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Hydrodynamics in long-range interacting systems with center-of-mass conservation

Alan Morningstar ,1 Nicholas O’Dea ,1 and Jonas Richter 1,2

1Department of Physics, Stanford University, Stanford, California 94305, USA
2Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany

(Received 28 April 2023; accepted 12 July 2023; published 24 July 2023)

In systems with a conserved density, the additional conservation of the center of mass (dipole moment) has
been shown to slow down the associated hydrodynamics. At the same time, long-range interactions generally
lead to faster transport and information propagation. Here, we explore the competition of these two effects
and develop a hydrodynamic theory for long-range center-of-mass-conserving systems. We demonstrate that
these systems can exhibit a rich dynamical phase diagram containing subdiffusive, diffusive, and superdiffusive
behaviors, with continuously varying dynamical exponents. We corroborate our theory by studying quantum
lattice models whose emergent hydrodynamics exhibit these phenomena.
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Hydrodynamic theories are coarse-grained descriptions of
the flow of conserved densities. They help us understand
large-scale behavior and universality without knowing how
these emerge from microscopic details [1,2]. The price for
this is the introduction of unknown macroscopic parameters
such as diffusivity or viscosity, which are difficult to compute
from first principles [3–8]. Understanding how hydrodynam-
ics emerges in quantum systems is of great interest, and
recent progress has been made in this direction [9–13]. It is
also of interest to understand what kinds of hydrodynamic
behavior can possibly arise in quantum many-body sys-
tems, including both chaotic and integrable models [14–30],
as well as models with symmetries or kinetic constraints
[31–37].

For highly excited quantum chaotic lattice models, the de-
fault expectation is often that standard diffusion will emerge.
However, the dynamics can be systematically slowed down by
imposing further constraints on the allowed microscopic tran-
sitions such that higher moments of the density distribution
are conserved. A common example of this is the subdiffu-
sion that results from conserving the center of mass (c.m.),
also known as the dipole moment [38–50]. This can occur
in “tilted” systems with a strong linear potential [51–54], as
realized in cold-atom setups [55–57], and is relevant also for
quantum Hall systems [58–61]. The additional conservation
law can not only modify the hydrodynamics but can result
in a frozen phase where the state space is fragmented into
dynamically disconnected sectors [62–71]. While we focus on
the highly excited dynamics of such systems, there has also
been interest in their low-temperature equilibrium properties
[72–84].

In contrast to constrained dynamics, faster dynamics can
be achieved in systems with long-range interactions [85,86].
Interactions that decay as a power law of the distance between
particles—including Coulomb, dipolar, and van der Waals—
are ubiquitous, and can nowadays be explored using, e.g.,
ultracold atoms [87–90], polar molecules [91–93], or trapped
ions [94]. In such systems, Lieb-Robinson bounds can become
superballistic, and hydrodynamics superdiffusive, depending

on the power-law exponent and the dimensionality of the
underlying lattice [95–105].

Given their competing effects, it is natural to examine
the interplay between higher-order conservation laws and
long-range interactions, however, this problem has only been
briefly touched on in the literature [39]. Here, we bridge
the gap and consider a class of models where “hops” are
long range but always occur in pairs such that the c.m. is
conserved [Fig. 1(a)]. We develop a hydrodynamic theory of
such models and map out its phase diagram [Figs. 1(b) and
1(c)]. More specifically, our model is characterized by two
power-law exponents, α and β, that control the suppression
of pair-hopping amplitudes. We calculate the dynamical ex-
ponent z, governing long-wavelength relaxation, as a function
of these two exponents, as well as the scaling functions for
density-density correlations. When α and β are large enough,
we recover the known z = 4 subdiffusion of short-range c.m.-
conserving systems in one dimension. When α or β is small
enough, z continuously varies. The scaling function of the cor-
relations also continuously varies with the exponents. We find
consistent results when examining a less-tractable quantum
spin-1 model (a long-range version of the systems studied in
Refs. [64,65]). We also discuss the relevance of our findings to
long-range many-body quantum systems in a tilted potential.

