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Many-body delocalization from embedded thermal inclusion
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We numerically study quantum avalanches in one-dimensional disordered spin systems by attaching two XXZ
spin chains. One chain has low disorder representing a rare Griffith’s region, or thermal inclusion, and the second
has larger disorder, i.e., disorder larger than the observed finite-size crossover. Comparing dynamics of this
system to identical systems with uniformly large disorder, we find evidence for exponentially slow thermalization
(in disorder) within the many-body localized regime when the rare region is present. We observe a decay of the
spin imbalance in the bulk of the large disorder region that persists to long times (∼104) and find a universal
behavior of the spectral function.
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I. INTRODUCTION

The existence of a many-body localized (MBL) phase in
interacting, disordered spin chains was first considered by An-
derson [1]. While he focused on the dilute limit, arguing that
this could be treated as a noninteracting problem, it remained
unclear for many decades if the more generic, interacting
version of this phase existed. Intensive research on this MBL
phase has progressed, particularly after evidence of its pos-
sible stability at high temperatures was reported in the early
2000s [2–4]. Given local interactions of strength J and lattice
disorder strength W , an MBL system is thought to undergo
a phase transition from a thermal to an integrable regime at
a large enough critical disorder Wc on the order of a few
J . Above this critical disorder, MBL would be an emergent
integrable phase of matter violating the eigenstate thermaliza-
tion hypothesis (ETH) [5,6], characterized by the existence
of an extensive set of local integrals of motion (LIOM’s), or
“L-bits,” which are related to single-site spin operators by a
unitary rotation [7–12]. This insulating phase has been studied
extensively in previous works [7,13,14] and, although there
is experimental [15–21] and numerical evidence of the exis-
tence of a nearly localized regime in smaller system sizes at
large enough disorder (estimates of which have varied around
Wc ≈ 3–6) [22–34], there is also increasing evidence in recent
years against the MBL phase’s stability in the thermodynamic
limit [35–41].

Exact numerical studies of interacting many-body systems
are limited to small system sizes L. Tensor network methods
such as time-evolving block decimation (TEBD) [42,43] or
the time-dependent variational principle (TDVP) [44–47] al-
low for time evolving larger systems, giving access to larger
sizes of the order L ≈ 200 [28,31,48] but are often limited in
the accessible simulation times. Crucially, one of the destabi-
lizing forces of MBL in the thermodynamic limit, so called
“quantum avalanches” [49], cannot be captured by small sys-
tem size simulations. A quantum avalanche originates in the
rapid growth of entanglement inside rare Griffith’s regions
[50–52] of very low disorder within the chain, which are

sure to exist in the thermodynamic limit for purely statistical
reasons, no matter how large the chain’s average disorder.
The probability of such a rare region is exponentially small
in its length � and one would expect a minimal � ∼ W/J
to be required to make sure that there are some many-body
states to resonate with. Therefore, these regions do not occur
in the sizes accessible by current numerical techniques. As
these regions are sure to exist at arbitrary sizes and potential
strengths in the thermodynamic limit, the question is whether
they thermalize the surrounding spins at a fast enough rate to
take over the entire chain and thermalize the system. There is
increasing numerical evidence that these quantum avalanches
will destabilize the MBL phase in the thermodynamic limit,
as seen when one connects a Markovian bath to a spin chain
of disorder as large as W = 20 [40,53]. A natural next step is
to investigate if an apparently localized, strong disorder MBL
region is also destabilized by the presence of a more realistic,
finite chain of lower disorder, representing a rare region as it
would appear in the thermodynamic limit (see also Ref. [54]).
As one cannot expect to see such a rare region arise naturally
in accessible systems, such a region must be introduced by
hand. In this work, we report on the stability of the MBL phase
at large disorder in the presence of a “rare region” spin chain
of much lower average disorder.

