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First principles study on the intrinsic resistivity of rectangular Ti2B2 and Mo2B2
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In the framework of semiclassical Boltzmann transport theory and by first principles calculations, we study the
intrinsic resistivity (arising from the electron-phonon scattering) of two MBene materials: Ti2B2 and Mo2B2. We
find that the two kinds of MBenes are two-dimensional (2D) good conductors, with lower resistivity than other
typical two-dimensional metals. For example, their intrinsic resistivity at room temperature is both significantly
lower than the high-buckled plumbene and 2D Ti3C2, noting that the latter possesses the maximal conductivity
among MXene metals accessible so far. The impressive low resistivity of the two MBenes can be attributed to
their sizable Fermi surface and relatively weaker electron-phonon (el-ph) interaction. What is more, we find
the temperature dependence of the intrinsic resistivity of the two MBenes, i.e., the ρ-T relation, disagrees
with the prediction of conventional Bloch-Grüneisen theory in both the low and high temperature limits. On
one hand, the nontrivial umklapp scattering causes a notable deviation of the ρ-T relation of the two MBenes
from the T 4 law, a general decay rate of 2D metals in the low temperature limit. On the other hand, on the
high temperature side, the temperature dependence of the el-ph interaction’s spectral function must be taken into
account for describing correctly the ρ-T relation of actual materials with a sharply varying density of states of
electrons around Fermi surfaces such as the case of the two MBenes, though it was often ignored in the relevant
literature.
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I. INTRODUCTION

Since graphene was exfoliated from graphite in 2004 [1],
its unique electronic properties immediately attracted much
attention. And tremendous interest in two-dimensional (2D)
materials has been growing ever since. Recently, MBenes,
an emerging class of 2D metals as the derivative of MXene,
have gained significant attention due to their distinctive struc-
tural compositions and impressive electrical and mechanical
characteristics [2]. Unlike conventional 2D transition metal
borides, MBenes are a class of 2D transition metal borides
with a layered sandwich structure obtained from the M-A-B
phase, with the chemical formula MnB2n−2 (n = 2, 3, 4) [3].
Up to now, three rectangular M2B2 type MBenes have been
successfully synthesized, namely Cr2B2 [4], Mo2B2 [5], and
Ti2B2 [6]. Some MBenes have been proven to have high Li
atom storage capacity, superior catalytic activity, and ultra-
high Young’s modulus [3]. Additionally, in some previous
works it was mentioned that MBenes are good 2D conductors
with high conductivity [7]. However, to our knowledge, there
is no work as yet devoted to conducting a detailed investi-
gation about the conductivity of any MBene materials, either
experimentally or theoretically.

At and beyond room temperature, the conductivity or
resistivity of metallic materials is dominated by electron-
phonon (el-ph) scattering [8]. In contrast, other scattering
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mechanisms, such as impurity and defect scatterings, con-
tribute less significantly to the resistivity. In view of inevitable
el-ph scattering even in a perfect lattice, the resistivity of met-
als arising from el-ph scattering is referred to as the intrinsic
resistivity. In this study, within the semiclassical Boltzmann
transport theory we perform first principles calculations to
investigate the intrinsic resistivity of Ti2B2 and Mo2B2, two
kinds of nonmagnetic MBenes accessible thus far. In compar-
ison to other typical 2D metals, our numerical results show
that the intrinsic resistivity of Ti2B2 and Mo2B2 is not only
much lower than some MXene materials with high conduc-
tivity, e.g., Ti3C2 and Ti2N, but also lower than high-buckled
(HB) plumbene, which is known for its excellent electrical
conductivity. Our finding highlights the potential of MBenes
as highly conductive 2D metallic materials.

