experimental proxies [127,128] and more robust numerical
checks compared to those based on entanglement measures.
Including additional symmetries results in (potentially rele-
vant) corrections to Eq. (1), altering τP.

We elaborate on these points by investigating Z2 parity-
conserving and U(1) number-conserving systems. In the
former case, the mixed phase purification timescale matches
the NLSM prediction [113], indirectly supporting the flow
gR ∼ 1/ ln(L) for the DIII class circuits. Instead, the purifi-
cation timescale is always sublinear in system size for the
U(1) case, with a BKT transition separating trivial and mixed
phases. The latter exhibits τP ∼ Lα(p) with continuously vary-
ing exponent 0 < α(p) � 0.87, supporting a running constant
gR ∼ L1−α(p). For concreteness, we discuss the implementa-
tions depicted in Fig. 1. The first example is based on an Ising
Trotterization [cf. Fig. 1(a)]. Each layer is given by quadratic
operations of Majorana fermions {γ̂a, γ̂b} = 2δab,

K̂p =
⎡
⎣ L∏

j=1

M̂
r j

2 j−1,2 j

⎤
⎦

⎡
⎣ L∏

j=1

Û2 j,2 j+1(J )

⎤
⎦ L∏

j=1

Û2 j−1,2 j (h), (2)

where r j = 1 with probability p, otherwise r j = 0 and pe-
riodic boundary conditions apply. The probability p is one
of the parameters of the model controlling the rate of mea-
surements. The unitaries in Eq. (2) are fixed by Ûa,b(α) =

U(h)
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FIG. 1. Cartoon of the Gaussian circuits of interest. (a) The
Majorana model with Z2 with three types of gates: on-site Floquet
unitaries Û (h) (blue), nearest-neighboring Û (J ) gates (green), and
on-site measurements with probability p (red). (b) The stochastic
U(1)-conserving model with Û random gates (blue) and on-site
measurements (red); cf. text. The gate ÛS∪A acts on the system and
ancillae, while ÛS acts on the state. Varying them and the initial state,
we uncover different but physically equivalent facets of the problem.

exp(−αγ̂aγ̂b) and the on-site measurements act as

M̂a,bρM̂a,b = 1

p±

1 ± iγ̂aγ̂b

2
ρ

1 ± iγ̂aγ̂b

2
(3)

with the sign randomly chosen according to the Born rule
probabilities p± = (1 ± tr[iγ̂aγ̂bρ])/2 [129]. We infer the
layer dependency on the measurement registry that fixed the
quantum trajectory realization and call this system the Majo-
rana circuit. The dynamics preserve the Z2 parity symmetry
of the system.

Instead, the U(1) preserving dynamics is realized with a
stochastic circuit of Dirac fermions {ĉa, ĉ†

b} = δab with layers

K̂2
p =

⎛
⎝ L∏

j=1

M̂
r j

j

⎞
⎠ ∏

i∈e

Ûi,i+1

⎛
⎝ L∏

j=1

M̂
r j

j

⎞
⎠∏

i∈o

Ûi,i+1, (4)

with i ∈ e/o running over even/odd sites. Periodic bound-
ary conditions are assumed and r j = 1 with probability p,
otherwise r j = 0. The unitary gates are given by Ûa,b =
exp[−2iβ(ĉ†

aĉb + H.c.)] with β a random number in [0, π ] for
each gate, while M̂a is an on-site measurement of the particle
density n̂a = ĉ†

aĉa,

M̂aρM̂a =
⎧⎨
⎩

n̂aρn̂a

tr(n̂aρ) , with probability tr(n̂aρ)

(1−n̂a )ρ(1−n̂a )
1−tr(n̂aρ) , otherwise.

Again we infer the measurement registry dependence of K̂p

and conveniently denote this as the Dirac circuit. This dy-
namics has a U(1) symmetry generated by the total fermionic
number N̂ = ∑

k n̂k [112].
The models of interest are simulatable with just polynomial

complexity in system size as, by Gaussianity, the whole evo-
lution reflects in the dynamics of the correlation matrix of the
system [96,129]; respectively, Ma,b = tr(ρi[γ̂a, γ̂b]/2) (a, b =
1, . . . , 2L) and Ca,b = tr(ρĉ†

aĉb) (a, b = 1, . . . , L) for the Ma-
jorana and Dirac circuits [130]. We study a complementary
but physically equivalent framework, based on the system
circuit evolution ρS∪A(t ) = K̂t

p,SρS∪A(0)(K̂t
p,S )† of a system
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FIG. 2. (a) Phase diagram of the Majorana circuit. For p < pc(h), the system is in a nontrivial mixed phase characterized by a purification
timescale τP ∼ L ln L (pink region). Instead, for p > pc, the system is in the purified phase, with τP ∼ ln L (blue region). The critical line
pc(h) is determined numerically and has the limit of τP ∼ L. (b) Scaling of the typical purification timescale τP with system sizes for various
measurement rates. The dashed lines are logarithmic fits f (x) = a ln x + b, with a, b two fitting parameters. The dashed gray line is a constant
fit. (c) The residual entropy of an initially maximally mixed state at circuit depth t = L. Inset: data collapse with pc = 0.707 and ν = 2.1. In
(b) and (c), h = 0.3.