II. EMBEDDED INCLUSION MODEL

Consider the one-dimensional (1D) disordered Heisenberg
model:

H =
N−1∑

i=1

(
SX

i SX
i+1 + SY

i SY
i+1 + SZ

i SZ
i+1

) + W
N∑

i=1

hiS
z
i . (1)

Here hi are i.i.d. uniformly distributed random numbers in the
range [−1, 1] and W is the disorder strength of the on-site
potentials. In contrast to typical models of disordered spin
chains, our system consists of two smaller chains A and B,
each with different disorder strength WA,B, as shown in Fig. 1.
Chain A, with length LA = 12, is designed to behave like
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FIG. 1. Diagram depicting the general setup, where we connect
a region A with strong disorder to a region B with much weaker
disorder. The system is initialized in a staggered spin configuration,
after which we evolve the system in a circuit fashion, by applying
unitaries UA and UB to the separate chains alternated with a Heisen-
berg coupling gate UAB that couples the chains. We measure the
imbalance in the strong disorder region.

a typical large disorder MBL chain. Chain B, with length
LB = 10, is designed to behave like a rare region having only
weak disorder WB = 1/2. The size of the rare region LB is
chosen to be sufficiently large such that even at the largest
disorder studied here, i.e., WA = 12, the bath has a large
enough bandwidth to resonate with boundary spins. If LB is
too small, then there is no observable difference with unbiased
sampling (as shown in Ref. [55]). As a reference point we also
consider the model without the rare region, with WB = WA,
which we refer to as the unbiased case. We will probe this
model in two different ways: (i) by studying the imbalance in a
kicked version of the problem where the chains are connected
and disconnected periodically and (ii) by studying the spectral
function in a brickwork quantum circuit approximation of the
problem.

III. BLOCK EVOLUTION

To time evolve this system we implement a TEBD-type
algorithm which operates by evolving each of the two chains
separately and alternated with a connection step; see Fig. 1.
Specifically, we use unitaries UA,B = e−iτH , with the Hamil-
tonian H given by expression (1) and τ = 10. The connection
unitary UAB is a single Heisenberg gate connecting the ends
of both chains. It should be noted that the time step τ is
rather large, meaning that information can spread throughout
the rare region in between two consecutive connection steps.
While this seems to somewhat speed up the thermalization
process, similar results will be obtained in the brickwork setup
described in the next section. The main reason for using large
enough time steps is purely numerical, i.e., it allows us to
access a larger total time window for the same computational
time. This is crucial, as the thermalization (if there is any) is
expected to be incredibly slow.

As a measure of thermalization, we consider the standard
spin imbalance as a function of simulation time, I (t ), calcu-
lated over various sites 3–9 in the typical MBL region:

I (t ) = D
9∑

i=3

〈ψ (t )|Sz
i |ψ (t )〉〈ψ (0)|Sz

i |ψ (0)〉. (2)

And we initialize the XXZ chain in the far-from-equilibrium
and zero magnetization Néel state |ψ (0)〉 = | ↑,↓,↑, . . . ,↓〉.
Note that we start at the third site and end at the ninth to avoid
boundary effects and D is chosen such that I (t = 0) = 1. This
spin imbalance, being a combination of local observables, is
a measure of the retained local information about a system’s
initial state. In ergodic systems with eigenstates obeying the
ETH, one expects the imbalance to decay diffusively to some
O(1/N ) value as local information is transferred to nonlocal
degrees of freedom [7]. For an integrable or fully localized
system, one instead expects the imbalance to converge to a
constant value at long times, indicating the existence of a set
of conserved quantities preserving local information about its
initial state. The behavior of the imbalance in the noninter-
acting (Anderson) case and traditional uniform disorder XXZ
chains of many sizes has been extensively reported (see, for
example, Refs. [48,56]) and thus this work will focus on its
behavior in the presence of a thermal inclusion. Results in this
section are obtained by evolving matrix product states (MPS)
using the Julia ITensor library [57] and the convergence is
discussed in the Appendix.