The temperature dependence of the resistivity is an impor-
tant characteristic of electric transport in metallic materials.
According to the conventional Bloch-Grüneisen theory, the
intrinsic resistivity of a metal varies linearly with temperature
in the high temperature limit. However, in the low temperature
limit, it decreases with temperature with a T 4 decay rate for
2D metals. Such a theoretical argument assumes a simple
Fermi surface, but this is not the case for most actual metallic
materials such as Ti2B2 and Mo2B2. Therefore, a quantitative
study on the temperature dependence of the intrinsic resis-
tivity of these two MBenes in a wide temperature range is
necessary. Our numerical results about the temperature de-
pendence of the intrinsic resistivity, i.e., the ρ-T relations of
the two kinds of MBenes, are inconsistent with the Bloch-
Grüneisen theory in both the low and high temperature limits.
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On the low temperature side, we find that the violation of the
T 4 law of the ρ-T relation is due to the nontrivial umklapp
process of the el-ph scattering. More interestingly, on the
high temperature side, the ρ-T relation of the two kinds of
MBenes presents two separated linear regions, with the first
one appearing at a much lower temperature than the Debye
temperature. These findings go beyond the predictions of the
Bloch-Grüneisen theory. By a detailed analysis, we find that
the el-ph interaction spectral function independent of temper-
ature is problematic, although it was frequently employed in
the relevant literature. When the electronic density of states
around the Fermi energy shows singularity to some extent, as
the case of Ti2B2 and Mo2B2, such a dubious spectral function
might give an incorrect prediction about the ρ-T relation of
actual metallic materials. Instead, the temperature dependence
of the spectral function must be taken into account. Our
finding is of key importance for understanding the tempera-
ture dependence of the intrinsic resistivity of actual metallic
materials with complicated Fermi surfaces, and provides an
essential complement to the Bloch-Grüneisen theory.

The remaining sections of this work are organized as
follows. In Sec. II, we provide a brief description of the
theoretical approach and computational details, including the
Ziman resistivity formula for calculating the intrinsic resistiv-
ity and the technical details of the first principles calculations.
The numerical results for the intrinsic resistivity of Ti2B2 and
Mo2B2 are presented and discussed in Sec. III. Finally, the
main results are summarized in Sec. IV.

II. THEORETICAL APPROACH
AND COMPUTATIONAL METHODS

A. Ziman resistivity formula

The so-called Ziman resistivity formula [9], proposed first
by Ziman based on a variational solution of the semiclas-
sical Boltzmann transport equation, provides a theoretical
approach for calculating the metallic resistivity subject to
el-ph scattering. Subsequently, Allen extended it to more re-
alistic situations, considering complex Fermi surfaces formed
by multiple bands [10]. Thus, the Ziman resistivity formula
enables the first principles calculations of the intrinsic resis-
tivity of realistic metals, and it is often employed in much of
the relevant literature. In response to a driving electric field in
a specific orientation, say the x direction, the Ziman resistivity
formula improved by Allen takes a form as

ρx = π

e2h̄N (E f )
〈
v2

x

〉 ∫
d�α2FT (�)F(kBT/�) (1)

with the function

F(kBT/�) = �

kBT
sinh−2

(
�

2kBT

)
(2)

and the el-ph interaction spectral function is defined as

α2FT (�) = 1

NkNqN (E f )

∑
mnkνq

δ(� − ωνq)

ωνq

∣∣Gν
mn(k, q)

∣∣2

× δ(Emk+q − Enk − h̄ωνq)

× ( fnk − fmk+q)Qnk,mk+q, (3)

where Qnk,mk+q = 1 − vmk+q·vnk

|vmk+q||vnk| is the large-angle scattering
weight. In the above expressions, Nk and Nq represent the
numbers of the electron wave vector k and the phonon wave
vector q in the Brillouin zone (BZ) sampling, respectively.
N (E f ) stands for the electronic density of states (DOS) at the
Fermi energy. ωνq denotes the frequency of the phonon state
|νq〉, where ν represents the indices of the phonon mode and
q is the phonon wave vector. Enk and Emk+q correspond to
the band energies of the electronic states |nk〉 and |mk + q〉,
respectively, where n and m denote the indices of the electron
bands. Gν

mn(k, q) represents the el-ph interaction matrix ele-
ment between an electronic initial state |nk〉 and a final state
|mk + q〉, resulting from the emission of a phonon state |ν−q〉
or absorption of a phonon state |νq〉. fnk and fmk+q are the
Fermi-Dirac distribution functions of the individual electronic
states. vnk and vmk+q denote the electronic band velocities
[9,11]. 〈v2

x〉 represents the squared average of the x component
of electronic velocity on the Fermi surface,

〈
v2

x

〉 =
∑

nk(vnk · ex )2δ(Enk − E f )∑
nk δ(Enk − E f )