and ancillae initial state ρS∪A(0) = ÛSÛS∪Aρ0,S ⊗ ρ0,AÛ †
S∪AÛ

†
S

(cf. Fig. 1). The latter is obtained from the uncorrelated ini-
tial density matrices ρ0,S and ρ0,A applying ÛS∪A and ÛS ,
respectively, a system-ancillae unitary operation and a system
unitary gate. Specifically, we consider (i) the purification of
an ancilla system initially entangled to the system (with ρ0,S/A

a product state, ÛS∪A a maximally entangling gate, and ÛS

a scrambling gate) and (ii) the purification of a maximally
mixed state (with ρ0,S = 1/2L and ÛS∪A, ÛS both identity
gates, leaving the ancilla and system decoupled). In both in-
stances, the purification properties are revealed by the residual
entropy S2[ρS (t )]. In particular, we extract the purification
timescale τP from the former protocol as the characteristic
timescale at which S2[ρS (t )] = 0 [131].

Numerical results. We begin by numerically investigating
the Majorana circuit [cf. Fig. 1(a)]. The results are summa-
rized in the phase diagram in Fig. 2(a), where we fix J = 0.5.
As we detail below, we find the critical line p = pc(h) in
gray separating a nontrivial mixed phase for p < pc(h) (in red
in the figure) and a purifying phase for p > pc(h) (in blue)
studying the residual entropy. Note that the phase diagram is
periodic with period π as a result of the choice of gates [cf.
Eq. (2)], and here we show only one branch. In particular, we
expect pc = 0 as h → π , since the Û2 j,2 j−1(h) become trivial.

We characterize the phases by first considering the pu-
rification of two Majorana ancillae, virtually located at the
sites L + 1, L + 2 in Fig. 1(a). We initialize ρ

majo
S∪A (0) by

locally entangling the ancillae with the system, and perform-
ing a scrambling operation on the system. The particular
choice of scrambling operation does not change the qualitative
physics (cf. [130]). We identify the purification timescale as
τP = median(tP ), with tP = mint {t : S2[ρS (t )] < 10−10}, and
study its behavior for Nreal > 103 realizations of the cir-
cuit [132]. The results are reported in Fig. 2(b) at h = 0.3.
In the mixed phase (p < pc � 0.7), we find τP ∼ L ln L as
expected by the NLSM. Close to the critical value p ≈ pc,
the system approaches a linear scaling τP ∼ L, while for p >

pc, the τP crosses over to ∼log L scaling. This logarithmic
growth has a trivial origin and can be understood since the

number of unmeasured sites must become O(1) at t ∼ τP, i.e.,
(1 − p)τP L � 1. The ancillae purification timescale, therefore,
gives a clear separation between the trivial and mixed phases.
This should be compared with the entanglement measures on
extensive subsystems, where due to the significant finite-size
effects, the identification of the scaling is more subtle (for
instance, see discrepancies among Refs. [113,116]).

The superlinear τP in the mixed phase implies that the
maximally mixed state ρ0 = 1̂/2L will sustain a residual en-
tropy after a circuit evolution of depth t ∼ O(L). For such

depths, the residual entropy S2 = S2[K̂t
pρ0(K̂t

p)†] distinguishes
a mixed phase, where it attains a finite value, from a trivial
phase, where it is exponentially suppressed in system size.
As an example, we present the results for t = L and h = 0.3
in Fig. 2(c). Compatible with the single-qubit purification
analysis, we observe a crossing behavior around p � 0.7. This
indicator estimates the pc with �2% interval of confidence
already with limited system sizes [cf. Fig. 2(a)] where we
consider t = L � 64 and averaging over 8000 trajectories.
Nevertheless, obtaining the critical properties requires a finite-
size scaling analysis, which we detail in [130], and gives
p

c = 0.707(3) and ν = 2.1(4). Our estimates, compatible
with [115,117], lead to the data collapse in Fig. 2(c), inset. We
see that the critical exponent is susceptible to more significant
system size effects. We stress that an exact prediction for the
exponent ν is not available even in the NLSM approach. The
perturbative expansion around N = 2, where BKT scaling
implies ν = ∞, can nonetheless give a possible justification
of its numerically large value [113]. A conclusive answer
based solely on the numerics is, therefore, out of reach for the
considered system sizes and demands more refined analytical
insights.

