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Eight-dimensional topological systems simulated using time-space crystalline structures
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We demonstrate the possibility of using time-space crystalline structures to simulate eight-dimensional
systems based on only two physical dimensions. A suitable choice of system parameters allows us to obtain
a gapped energy spectrum, making topological effects become relevant. The nontrivial topology of the system
is evinced by considering the adiabatic state pumping along temporal and spatial crystalline directions. Analysis
of the system is facilitated by rewriting the system Hamiltonian in a tight-binding form, thereby putting space,
time, and the additional synthetic dimensions on an equal footing.
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Introduction. Quantum simulation is a rapidly growing and
exciting field of study, focused on exploiting controllable
quantum systems to replicate and probe complex physical
phenomena [1,2]. Whereas simulating a quantum system
with full precision is a daunting task, recreation of specific
relevant features is often within reach. In particular, ultra-
cold atomic systems in optical lattices [3] have successfully
demonstrated abilities to model intricate condensed-matter
and topological phenomena [4,5] as well as lattice gauge
theories [6,7]. An intriguing line of thought along this direc-
tion is the emulation of high-dimensional systems, notably
high-dimensional periodically ordered physical structures in
low-dimensional settings [5,8–12]. In this context, several
recent proposals drew inspiration from the emergent con-
cept of time crystals [13–16] and asked if time can play the
role of an additional coordinate in quantum simulations. This
time-crystalline approach [16,17] involves a driving signal
of a certain frequency to create a repeating pattern of mo-
tion at a commensurate frequency that persists over time.
Many condensed matter phenomena were thus reenacted in
the time domain [16,18], and the possibility to engage both
temporal and spatial dimensions at the same time was es-
tablished [11,19–21], thus doubling the number of available
dimensions.

In this Letter, we provide a route for studying topological
eight-dimensional (8D) systems that can be experimentally
realized using only two physical spatial dimensions. We start
with a periodically driven 1D optical lattice with steep barriers
(modeled by delta functions) and show that it can sustain a 2D
time-space lattice. The topological nature of the attained time-
space crystalline structure is made evident by considering
adiabatic state pumping along temporal and spatial crystalline
directions. Interpreting the two adiabatic phases as crystal
momenta of simulated extra dimensions, we show that the
energy bands of the system are characterized by nonvanishing
second Chern numbers of the effective 4D lattice. Finally,
we demonstrate that two such 4D systems can be combined,
and the resulting energy spectrum will remain gapped. The
topological properties of the attained 8D system are then

characterized by the fourth Chern number, and energy bands
with nonvanishing values of the fourth Chern number are
identified.

Model. We introduce a 1D time-dependent Hamiltonian

Ĥ (x, p̂x, t |ϕx, ϕt ) = ĥ(x, p̂x|ϕx ) + ξ (x, t |ϕt ), (1)

written as a sum of an adiabatic-pumping part ĥ (which is
static but depends on a spatial adiabatic phase ϕx) and a time-
periodic driving term featuring a second adiabatic phase ϕt .
Throughout this work, we use the recoil units for the energy
h̄2k2

L/2m and length 1/kL, with kL being the wave number
of the primary laser beam used to create the optical lattice
and m the particle mass. The unit of time is h̄ divided by the
energy unit. The first term of Eq. (1) is the unperturbed spatial
Hamiltonian,

ĥ = p̂2
x + V

3N∑
n=0

δ
(

x − na

3

)

+ U
3∑

n=1

gn(x) cos

[
ϕx + 2π (n − 1)

3

]
. (2)