Setup. As a starting point, we consider a one-dimensional
(1D) quantum spin model

H =
∑

x

∑
s,r

Jsr (S+
x S−

x+rS−
x+r+sS

+
x+s+2r + H.c.), (1)

where S±
x are raising and lowering operators at site x, and

Jsr depend on the distances s � 0 and r > 0. The Hamil-
tonian conserves the magnetization

∑
x Sz

x and its dipole
moment

∑
x xSz

x, i.e., the “center of mass” of the Sz den-
sity. Equation (1) can be understood as a generalization of
the short-range “pair-hopping” models of Refs. [64,65,67].
When those systems thermalize, they exhibit subdiffusion
with dynamical exponent z = 4 and density correlations that
are nonmonotonic in space [38–40]. Here, we are interested in

2469-9950/2023/108(2)/L020304(8) L020304-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2398-1804
https://orcid.org/0009-0009-5949-7326
https://orcid.org/0000-0003-2184-5275
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.L020304&domain=pdf&date_stamp=2023-07-24
https://doi.org/10.1103/PhysRevB.108.L020304


MORNINGSTAR, O’DEA, AND RICHTER PHYSICAL REVIEW B 108, L020304 (2023)

FIG. 1. (a) We consider models involving long-range interactions
and c.m. conservation. The dynamics are governed by pairs of equal
and opposite currents (or the underlying “pair-hopping” processes
depicted) acting on lattice sites separated by the distances s � 0
and r � 1 (the “interaction” and “hopping” distances). The strengths
of the currents are suppressed by power laws (s + 1)−αr−β , so α

controls the range of interactions and β the range of hopping. (b),
(c) Schematic cuts through the dynamical phase diagram for the
limiting cases r → 1 (β → ∞) and s → 0 (α → ∞).

how the hydrodynamics is affected by long-range interactions,
particularly for Jsr with power-law decay.

Since directly computing the emergent hydrodynamics of
quantum models is generally intractable, here we also in-
troduce a solvable hydrodynamic model that is inspired by
Eq. (1). We consider a density nx ∈ R which is slightly per-
turbed from its uniform equilibrium value. The dynamics of
the model are governed by pairs of equal but opposite currents
that displace density from positions x + r and x + r + s to
positions x and x + s + 2r (and vice versa), where s � 0 and
r � 1 [Fig. 1(a)]. Such “pair currents” occur in superposition
for all s and r, but the magnitudes of each are driven by the
density at the four positions involved. The analog to Fick’s law
is that each pair current is driven with strength proportional to
the curvature of nx on those four sites [38]. The proportion-
ality for a given s and r is denoted by Csr and it encodes the
suppression of such pair currents as a function of s and r. The
equation of motion for the density profile is

ṅx =
∑
r,s

Csr[−(nx−2r−s − nx−r−s − nx−r + nx )

+ (nx−r−s − nx−s − nx + nx+r )

+ (nx−r − nx − nx+s + nx+s+r )

− (nx − nx+r − nx+s+r + nx+s+2r )]. (2)

The four lines correspond to the ways in which four sites with
spacings s and r can intersect site x. As a simple tractable
choice, we will focus on the separable form

Csr = (s + 1)−αr−β, (3)

where α and β are tuning parameters. Later, we will also
discuss the nonseparable form of Csr that arises in strongly
tilted systems.

While this classical hydrodynamic model is our main fo-
cus, we expect that our results qualitatively carry over to the
transport behavior of appropriate quantum systems. Indeed,

FIG. 2. The dynamical exponent z. (a) Contour plot of
log2(γ2k/γk ) ∼= ẑ on the (α, β ) plane, numerically evaluated using
k = 2π/3200. The dashed box marks z = 4 subdiffusion. The dotted
line along β = 2 + α marks where the behavior of z changes from
z = β − 1 to z = α + 1. (b) Demonstration of the boundary behavior
ẑ(k) = 4 − ln(1/k)−1 where the horizontal axis is L = 2π/k, the
lattice sizes used in the estimates. The vertical shift between the
two curves is from different subleading additive contributions. (c),
(d) Cuts along the top and right edges of the contour plot. Colors
(light to dark) represent estimates using k � 2π/3200, i.e., lattices
of size L � 3200.

after solving our hydrodynamic model, below we numerically
study the dynamics generated by Eq. (1) for small spin-1
chains and obtain behavior consistent with our hydrodynamic
theory if the pair-hopping amplitudes in the Hamiltonian are
chosen as Jsr ∼ √

Csr , in accordance with Fermi’s golden rule
[101] (cf. Fig. 4).