We now investigate the purification of the Dirac circuit by
considering the purification timescale of an ancilla maximally
entangled with the system and virtually located at L + 1 [cf.
Fig. 1(b)]. Our numerical analysis is reported in Fig. 3. First,
we find that for any p, the purification timescale is sublinear
[cf. Fig. 3(a)]. As with the Majorana circuit, for p � pc � 0.1
the system has a logarithmic purification timescale set by the
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FIG. 3. (a) Purification timescale τP/ ln(L) for the Dirac circuit with U(1) for different system sizes L � 1024 and values of p ∈ [0, 0.4].
The critical rate pc separates the mixed phase p < pc, where one sees τP ∼ Lα(p) with 0 < α(p) � 0.87, from a purified phase p > pc. (b) The
continuously varying exponent α(p) is obtained considering larger system sizes for the fit (cf. text). For p > pc it is compatible to zero, while
for p < pc it grows approaching p → 0, saturating to a value ∼0.87. (c) The data collapse for a BKT finite-size scaling with the optimal
pc = 0.10(1). Inset: same collapse but in log-log scale. We remark that the cost function minimization involves only a single fitting parameter.

scrambled initial state. In contrast, for p � pc, the scaling is
power law Lα(p), with an exponent 0 < α(p) < 1 which we
extract from a fit [133]. To account for finite-size effects,
we sequentially include only L � Lmin, with Lmin = 16–160
[cf. Fig. 3(b)]. For p > pc, the result is compatible with
α(p) = 0, confirming the logarithmic system size scaling of
τP. On the other hand, for p < pc, the power-law exponent
continuously varies with the rate p, and for p → 0, it at-
tains values close to α(0) � 0.87. This preliminary analysis
demonstrates a more subtle phenomenology compared to the
Majorana circuit, suggesting a scaling theory beyond the
power-law diverging one of the NLSM. We, therefore, look
for a BKT phase transition, where the correlation length di-
verges exponentially in 1/(p − pc). Specifically, we consider
the scaling variable x = (p − pc) ln L and, to account for the
logarithmic corrections at p = pc, we perform the finite-size
scaling on τP − τP(pc). In Fig. 3(c) we report the excellent
data collapse, particularly when considering that the fit is
performed with only one free parameter, pc. The available
system sizes support the hypothesis that U(1) number con-
servation leads to a measurement-induced phase transition in
the BKT universality class for the Dirac circuits analyzed
here as for the continuously monitored fermions [94,105].
In that case, α(p) ≡ z(p) would be a properly defined and
continuously varying critical exponent z(p), in line with a
nonunitary Luttinger-liquid phase (cf. [105]). Nevertheless,
we cannot exclude that the decrease in Fig. 3(b) continues
and in the thermodynamic limit α(p) → 0 compatibly with
possible weak-localization corrections (cf. [134]).

Conclusion. We analyzed the purification dynamics of
monitored fermionic circuits, highlighting the role of sym-
metry in determining the purification timescales. For systems
with a Z2 parity conservation, our results provide robust sup-
port to recent analytical arguments [113]. In particular, we find
a purification timescale that increases as τP ∼ L ln L in the
mixed phase. We benchmarked these results considering the
residual entropy at t = L � τP, demonstrating a phase transi-
tion signaled by a crossing in the finite-size scaling of S2 and
extracting the correlation length critical exponent. For systems

with a U(1) conservation law, the purification timescale is sub-
linear in system size for any measurement rate and supports
the presence of BKT stemming from the extended symme-
try. Within the framework of NLSM introduced in [113], the
available system sizes demonstrate this critical behavior sepa-
rating a purifying phase from a mixed phase with τP ∼ Lα(p),
indirectly supporting a running constant gR ∼ L1−α . We also
note that the presence of a continuously varying exponent
0 � α(p) � 0.87 is compatible with previous studies on con-
tinuously monitored fermionic systems, as expected by virtue
of universality.

In the continuous time limit, Ref. [105] found a BKT
phase transition for U(1)-conserving fermions for the N = 2
replica. Nevertheless, Refs. [113,114,116] demonstrate the
importance of the replica limit N → 1 to determine the
measurement-induced universal properties of the system, as
well as the symmetry-permitted field theory corrections. It
is important and left for further investigation to analytically
demonstrate the robustness of the BKT measurement-induced
transition in the correct replica limit, as well as the rightful
characterization of the mixed phase purification timescales
(cf. [134]) for a first step in this direction. Moreover, in
line with Refs. [114,135], we expect that various discrete or
continuous symmetries would enrich the phase diagram of
the monitored system and leave hallmarks in the purification
timescales. Lastly, our findings demonstrate the mixed phase
of fermionic systems presents nontrivial structural properties
that are revealable within the projective ensemble [136–143],
for which the reduced density matrix reveals mean value prop-
erties.
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