Here, p̂x is the momentum operator, while the sums de-
scribe the spatial potential—a lattice of N identical cells of
length a, each consisting of three sites separated by steep
delta-function barriers (see Fig. 1). The superlattice potential
gn(x) is equal to unity only in the nth site of each spa-
tial cell and vanishes otherwise. This term modulates the
on-site energies in the same way in each cell by chang-
ing ϕx, with U controlling the modulation amplitude. Note
that the modulation phase in each consecutive site is lag-
ging with respect to its neighbor on the left by one third
of a cycle. If the modulation is performed adiabatically, the
Thouless pumping can be realized in the system described
by ĥ. The realization of sharp optical barriers as well as
three-site Thouless pumping have already been studied in the
literature [22–24].
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FIG. 1. Wannier function densities |w�(x, t = 7π/4�)|2 at ϕx =
π/5, ϕt = 0, where 2π/� is the period of time evolution of w�(x, t ).
The baseline of each Wannier function is shifted upwards along the
quasienergy axis by the mean value of quasienergy in the corre-
sponding state, i.e., the quantity 〈w�|Ĥ|w�〉. At the chosen value
of ϕx , each Wannier function is localized almost entirely within a
single site, therefore, the infinitesimal “tails” of the functions are not
shown. Black vertical lines represent the steep barriers separating
the sites of the spatial lattice, while the horizontal lines depict the
values of the on-site energies described by the third term in Eq. (2).
Parameters of the model are N = 2, s = 2, a = 4.000, V = 2000,
U = 7.000, ω = 676.8, λS = 10.00, λL = 20.00. Trailing zeros are
within the numerical resolution/accuracy and are significant. The na-
ture of the presented results, however, will not change if all the values
are chosen within ∼10% of the given ones and then ω is adjusted
accordingly to ensure that the quasienergy spectrum is gapped.

The spatial Hamiltonian is perturbed by the terms

ξ (x, t |ϕt ) = λS cos

(
12πx

a

)
cos(2ωt )

+ λL cos

(
6πx

a

)
cos(ωt + ϕt ), (3)

where λS and λL control the overall strength of the pertur-
bation. The spatial frequencies 6π/a and 12π/a ensure that
all spatial sites are perturbed in the same way. The driving
frequency ω is chosen so that a resonant condition is fulfilled
in each spatial site. In the classical description, the resonance
means that ω is very close to an integer multiple of the fre-
quency � of the periodic motion of a particle in a spatial site,
i.e., ω ≈ s�, where s is the integer. In the quantum descrip-
tion, the resonance corresponds to ω being close to an integer
multiple of the gap � between certain bands of the Hamil-
tonian (2). In the limit V → ∞ [see Eq. (2)] an independent
time-crystalline structure is formed in each spatial site due to
the resonant driving. Specifically, in the frame evolving along
the resonant trajectory, the resonant dynamics of a particle
can be described by Ĥeff = ˆ̃p2

x̃ + λ̃S cos(2sx̃) + λ̃L cos(sx̃ +
ϕt ) where x̃ ∈ [0, 2π ) (see Refs. [11,21]). For example, for
s = 2, there are two temporal cells, each consisting of two
temporal sites. An adiabatic change of the phase ϕt allows for
a realization of the Thouless pumping in the time-crystalline
structures [21]. If V < ∞, then tunneling of a particle be-
tween spatial sites is possible, and the entire system forms
a 2D time-space crystalline structure which, as we will show,
can be described by a 2D tight-binding model.

To study the emergence of a time-space crystalline struc-
ture and the pumping dynamics, we solve the eigenvalue
problem Ĥun,k (x, t ) = εn,kun,k (x, t ) for the Floquet Hamil-
tonian Ĥ = Ĥ − i∂t [25–27]. We assume periodic boundary
conditions for the spatial system and introduce the spa-
tial quasimomentum k. We denote the quasienergy of the
nth eigenstate by εn,k , while un,k (x, t ) is the corresponding
Floquet mode that respects temporal periodicity of the pertur-
bation: un,k (x, t ) = un,k (x, t + 2π/ω). A general solution of
the Schrödinger equation can be represented as a superposi-
tion of states �n,k (x, t ) = e−iεn,kt un,k (x, t ). In our simulations
we consider a finite number of spatial cells, N = 2, and a
finite number of temporal cells, s = 2. The considered values
of quasimomentum are thus k = 0 and k = π [assuming k ∈
[0; 2π )], corresponding to the boundary of the Brillouin zone.
Consequently, the obtained widths of the energy bands coin-
cide with the widths being approached in the limit N → ∞.