. (4)

What we would like to emphasize is that the spectral function
given in Eq. (3) is temperature dependent. However, in Allen’s
original work, the spectral function is further approximated
into a temperature-independent version which is expressed as

α2F̃T (�) = 1

NkNqN (E f )

∑
mnkνq

δ(� − ωνq)
∣∣Gν

mn(k, q)
∣∣2

× δ(Enk − E f )δ(Emk+q − E f )Qnk,mk+q. (5)

In comparison with Eq. (3), we observe that two δ functions
of electronic energy appear on the right side of Eq. (5).
Therefore, in the literature it is often referred to as the
el-ph interaction spectral function in the double δ-function
approximation (DDFA). The DDFA restricts the initial and
final electronic states joining the el-ph scattering exactly on
the Fermi surface. In contrast, in the temperature dependent
spectral function as shown in Eq. (3), those electronic states
taking part in the el-ph scattering are allowed in an energy
shell around the Fermi surface of a thickness of thermal ex-
citation energy, which is referred to as the Fermi shell. The
usage of the DDFA spectral function implies that temperature
dependence of the intrinsic resistivity is solely determined
by F(kBT/�) as defined by Eq. (2) which counts in only
the thermal excitation of phonon number. The temperature
smearing effect on the electronic Fermi surface is completely
omitted. In fact, the DDFA, in spite of the wide usage in the
previous literature, often brings about the incorrect prediction
on the temperature dependence of intrinsic resistivity of some
materials with complicated electronic structures. As seen be-
low, the two kinds of MBenes under our consideration fall just
into such a case.

For understanding the numerical results shown below, it
is necessary to expose herein the approximations adopted for
the evolution of the spectral function from Eq. (3) to Eq. (5).
If we insert the identity

∫
dEδ(E − Enk) = 1 into Eq. (3), we
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then get

α2FT (�) =
∫ ∞

−∞
dE

f (E) − f (E + �)

�
I (E,�)

≈
∫ ∞

−∞
dE

(
−∂ f

∂E

)
I (E,�)

≈ α2F̃T (�) + π2

6
(kBT )2 ∂2I (E,�)

∂E2 (6)

with

I (E,�) = 1

NkNqN (E f )

∑
mnkνq

δ(� − ωνq)
∣∣Gν

mn(k, q)
∣∣2

× δ(Emk+q − Enk − h̄ωνq)δ(E − Enk)Qnk,mk+q.

(7)

First, it is not difficult to find that the prerequisite from the
second step to the third step of Eq. (6) is that the phonon
energy, �, should be far smaller than the thermal excitation
energy kBT . Then, to reach the last result from the third step of
Eq. (6), use has been made of the Sommerfeld expansion. Ob-
viously, the Sommerfeld extension will become important as
the temperature rises. What is more, to look at the second term
in the Sommerfeld expansion of Eq. (6), one can readily find
that even at a low temperature, when the second derivative of
I (E,�) gets nontrivial, the difference between the two kinds
of spectral functions is not negligible. Such a case might occur
when the electronic DOS in the Fermi shell shows singularity
caused, for example, by the band edge. To sum up, the validity
of the DDFA applied to the spectral function consists of the
following two preconditions: the phonon energy to play the
leading role for determining the intrinsic resistivity should be
far smaller than kBT . Then, the electronic DOS should be a
slowly varying function in the Fermi shell.

When discussing in detail the numerical calculations of the
intrinsic resistivity, there is a need to rewrite the expression of
the resistivity given by Eq. (1) in a form as

ρx =
∑
mnk

∑
νq

ρν
mn(k, q), (8)

where

ρν
mn(k, q) = πβ

e2h̄N2(E f )
〈
v2

x

〉 sinh−2

(
�

2kBT

)

× ∣∣Gν
mn(k, q)

∣∣2
δ(Emk+q − Enk − h̄ωνq)

× ( fnk − fmk+q)Qnk,mk+q (9)

represents the contribution of the individual scattering pro-
cess, i.e., Enk � Emk+q + ωνq, to the intrinsic resistivity. To
clarify the contributions of the electronic or phonon states to
the intrinsic resistivity, we can decompose Eq. (8) in different
forms. First, we can define

ρ(q) =
∑
mn

∑
νk

ρν
mn(k, q); (10)