The imbalance for both the biased and unbiased sam-
pling and various disorder strengths W is shown in Fig. 2.
In the absence of a rare region the imbalance decays very
slowly at disorder W = 6–8, but decay becomes indistinguish-
able from the sampling noise at larger disorder W = 10–12.
These results are in complete agreement with recent results
in Refs. [31,48] and consistent with recent studies of the
imbalance in similar finite systems [28,56]. However, in the
presence of the rare region the imbalance drops consistently
up to our longest accessible time, after remaining steady for
the first ≈100/J . With increasing disorder the effect of the
thermal inclusion sets in at later times, indicating progres-
sively slower but still steady thermalization of the system.
Furthermore, we find that in the presence of the thermal in-
clusion the imbalance seems to have some universal simple
scaling behavior, i.e., simply expression time in scaled units
t ′ = t e−aW , where a is some constant of order one, results in
a nice collapse of the data. We found the collapse to occur at
a ≈ 2.1, which is shown in Fig. 2. This collapse indicates that
there are no remarkably different physics when the disorder is
cranked up to W = 12, but rather the same physics operating
at differing timescales which are set by the disorder strength.

Thus from these results, though still limited in system size
and time, there is no sign of an MBL phase which is robust
against Griffith’s effects from rare thermal regions, even at
large disorder. Instead, we see steady thermalization of the
large disorder chain as it is increasingly entangled with the
rare region. The result substantiates recent prediction from
Refs. [40,53] based on coupling an ideal Markovian bath. It
is worth noting that similar behavior has been observed in
classical disordered systems without the need for explicitly
sampling rare regions [58]; see also Fig. 3.2 in Ref. [59].
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FIG. 2. Imbalance calculated in the middle of the strongly dis-
ordered XXZ chain, with (bold color) and without (light color) an
added thermal inclusion, for different disorder strengths: from top
to bottom is W = 12, 10, 8, 6. The bottom plot shows these results
with the time axis rescaled by t → t e−aW with a = 2.1. All results
are averaged over 400 disorder realizations.

IV. BRICKWORK

To make sure that the observed effect is not a consequence
of the particular block construction nor of the fact that the state
is being compressed into an MPS, we present a second method
that keeps track of the exact state and evolves the system in a
brickwork approximation of the Heisenberg model, as shown
in Fig. 3. Specifically, the evolution is split into a random field
Ising part and a set of flip-flops:

HRFI =
N−1∑

i=1

SZ
i SZ

i+1 + W
N∑

i=1

hiS
z
i ,

HFF =
N−1∑

i=1

(
SX

i SX
i+1 + SY

i SY
i+1

)
. (3)

The flip-flops are applied on all the even and all the odd bonds
consecutively and all unitaries are constructed using a time
step τ = 0.1; see Fig. 3. Since the exact state is kept in the
time evolution there is no need to restrict to initial states that

FIG. 3. Diagram depicting the general setup, where we connect
a region with strong disorder to a region with much weaker disorder.
The system is initialized in a Haar random state, after which we
project one of the spins in the strong disorder region to be up.
We evolve the system in a brickwork circuit fashion, by layering
flip-flop gates with random field Ising gates. We measure the residual
magnetization on the probe spin.

are weakly entangled. Consequently, we can efficiently extract
the infinite temperature spectral function of local observables
by approximating the ensemble average by an expectation
value in a Haar random state. Consider the ZZ-correlation
function of the nth spin:

S(t ) = Tr
[
σ Z

n (t )σ Z
n (0)

]

TrI
. (4)

Using the fact that all Pauli’s are traceless and projectors are
idempotent, this can be rewritten as

S(t ) = Tr
[
P↑σ Z

n (t )P↑
]