Hydrodynamic theory. Equation (2) is a linear
equation with a basis of decaying plane-wave solu-
tions nx = eikx−γkt , where the decay rates are γk =∑

s,r 16Csr sin2( kr
2 ) sin2( kr+ks

2 ). We are interested in the
small-k behavior of γk as a function of α and β. In that limit,
the lattice approximates a continuum such that

γ (k) =
∫ ∞

1

∫ ∞

0

16 sin2
(

kr
2

)
sin2

(
kr+ks

2

)
(s + 1)αrβ

dsdr. (4)

At small enough k we expect γ (k) ∝ kz where z is a dy-
namical exponent that could dependent on α and β. It is then
useful to define an effective exponent

ẑ(k) = d ln γ (k)

d ln k
. (5)

To get an immediate picture of the model’s behavior, in
Fig. 2 we numerically evaluate log2(γ2k/γk ) ∼= ẑ on the (α, β )
plane [Fig. 2(a)], and along two cuts through it [Figs. 2(c) and
2(d)]. We identify three phases: (A) α > 3 and β > 5. The
power laws are sufficiently short ranged that z = 4, consis-
tent with the known behavior in finite-range c.m.-conserving
systems in one dimension [38–40,55]. (B) α > β − 2 and
β < 5. The long-range “hopping” dominates. The result is a

L020304-2



HYDRODYNAMICS IN LONG-RANGE INTERACTING … PHYSICAL REVIEW B 108, L020304 (2023)

dynamical exponent z ∈ [0, 4] that continuously varies with
β but not α. This is similar to Refs. [100,101] where the
hydrodynamics of models with long-range hopping (but no
higher-moment conservation laws) was studied. In particu-
lar, once β � 3 such that z � 2, the hydrodynamics of our
center-of-mass conserving model is equivalent to the model
in Refs. [100,101]. (C) β > α + 2 and α < 3. The long-range
“pairing” dominates, and hopping is short ranged. This again
leads to a continuously varying dynamical exponent, but this
time it varies with α and not β. Notably, the fastest relaxation
possible in this phase is diffusive (z = 2). This results from the
effective loss (locally) of the c.m. conservation that follows
from allowing the paired short-ranged currents to be far away
from each other.

While we focus on α, β > 1 to maintain locality of both
interaction and hopping distances, here we briefly comment
on the cases where α � 1 or β � 1 (cf. hatched areas in
Fig. 1). For α � 1, the two left sites and two right sites in
the pair-hopping process can be arbitrarily far away from each
other. Thereby, center-of-mass conservation is effectively lost
and the system behaves as a system with only charge con-
servation and hopping governed by β. In contrast, for β � 1,
the hops can be arbitrarily long ranged such that the system
effectively becomes an all-to-all model where hydrodynamics
breaks down.

These phases and boundaries can be studied in more detail
by analyzing Eq. (4): At large α and β, the integral is dom-
inated by s, r � k−1 and we can expand the sin functions to
leading order which yields γ (k) ∝ k4 as expected, i.e., z = 4.
The resulting integral is only convergent when α > 3 and
β > 5, consistent with Fig. 2.

For α = ∞ (s = 0), the asymptotic small-k behavior of
Eq. (4) is

γ (k) =
⎧⎨
⎩

(β − 5)−1k4, β > 5,

k4 ln (1/k), β = 5,

(2β − 8)�(1 − β ) sin
(

πβ

2

)
kβ−1, β < 5,

(6)

where �(·) is the gamma function. Thus, for β > 5 the long-
wavelength behavior is characterized by dynamical exponent
z = 4, while for β < 5 it is z = β − 1, in accordance with
Fig. 2. At the phase boundary (α, β ) = (∞, 5), the dynamics
incurs a logarithmic correction that corresponds to ẑ(k) =
4 − ln(1/k)−1. This scaling of ẑ at the phase boundary is
demonstrated in Fig. 2(b).

For β = ∞ (r = 1), we similarly get

γ (k) =
⎧⎨
⎩

(α − 3)−1k4, α > 3,

k4 ln (1/k), α = 3,

2[−�(1 − α)] sin
(

πα
2

)
kα+1, α < 3,

(7)

that is, the behavior changes from z = 4 to z = α + 1 at
α = 3, and at the boundary we obtain the same logarithmic
correction.