ρ(q) represents the contribution of the phonon wave vector q
to the intrinsic resistivity, i.e., q-resolved resistivity. Based on

the above formula, we can define

ρ|q| =
∑

q′
ρ(q′)δ(|q| − |q′|); (11)

ρ|q| represents the contribution of the phonons, with the
length of the phonon wave vector equal to |q| to the intrinsic
resistivity, i.e., |q|-resolved resistivity. Furthermore,

ρν =
∑

q

ρν (q) =
∑

q

∑
mnk

ρν
mn(k, q); (12)

ρν (q) represents the contribution of the phonons with specific
phonon state |νq〉 to the intrinsic resistivity and ρν is the mode
resolved intrinsic resistivity. Finally, we define

ρ(k, k′) =
∑
mn

∑
ν

ρν
mn(k, k + q), (13)

which can be understood as the contribution of the electrons
with the final state k′ to the intrinsic resistivity with the initial
state fixed at k.

B. Computational details

To obtain the intrinsic resistivity of Ti2B2 and Mo2B2 using
the Ziman resistivity formula at the first principles levels, we
first calculate the electronic and phonon states and el-ph inter-
action matrix elements of the metals. These calculations are
performed within the frameworks of density functional theory
(DFT) and density functional perturbation theory (DFPT) as
implemented in the QUANTUM ESPRESSO software pack-
age [12]. We utilize a norm-conserving pseudopotential [13]
to model the ionic potential and the Perdew-Burke-Ernzerhof
(PBE) functional [14] within the generalized gradient ap-
proximation (GGA) for the exchange-correlation interaction.
A 40 Ry cutoff energy is employed for the plane-wave basis
set. To simulate the isolated two-dimensional system, a vac-
uum layer of 25 Å is added in the z direction to eliminate
nonphysical interactions between periodic structures perpen-
dicular to the plane direction. The two kinds of MBenes
are composed of four atomic layers, though they belong to
two-dimensional materials. To better describe the atomic in-
teraction, especially among those atoms not belonging to the
same or adjacent atomic layers, we take the vdW interaction
into account, just as done in some previous works [15,16]. In
so doing, the empirical DFT-D2 correction [17] is employed to
describe the van der Waals interaction between the outermost
nonbonding atoms. Our numerical results indicate that the
vdW correction has only trivial impacts on the total energy
and electronic band structure of the two MBenes. However,
the optimized lattice parameters with vdW corrections are
closer to the experimental values. Besides, the vdW correction
can well eliminate the imaginary frequencies of the phonon
dispersion of Ti2B2 and Mo2B2 near the � point. For Ti2B2

and Mo2B2, we employ a 12 × 12 × 1 k mesh and a 4 × 4 × 1
q mesh sampled using the Monkhorst-Pack method [18] to
cover the BZ. Finally, in order to achieve converged results
with high precision of the intrinsic resistivity of the two
kinds of MBenes, the knowledge of electronic and phonon
dispersion, together with the el-ph interaction matrix elements
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FIG. 1. (a) Top view, (b) side view 1, and (c) side view 2 of the
lattice structure of rectangular M2B2 type MBenes. In (a), a1 and
a2 represent the lattice vectors. The red dashed lines in (a), (b), and
(c) indicate the unit cell. The blue balls represent the Ti or Mo atoms,
and the green balls represent the B atoms. (d) Brillouin zone of the
rectangular lattice with labeled high-symmetry points.

on ultrafine k mesh and q mesh, are required to calculate
the intrinsic resistivity by means of the Ziman formula. But
this implies a prohibitive computation cost if these quantities

are obtained directly on the level of DFT and DFPT. To
circumvent such a prohibitive difficulty, we perform the cal-
culation of intrinsic resistivity with a high precision by means
of the Wannier interpolation technique. And such a kind of
numerical calculation is implemented by the use of the EPW
code [19]. Furthermore, in the calculations of the intrinsic
resistivity, the Dirac-δ function is replaced by a Gaussian
function with a specific width η. It can be seen below that
with this approach we can obtain the intrinsic resistivity with
the convergence precision smaller than 1%. It is indeed a very
satisfactory numerical result.