The details of the diagonalization procedure are covered
in the Supplemental Material [28]. All calculations have been
performed using a number of software packages [29–34] writ-
ten in the JULIA programming language [35]. The source code
of our package is available on GitHub [36].

The resonant subspace of the entire Hilbert space which
we are interested in consists of 3N × 2s eigenstates. Di-
agonalizing the periodic position operator ei 2π

Na x in this
subspace [37,38] we obtain 6Ns Wannier functions w�(x, t )
of the 3N × 2s time-space crystalline structure which are
represented by localized wave packets propagating with the
period 2π/� along the resonant orbits in each spatial site.
These Wannier functions are shown at t = 7π/4� in Fig. 1,
where each spatial site hosts 2s = 4 states.

The tight-binding picture. In the basis of the Wannier
functions, the Floquet Hamiltonian restricted to the resonant
subspace takes the form of the tight-binding model

ĤTB(ϕx, ϕt ) =
∑
�′,�

J�′�(ϕx, ϕt )â
†
�′ â�, (4)

where operator â†
i creates (while âi annihilates) a boson on

site �. Here, � ∈ [1, 6Ns] enumerates all sites of the 2D
time-space lattice, and it is related to the space-time index
pair ( j, α) as � = 2s( j − 1) + α, where j ∈ [1, 3N] and α ∈
[1, 2s]. The matrix elements J�′� are calculated as

J�′� =
∫ sT

0

dt

sT
〈w�′ |Ĥ|w�〉, (5)

where T = 2π/ω is the driving period. The Wannier basis
is constructed repeatedly for every phase ϕx and ϕt . Each
state |w�(t )〉 is confined to a single spatial site, consequently,
only nearest-neighbor spatial couplings are relevant. More-
over, this coupling is appreciable only at times when a given
state |w�(t )〉 is localized near a classical turning point (see
the green and yellow states in Fig. 1). At these times, each
of these states has only one partner which it is coupled to.
Therefore, each Wannier state is coupled to only a single
state of those in the neighboring spatial sites. Provided these
partners (see like-colored states in Fig. 1) are numbered with
the same temporal index α, it will not change when a state
transitions to a neighboring site (only j will change). This
leads to a separable structure of the resulting time-space
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FIG. 2. The energy spectra of derived systems. (a) Energy spectrum of the decomposed spatial Hamiltonian Ĥx . (b) Energy spectrum of
the decomposed temporal Hamiltonian Ĥt . (c) Energy spectrum of Ĥ′

TB, equal to the Minkowski sum of the spectra in (a) and (b). A cut of the
spectrum along the line ϕx = ϕt is shown. (d) Energy spectrum of ĤTB along the line ϕx = ϕt . (e) Eigenenergy surfaces of ĤTB. (f) Energy
spectrum of an 8D systems obtained by combining two independent copies of the 4D systems whose spectra are shown in (e). The gray areas
represent the bands, with individual levels not shown for visual clarity. The red regions indicate the gaps.

lattice, where “diagonal” transitions—those which require
both indices j and α to change simultaneously—are for-
bidden. This is an idealized picture, but one which holds
with high accuracy since next-nearest-neighbor couplings are
negligible (see Supplemental Material [28]). Note that this
separability is intrinsic to the model described by Eqs. (1)–(3)
and cannot be changed by tuning the parameters.