In contrast, across β = 2 + α [dotted line in Fig. 2(a)]
there is a qualitative change of behavior, from z = β − 1 to
z = α + 1, but the effective z converges to a constant without
a log correction. The dashed and dotted boundaries in Fig. 2(a)
are therefore distinct in that respect. It should be noted that
the boundaries between the “phases” are not continuous phase

FIG. 3. Scaled density profiles obtained from time evolving
n(x, 0) = δx,0 under Eq. (2) (red), and comparison with Fz(ξ ). The
system size is L = 3200 and the time is t ∼ γ −1

2π/L for each panel.
Position x extends from − L

2 to L
2 but we show x � 0. We set α = ∞,

and β varies over (a)–(f). The annotated values of z are used for the
scaling of the axes. The slowly vanishing logarithmic correction to
z = 4 [ẑ(k) = 4 − ln(1/k)−1] that is applicable to (d) is small enough
to ignore. Data at other late times collapse well onto the same curves,
but we show curves from one time for clarity. Data are in red, and
D−1/zFz is plotted in faint blue for comparison, where D is extracted
from n(0, t ) = Dt1/z, but these are directly behind the data curves
due to excellent agreement.

transitions with a diverging length scale, so there is no criti-
cality of that type.

Distinct spatial correlations develop as a result of the
various different z values. In Fig. 3 we show the late-time
density profile resulting from evolving n(x, 0) = δx,0, and
compare with our theoretical understanding. At late enough
times, the relaxation is governed by γ (k) ∼= Dkz, so n(x, t ) ∼=
(Dt )−1/zFz(x/(Dt )1/z ), where D is the generalized diffusion
constant (depends on α and β) and the only parameter con-
trolling the scaling function Fz(·) is the value of z governing
the long-wavelength relaxation. More specifically, we have
Fz(ξ ) = ∫ ∞

−∞ eiκξ−|κ|z dκ
2π

. In Fig. 3 we test this scaling, with
z set to its predicted asymptotic value in each panel, and
find excellent agreement. When z = 4 the sign of correlations
is positive at smaller distances, negative at intermediate dis-
tances, and positive again at larger distances [Figs. 3(d)–3(f)].
At z = 3, the correlations no longer become positive again at
larger distances; they approach zero from below [Fig. 3(c)].
At z = 2, we regain standard Gaussian diffusion at long times
[Fig. 3(b)], which does not have any negative lobe in the spa-
tial profile. Finally, at z = 1 we have a heavy-tailed Lorentzian
profile [Fig. 3(a)].

Dynamics of a quantum spin-1 chain. Having established
the properties of our classical hydrodynamic model, we now
turn to less-tractable microscopic many-body quantum sys-
tems. Given a quantum spin Hamiltonian H as in Eq. (1) with
couplings Jsr , transition rates |〈a|H |b〉|2 between two spin
configurations |a〉 and |b〉 will scale as ∝J2

sr due to Fermi’s
golden rule [101]. Thus, in order to compare the transport
properties of H to our hydrodynamic theory, it is natural to
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FIG. 4. Infinite-temperature autocorrelation function for a long-
range c.m.-conserving spin-1 chain as in Eq. (1) with Jsr ∝
s−α/2r−β/2 and system size L = 16. (a) Varying α for β → ∞.
(b) Varying β for α → ∞. The dashed curves indicate power laws
∝t−1/z with z set according to the prediction of our hydrodynamic
theory. The thin gray curves are data for smaller L = 14.

choose Jsr ∝ √
Csr [103,105,106]. More specifically, we study

Eq. (1) for spin-1 and set Jsr = 1 if s + 2r � 3, while Jsr ∝
s−α/2r−β/2 for terms of longer range. This choice of Jsr avoids
signatures of strong Hilbert-space fragmentation and, under
α, β → ∞, recovers the pair-hopping model of Ref. [64].

In Fig. 4, we show the infinite-temperature autocorrelation
function tr[Sz

x(t )Sz
x]/3L, obtained using quantum typicality

[107,108], for chains with L = 16. The specific site x is ir-
relevant due to periodic boundaries. We consider the limiting
cases of β → ∞, i.e., short hopping distance r [Fig. 4(a)],
and α → ∞, i.e., short pairing distance s [Fig. 4(b)]. In all
cases, we find a hydrodynamic tail ∝t−1/z, where the value of
the dynamical exponent z is consistent with the prediction of
our hydrodynamic theory (Fig. 1). Given the small systems in
the quantum case, a more detailed comparison is challenging
and the regime of smaller α, β is not accessible. Nevertheless,
the data in Fig. 4 substantiate that our hydrodynamic model
indeed correctly captures the dynamics of generic quantum
systems with long-range pair-hopping processes.