III. RESULTS AND DISCUSSION

A. Crystal structure, electronic and phonon dispersion

The lattice structure and BZ of the rectangular M2B2 type
MBenes are illustrated in Fig. 1. The relaxed lattice param-
eters are a1 = 2.938 Å, a2 = 3.040 Å for Ti2B2 and a1 =
3.021 Å, a2 = 3.030 Å for Mo2B2. The electronic dispersions
of Ti2B2 and Mo2B2 are presented in Figs. 2(a) and 2(c).
The red solid lines represent the DFT results, while the blue
dashed lines represent the results obtained through Wannier
interpolation. Both calculations yield the same energy spec-
trum within an energy range of 1 eV around the Fermi energy,
which is taken as the zero-energy reference. It is noteworthy
that some band edges are very close to the Fermi level, as
marked in Figs. 2(a) and 2(c). As shown in Figs. 2(b) and 2(d),

(a)

)d()c(

98 meV

(b)

gap

gap

84 meV124 meV

FIG. 2. (a) Electronic and (b) phonon dispersions of Ti2B2 along the high-symmetry path �-Y -S-X -�. (c) Electronic and (d) phonon
dispersions of Mo2B2 along the high-symmetry path �-Y -S-X -�. The red solid lines in (a) and (c) represent the DFT results, while the blue
dashed lines represent the results obtained through Wannier interpolation. The red shaded areas in (b) and (d) indicate the gap areas where
low-frequency phonons are separated from high-frequency phonons.
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(a) (b)

(c) (d)

(e)

FIG. 3. The intrinsic resistivity of Ti2B2 with varying Gaussian broadening parameter η and ns × ns × 1 k and q mesh (a) without and
(b) with DDFA. The intrinsic resistivity of Mo2B2 with varying Gaussian broadening parameter η and ns × ns × 1 k and q mesh (c) without
and (d) with DDFA. (e) Resistivity ρ(θ ) along different transport directions in the units of those along the x direction.

the phonon dispersions of Ti2B2 and Mo2B2 do not have any
imaginary frequencies along the high symmetry lines. Twelve
phonon modes exist in both Ti2B2 and Mo2B2. The maxi-
mum phonon frequencies calculated for Ti2B2 and Mo2B2

are 1010 cm−1 and 787 cm−1, respectively, which can be
regarded as the Debye frequency. The corresponding Debye
temperatures are TD = 1453 K for Ti2B2 and TD = 1132 K
for Mo2B2. Moreover, it is evident that the entire phonon
dispersion can be divided into two regions, the low-frequency

phonon (LP) modes (ν = 1–6) and the high-frequency phonon
(HP) modes (ν = 7–12).

B. Intrinsic resistivity of Ti2B2 and Mo2B2

With the formulation presented above, we are now ready
to study numerically the intrinsic resistivity of the two
kinds of MBenes. First of all, it is essential to conduct a
convergence test on the calculated intrinsic resistivity with

245425-5



ZHANG, ZHU, AND ZHENG PHYSICAL REVIEW B 108, 245425 (2023)

TABLE I. Intrinsic resistivity values of graphene, HB-plumbene,
Ti3C2, Ti2N, Ti2C, Nb4C3, Ti2B2, and Mo2B2 at room temperature
(300 K). The resistivity of graphene calculated in the case of weaker
doping. (The electron doping concentration is 4 × 1011 cm−2; i.e.,
the Fermi energy level is shifted by 0.12 eV. The unit cell thickness
of the perpendicular graphene sheet is taken to be 20 Å.)

2D material Intrinsic resistivity (µ� cm)

Graphene 2 [20] (cal.)
HB-plumbene 74 [21] (cal.)
Ti3C2 154 [22] (exp.)
Ti2N 163 [23] (cal.)
Ti2C 6 800 000 [24] (exp.)
Nb4C3 460 000 [25] (exp.)
Ti2B2ρx (ρy) 73.4 (44.1) (our work)
Mo2B2ρx (ρy) 83.0 (68.3) (our work)