Thus, the Hamiltonian ĤTB is separable in the sense that

ĤTB ≈ Îx ⊗ Ĥt + Ĥx ⊗ Ît ≡ Ĥ′
TB, (6)

where “⊗” denotes the tensor product, Ĥx and Ĥt are, respec-
tively, the separated spatial and temporal Hamiltonians, while
Îx and Ît are the identity operators acting in the spaces of,
respectively, operators Ĥx and Ĥt . Consequently, the eigen-
value spectrum of Ĥ′

TB is the Minkowski sum of eigenvalue
spectra of Ĥx and Ĥt . We will refer to the eigenvalues of all
tight-binding Hamiltonians as simply “energies.”

The spectra of Ĥx and Ĥt are shown in Figs. 2(a) and 2(b)
together with the first Chern numbers of each band. Consider-
ing the spatial part described by Ĥx, we treat the phase ϕx as a
fictitious quasimomentum, allowing us to introduce the Berry
curvature of the nth band, �kxϕx = −2 Im〈∂kx χn,kx |∂ϕx χn,kx 〉,
and the corresponding first Chern number [8,39–41]

ν
(x)
1 = 1

2π

∫
BZ

dkx

∫ 2π

0
dϕx �kxϕx . (7)

In the definition of the Berry curvature, |χn,kx 〉 is the cell-
periodic part of the Bloch eigenstate eikx jχn,kx ( j) of Ĥx with
χn,kx ( j + 3) = χn,kx ( j) where j labels spatial sites. For clarity,
we suppress indication of the parametric dependence on ϕx in
Ĥx and its eigenstates. The crystal momentum kx is treated
as a continuous quantity assuming N → ∞. The values of
ν

(x)
1 for the bands shown in Fig. 2(a) may be easily deter-

mined as the number of particles of a given band pumped
through an arbitrary lattice cross section per pumping cycle
(see Supplemental Material [28]) or, equivalently, by counting
the number of edge state branches in the spectrum of the
corresponding nonperiodic system [38]. In complete analogy,
we introduce the time quasimomentum kt for the Hamiltonian
Ĥt , so that the eigenstates of Ĥt are given by eikt ατn,kt (α)
with τn,kt (α + 2) = τn,kt (α). The first Chern numbers ν

(t )
1 of

the two bands in Fig. 2(b) are then calculated by integrating
the Berry curvature �kt ϕt . Note that by interpreting the phases
ϕx and ϕt as quasimomenta, we increase the dimensionality
of the systems. Each of the Hamiltonians Ĥx and Ĥt thus
describes a 2D system, while their combination, Ĥ′

TB, whose
spectrum is shown in Fig. 2(c), describes a 4D system. The
lowest and the highest bands are nondegenerate and are char-
acterized by the second Chern numbers calculated from the
Abelian Berry curvature [8,9]. Formally, we gather the sys-
tem parameters into a vector R = (kx, ϕx, kt , ϕt ) and calculate
the curvature as �μν (R) = −2 Im〈∂μξn,kx,kt |∂νξn,kx,kt 〉 where
∂μ ≡ ∂

∂Rμ , μ = 1, 2, 3, 4, and |ξn,kx,kt 〉 is the cell-periodic part
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of the nth band eigenstate of Ĥ′
TB. Due to the factorization

|ξn,kx,kt 〉 = |χn,kx 〉 ⊗ |τn,kt 〉, the general formula for the second
Chern number [8,9] reduces to

ν
(x,t )
2 = 1

4π2

∫
d4R �kxϕx �kt ϕt = ν

(x)
1 ν

(t )
1 . (8)

The values of ν
(x,t )
2 are indicated in Fig. 2(c).

Comparing the spectrum of Ĥ′
TB to the spectrum of the

exact tight-binding Hamiltonian ĤTB, shown in Fig. 2(d), we
note that they are nearly identical. Slight discrepancies are to
be expected since in order to obtain the separable Hamiltonian
we have neglected some very weak couplings in ĤTB [28].
Nevertheless, the second Chern numbers of the bands of en-
ergy spectra of ĤTB and Ĥ′

TB are the same. This is supported
by the fact that the energy spectrum of ĤTB can be obtained by
adiabatically deforming the spectrum of Ĥ′

TB without closing
the gaps in process. Relatedly, we remark that the gap below
the highest resonant energy band of ĤTB remains open for all
values of ϕx and ϕt , as shown in Fig. 2(e). The same is true for
the gap above the lowest band of ĤTB.