Quantum systems in a tilted lattice. Our study of the hydro-
dynamics in long-range models with c.m. conservation is also
motivated by potential experimental realizations. Consider,
e.g., a long-range spin-1/2 XY model in a “tilted” potential,

HXY =
∑
i< j

J

|i − j|ν (σ+
i σ−

j + σ−
i σ+

j ) + F
∑

i

ini, (8)

where F is the tilt strength, ν > 1/2 the power-law exponent,
and ni = (σ z

i + 1)/2. Such models with power-law interac-
tions can nowadays be achieved in experiments with Rydberg
atoms, polar molecules, or trapped ions, at least for certain
values of ν, e.g., Refs. [100,109,110].

When F/J is large, the model has a long-lived conser-
vation of a dressed version of F

∑
i ini. As we show in the

Supplemental Material (SM) [111] using a Schrieffer-Wolff
(SW) transformation, the dynamics in the strong-tilt regime
are governed by pair-hopping processes σ+

i σ−
i+rσ

−
i+r+sσ

+
i+2r+s

(and H.c.). These terms occur with amplitude

Jeff ∝ J3

F 2

1

rν+1(r + s)ν+1

(
1

sν
− 1

(2r + s)ν

)
, (9)

and can be understood as third-order processes via, e.g., com-
bining σ+

i+2r+sσ
−
i+r+s, σ+

i+r+sσ
−
i+r , and σ+

i σ−
i+r+s, with the in-

termediate states being off-shell by energies Fr and F (r + s)

[111]. Therefore, strongly tilted long-range models are indeed
governed by pair hopping analogous to our hydrodynamic
model. However, we note that Eq. (9) is not separable and
depends only on one tuning exponent ν.

Similar to our results in the context of Fig. 2, we can
make predictions about the hydrodynamics of the strongly
tilted XY model by studying the small-k behavior of the decay
rates γ (k), but now for a hydrodynamic model with the more
complicated pair-current strengths Csr ∝ J2

eff. Doing so, we
find that z = 4 subdiffusion in fact remains stable even for
originally long-range systems with small ν = 1/2. This sta-
bility occurs because the exponents in the denominator of J2

eff
are larger due to the pair-hopping processes being generated
at third order. Realizing the dynamical regimes with continu-
ously varying z found for our simplified model in Fig. 1 thus
seems challenging in strongly tilted systems; see also the SM
[111].

Conclusion. Using a hydrodynamic model inspired by pair
hopping, we have investigated the interplay of long-range
interactions and c.m. conservation on the dissipative hydro-
dynamics of 1D systems. We have also corroborated the
predictions of our theory using simulations of small spin-1
chains. When the interactions decay sufficiently quickly, the
dynamics are subdiffusive with dynamical exponent z = 4,
consistent with earlier work. As the power-law interactions
are made longer ranged, our model enters a phase where z,
and the associated spatial profile of density correlations, vary
continuously. One possible extreme for this is when the
“pairing distance” of the pair currents is long range but the
“hopping distance” is short range, where transport can become
as fast as diffusive (z = 2). Another extreme is where the
pairing distance is short and the hopping distance is long, then
z can be made arbitrarily small.

While we have discussed the connections and differences
of our pair-hopping model to potential experimental realiza-
tions in strongly tilted systems, we note that in the case of
short-range systems, Ref. [55] observed and explained subd-
iffusive relaxation at long wavelengths even with weak lattice
tilts. Indeed, as we numerically illustrate in the SM [111],
taking F to be large appears not to be necessary to study
the interplay of long-range interactions and c.m. conservation.
Nonetheless, it appears that the regimes of z < 4 found in this
work will be difficult to realize using tilted systems. How to
realize these regimes in experimental systems is therefore an
interesting question for future research.

Note added. Recently, we became aware of related
independent works by Gliozzi et al. [112] and Ogun-
naike et al. [113]. These contain generalizations of our
results for higher-moment conservation laws and higher
dimensions.
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