regard to the density of k and q mesh as well as Gaussian
spreading parameter η. As shown in Fig. 3(a), if the spectral
function without the DDFA is used, the numerical result of
the intrinsic resistivity converges when the k and q mesh
both amount to a density of 200 × 200 × 1, together with the
Gaussian spreading parameter η = 0.005 eV. In contrast, as
illustrated in Fig. 3(b), when the DDFA is adopted to approx-
imate the spectral function, it requires much denser grids for
BZ sampling, i.e., 600 × 600 × 1 k and q mesh. In Figs. 3(c)
and 3(d), it is the similar case with the convergence test of
the calculated intrinsic resistivity of Mo2B2. In all cases, the
relative errors of the obtained intrinsic resistivity are less than
1%. These convergence tests ensure the accuracy and reliabil-
ity of our calculations. In addition, the intrinsic resistivities of
Ti2B2 and Mo2B2 both show weak anisotropy with the highest
resistivity along the x direction and the lowest one along the
y direction as shown in Fig. 3(e). Of course, as seen from
Eq. (1), the anisotropy of the intrinsic resistivity arises from
the Fermi surface average of the squared velocity component
along the transport direction which varies with the direction
of the driving electric field if the Fermi surface deviates from
an ideal circle for any 2D material.

With the obtained high-precision intrinsic resistivity of
the MBenes, it is significant to assess their electric transport
ability in comparison with those of other typical 2D mate-
rials currently available. The intrinsic resistivities of Ti2B2

and Mo2B2, as well as those of several typical 2D metallic
materials, are presented in Table I. As displayed in Table I, the
intrinsic resistivities of Ti2B2 and Mo2B2 are only an order
of magnitude higher than that of graphene with appropriate
carrier doping and lower than those of most 2D metallic ma-
terials. Specifically, the resistivities of both Ti2B2 and Mo2B2

along the y direction are lower than that of isotropic HB-
plumbene, which has the lowest intrinsic resistivity in Table I
except for graphene. More interestingly, as derivatives of MX-
ene, Ti2B2 and Mo2B2 exhibit lower resistivity than Ti3C2,
which possesses the lowest resistivity at room temperature
among MXenes available thus far. This suggests that the two
kinds of MBenes, as the 2D metals, are 2D good conduc-
tors. To further identify the reasons for the low resistivity
of MBenes, we conduct a comparative analysis below. For
simplicity and to obtain the upper limit of the intrinsic

(b)

Γ X

Y S

b2

b1
Γ X

Y S

b2

b1

(a)

FIG. 4. The Fermi surfaces of (a) Ti2B2 and (b) Mo2B2. Different
colors indicate distinct bands crossing the Fermi surface, and b1 and
b2 represent the reciprocal lattice vectors.

resistivity, we focus solely on ρx in subsequent discussions.
According to the Ziman formula, the intrinsic resistivity is
inversely proportional to N (E f ) and 〈v2

x〉 at Fermi surface.
Besides, it is also proportional to the strength of el-ph scat-
tering, which is measured by the integral of the product
of the α2FT (�) and the F(kBT/�) function, as given in
Eq. (1). For simplicity, we denote such an integral as W.
Therefore, our comparative analysis will focus on the fol-
lowing three factors: N (E f ), 〈v2

x〉, and W. Table II presents
the values of N (E f ), 〈v2

x〉, and W for graphene, Ti2B2,
Mo2B2, HB-plumbene, and Ti2N. Compared with graphene,
MBenes have larger DOS at Fermi level, which is consis-
tent with the plots of Fermi surfaces shown in Fig. 4. This
means that MBenes host more carriers to take part in the
electric transport. However, weakly doped graphene has a
much smaller Fermi surface around the Dirac point, allow-
ing only phonons with specific wavelengths to participate in
el-ph scattering. Besides, the backscattering is lacking due to
the chiral electron characteristic of graphene. Consequently,
the strength of the el-ph scattering is very weak, resulting
in a small W in graphene. Although the el-ph scattering is
much stronger than that of graphene, as shown in Table II,
it is not strong compared to other 2D materials. Considering
these three factors that determine the intrinsic resistivity, we
conclude that it is the weaker strength of el-ph interactions and
a larger Fermi surface that lead to the relatively low resistivity
in MBenes.