Higher-dimensional extensions. Finally, let us consider
an optical lattice of two orthogonal spatial dimensions, so
that the full system Hamiltonian Ĥ4D = Ĥ (x, p̂x, t |ϕx, ϕtx ) +
Ĥ (y, p̂y, t |ϕy, ϕty ). This produces a 4D time-space crystalline
structure since the total Wannier functions now have four
independent indices: Wj,α(x, y, t ) = w jx,αx (x, t )w jy,αy (y, t ),
where j = ( jx, jy) and α = (αx, αy) [11]. A two-dimensional
temporal structure of 2s × 2s sites now emerges in each two-
dimensional spatial cell; motion in the former is characterized
by the temporal quasimomenta ktx and kty . The energy spec-
trum of this system may be readily obtained as a Minkowski
sum of two copies of spectra in Fig. 2(e). The result is shown
in Fig. 2(f), where it is apparent that the highest and the lowest
bands are separated from others by a gap. This holds true not
only for the displayed cut of the spectrum at ϕx = ϕy = ϕtx =
ϕty , but rather for all values of the phases. The ratio of the
bandwidth of the highest band to the gap below it is found to
be 5%, while the ratio of the bandwidth of the lowest band to
the gap above it is 2%.

The system whose spectrum is shown in Fig. 2(f) may thus
be described by a lattice Hamiltonian

Ĥ8D = Î ⊗ Ĥ(x)
TB + Ĥ(y)

TB ⊗ Î, (9)

where Î is an identity matrix of the same size as ĤTB. The
system parameters are the two crystal momenta kx, ky, the
spatial phases ϕx and ϕy, and the four respective parameters
of the two underlying temporal systems: ktx , kty , ϕtx , ϕty . As in
the 4D case, the lowest- and the highest-energy bands are non-
degenerate, and therefore may be characterized by the fourth
Chern number of a corresponding Abelian gauge field. Gen-
eralizing (8) and related equations to 8D in a straightforward
way (see Ref. [8] and Supplemental Material [28] for details),
the relevant Chern number results as ν

(x,tx,y,ty )
4 = ν

(x,tx )
2 ν

(y,ty )
2 .

This way we confirm that the highest and the lowest bands in
Fig. 2(f) are characterized by nonzero fourth Chern numbers,
implying the topologically nontrivial nature of the system.
We note that if Ĥ8D is constructed using two copies of the
approximate Hamiltonian Ĥ′

TB, the higher gap closes, whereas
the lower one remains open.

It is apparent in Fig. 2(f) that the highest and the lowest
bands are wider than the gaps, implying that the gaps disap-
pear if one more copy of the spectrum in Fig. 2(e) is added.
Nevertheless, a time-space structure based on a different spa-
tial system than the one given in (2) may exhibit even wider
gaps compared to those in Fig. 2(e). This would allow one to
realize a 12D time-space structure by combining three copies
of ĤTB, each based on a separate physical dimension (x, y,
and z).

Conclusions. Summarizing, we have shown that the time-
space crystals may be used as a platform for studying 8D
systems that can be defined in a tight-binding form. We have
devised a concrete, experimentally realizable driven quantum
system with validated parameters that is an example of a
topologically nontrivial 8D system. Remarkably, it is possible
to realize systems with nontrivial topological properties and
study the resulting effects in eight dimensions with the help
of a properly driven 2D system and without involving any
internal degrees of freedom of the particles. High-dimensional
spatiotemporal crystalline structures open up possibilities for
building practical devices that would be unthinkable in three
dimensions. The results presented in this Letter pave the way
towards further research in this direction.
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