TrI
= Eψ 〈ψ↑(t )|σ z|ψ↑(t )〉, (5)

where P↑ = (1 + σ z
n )/2 projects the nth spin to the up state,

|ψ↑(t )〉 = Ut P↑|ψ〉, and the average should be understood as
averaging over Haar random states |ψ〉 (see, for example,
also expressions S1–S6 in Ref. [60] for further explanation).
Because the variance of the estimator in expression (5) is
suppressed by the Hilbert space dimension, one needs very
few samples to obtain a good estimate of S(t ). In the results
that follow we restrict ourselves to a single sample, since we
average over 500 disorder realizations anyway. The results are
summarized in Fig. 4, which shows the correlation function
S(t ) for a spin in the middle of the strong disorder region.
Results are presented for disorder ranging from W = 4–8 for
systems with and without biased sampling. In the absence of
rare regions there is some slow decay for the weaker disorder
values, while it becomes hard to distinguish decay from the
noise over the accessible time at large disorder. As before,
we observe a pronounced decay in the correlation function
when the rare region is present. Multiple timescales seem
to be involved in the problem from a damped oscillation at
frequency J , coming from the local flip-flops, to a slow decay

L020201-3



J. CLAYTON PEACOCK AND DRIES SELS PHYSICAL REVIEW B 108, L020201 (2023)

10-1 100 101 102 103 104
0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Z
Z

 C
or

re
la

tio
n 

10-3 10-2 10-1 100 101
10-3

10-2

10-1

100

101

102

Frequency

Z
Z

 S
pe

ct
ra

l f
un

ct
io

n

(a)

(b)

FIG. 4. Two-time correlation function of a local spin in the bulk
of a typical strongly disordered region. Panel (a) shows the cor-
relation function for disorder ranging from W = 4, 5, 6, 7, 8, with
and without an embedded rare region. Panel (b) shows the spectral
function, i.e., the Fourier transform of the correlation function, in the
presence of a rare region. All results are averaged over 500 disorder
realizations.

at long times. This makes it hard to come up with a nice
scaling function. Nonetheless, it seems the spectral function
exhibits some universal behavior in this regime; see lower
panel of Fig. 4. See also Ref. [61] for a discussion on universal
properties of the spectral function in this regime.

V. CONCLUSIONS

We present evidence that localization in small systems
is not robust to thermal inclusions at much larger disorder
than what is estimated from numerics using only unbiased
sampling. The existence of a rare region begets the start of
a quantum avalanche, in which the surrounding spins get
entangled, growing the rare region and setting off a steady
thermalization of the entire system. This study illustrates the

FIG. 5. Imbalance in the disordered XXZ chain for W = 8, with
the rare-region thermal inclusion attached except for where specified
in the top curve, for different ITensor cutoff values. Results are
averaged over 200 disorder realizations.

importance of including rare regions in studying the stability
of the MBL phase in the thermodynamic limit and it reflects
recent results from a cold-atom experiment on smaller system
sizes [35]. Over the studied range of disorder, we find no
qualitative change in the behavior of the system. In contrast,
it appears that all systems behave the same as long as one
accounts for an exponential slowdown of the thermalization
with disorder. As usual, this study is limited in system size and
simulation times due to the high complexity of the many-body
problem.
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APPENDIX: TEBD CONSTRUCTION

The results in the Block Evolution section were obtained
by a time-evolving block decimation algorithm (TEBD) for
matrix product states (MPS) as implemented in the Julia ITen-
sor library [57]. Instead of evolving with a cascade of two-site
matrix product operators (MPOs), as is typical for TEBD, we
construct one larger MPO for each chain, with a third two-site
MPO connecting the two chains. This approach allows one to
use much larger time steps of dt = 10 because each block,
being LMBL = 12 and LRR = 10 sites, respectively, is small
enough to be evolved quasiexactly with precision controlled
by an ITensor “cutoff” parameter. We find that our results
converge with a cutoff greater than 10−6, as shown in Fig. 5,
and throughout the work we use a cutoff of 10−10. It should
be noted that the bias for unconverged results is to larger
imbalance values. The latter is expected when using TEBD to
study MBL-type dynamics and similar results were obtained
in Ref. [48].
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