C. Temperature dependence of intrinsic resistivity

The temperature dependence of the resistivity is an im-
portant electric transport characteristic of metallic materials.
According to the conventional Bloch-Grüneisen theory, the
intrinsic resistivity of a metal depends on temperature lin-
early in the high temperature limit. For metals, the staring
temperature of such a linear ρ-T relationship often exceeds
the Debye temperature above which all phonon modes are
fully thermally excited and consequently the phonon number
is proportional to the temperature. Because the el-ph scat-
tering rate has a linear relation with the phonon number,
it is a straightforward result that the intrinsic resistivity of
metal exhibits a linear temperature dependence in the high
temperature limit. On the other hand, at the low temperature
limit, if the umklapp el-ph scattering is trivial, the intrin-
sic resistivity of a 2D metal shows a T 4 decay rate as the
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TABLE II. The numerical values of three factors N (Ef ), 〈v2
x〉, and W in different materials.

Materials

Factors Graphene Ti2B2 Mo2B2 HB-plumbene Ti2N

N (Ef ) (eV−1) 0.007 1.585 1.564 0.754 8.925
〈v2

x〉 (×1012 m2 s−2) 4.571 0.551 1.377 8.656 0.173
W (×10−24 µ� m3 A2) 0.341 343.552 958.440 2589.565 1347.563

temperature approaches zero. But all these theoretical pre-
dictions are limited within a simple Fermi surface. However,
as seen from Fig. 4, the two kinds of MBenes both pos-
sess complicated Fermi surfaces. Therefore, it is necessary
for us to study in detail the temperature dependence of the
intrinsic resistivity of MBenes. The calculated ρ-T relation-
ships of Ti2B2 and Mo2B2 at a much lower temperature
region are presented in Figs. 5(a) and 5(b). By fitting the
ρ-T curves, it is evident that Ti2B2 exhibits a T 3 de-
pendence, while Mo2B2 exhibits a T 2.34 dependence, both
breaking the T 4 law. Moreover, at higher temperature regions,

the intrinsic resistivity versus temperature of Ti2B2 and
Mo2B2 calculated with and without DDFA is presented in
Figs. 5(c) and 5(d). The intrinsic resistivity of Ti2B2 and
Mo2B2 calculated without DDFA exhibits two separate re-
gions of linear temperature dependence. For Ti2B2, the first
one occurs within 100–600 K, which is lower than the De-
bye temperature, while the onset temperature of the second
linear temperature dependence region is about 1400 K. Sim-
ilarly, for Mo2B2, one occurs below the Debye temperature
(100–900 K) and another above it (T > 1600 K). The ap-
pearance of the first linear temperature dependence region is

(a) (b)

(c) (d)

Ti
2
B

2

Mo
2
B

2

Mo
2
B

2

Ti
2
B

2

FIG. 5. Intrinsic resistivity of (a) Ti2B2 and (b) Mo2B2 calculated by α2FT vs temperature T within 10–45 K. In (a), the T 4 fitting curve
(blue solid line) and T 3 fitting curve (red solid line) are plotted for comparison. In (b), the T 4 fitting curve (blue solid line) and T 2.34 fitting
curve (red solid line) are plotted for comparison. Intrinsic resistivity of (c) Ti2B2 and (d) Mo2B2 calculated by α2FT (circle point-line) and
α2F̃T (rectangular point-line) vs temperature T within 100–2000 K, with the linear fitting curves plotted for comparison.
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(b)

(c) (d)

AA
q0

G

G

q0

G

B

B

AA q0

5.0×10-6

1.0×10-15

4.0×10-7

5.0×10-11

(a)

FIG. 6. The plot shows the |q|-resolved resistivity, ρ|q|, of (a) Ti2B2 and (c) Mo2B2 at 15 K, with peaks observed at 0.08|b1| and 0.38|b1|,
respectively. The final-state k′-resolved resistivity of (b) Ti2B2 and (d) Mo2B2 at 15 K, where the first Brillouin zone (1BZ) is indicated by the
black solid lines. In (b) and (d), points A and B are selected initial states, and points A′ and B′ denote the initial states that contribute heavily to
the resistivity, respectively.

at odds with the prediction of the Bloch-Grüneisen theory
since the onset temperature (about 100 K) is much lower
than the Debye temperature. However, as shown in Figs. 5(c)
and 5(d), the ρ-T curves of Ti2B2 and Mo2B2 calculated
with DDFA are always linear in the temperature range of
100–2000 K.

At the low temperature limit, the possible reason for the
breakdown of the T 4 law is the nontrivial umklapp el-ph scat-
tering [26–28] which is disregarded in the Bloch-Grüneisen
theory. Such a scattering follows the conservation of lattice
momentum, k′ = k + q + G, with a nonzero reciprocal lattice
vector G. It often relates to the large-angle scattering which
leads to significant change in the velocity of electrons [11].
Consequently, it could play the key role in breaking the T 4

law. In Fig. 6, we present the |q|-resolved resistivity and
final-state k′-resolved resistivity for Ti2B2 and Mo2B2. As
shown by Eq. (13), the k′-resolved resistivity is determined
by the difference between k and k′. Thus, with a given k,
ρ(k, k′) as a function k′ does not obey the complete symmetry
of the Fermi surface. As illustrated in Fig. 6(a), for Ti2B2,
the |q|-resolved resistivity peaks at |q| = 0.08|b1|. It indicates

that the resistivity is dominated by long-wavelength phonons
at low temperatures such as 15 K. Therefore, when the initial
state k is set at point A, the final states k′, which significantly
contribute to the resistivity, are mainly distributed near point
A, as illustrated in Fig. 6(b). In addition, we can see that there
are some final states k′ in the upper left region of the first
Brillouin zone (1BZ) that have a nontrivial contribution to the
resistivity, as indicated by the red dashed bordered rectangle
in Fig. 6(b). As the involved phonons in el-ph scattering are
mainly the long-wavelength ones, such a scattering is mostly
implemented via an umklapp process as labeled in Fig. 6(b).
From the numerical results shown in Figs. 6(c) and 6(d), we
can infer that in Mo2B2, the umklapp scattering is equally
important. In addition, it should be noticed that the occur-
rence of the umklapp process is favored by the large Fermi
surface of both types of MBenes. In the high temperature
region, according to conventional transport theory, once the
temperature exceeds the Debye temperature largely, full ther-
mal excitation of all phonon modes is realized. Then, the ρ-T
relation begins to show a linear behavior. However, for the
two kinds of MBenes, as observed in Figs. 5(c) and 5(d), such
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FIG. 7. (a) The plot of the function F(T/T0). Percentage contri-
butions of LP (solid black line) and HP (solid red line) of (b) Ti2B2

and (c) Mo2B2 to the intrinsic resistivity at different temperatures.

a simple argument cannot well explain the appearance of the
first linear ρ-T region with an onset temperature much lower
than Debye temperature. In fact, such a complicated ρ-T
relation of MBenes is tightly associated with the nontrivial
temperature dependence of the el-ph interaction spectral func-
tion. Within the DDFA, the temperature dependence of the
el-ph interaction spectral function is completely disregarded.
Therefore, the temperature dependence of the intrinsic re-
sistivity is determined only by the F(x) function defined by
Eq. (2). As shown in Fig. 7(a), we find that F(x) begins
to show a linear profile when x > 0.25. Accordingly, from
Eq. (1) we can infer that when T > 0.25T0, the function
F(T/T0) triggers the linear ρ-T relation, where T0 refers to
a characteristic temperature corresponding to the full thermal
excitation of the phonon mode which has a leading contri-
bution to the intrinsic resistivity. Even though we makes a
conservative estimate as T0 = TD, such an argument indicates
that the linear ρ-T relation starts at a temperature lower
than the Debye temperature. By defining κLP = ∑6

ν=1 ρν
x /ρx

and κHP = ∑12
ν=7 ρν

x /ρx, which stand for the respective per-
centages of the contributions of LP and HP to the intrinsic
resistivity, we find that the LP contributes more than 80%
of the total resistivity for both Ti2B2 and Mo2B2 in the
whole temperature range, as illustrated in Figs. 7(b) and 7(c).
Therefore, we can identify T0 ≈ 450 K for Ti2B2 and T0 ≈
400 K for Mo2B2, namely, the characteristic temperatures cor-
responding to the cutoff frequencies of the LP of these two
materials. Consequently, the estimated onset temperatures of
the linear ρ-T relationships for Ti2B2 and Mo2B2 are about
100 K, which agrees well with the onset temperatures of the
linear ρ-T curve of DDFA shown in Figs. 5(c) and 5(d).

From the band structures of MBenes shown in Figs. 2(a)
and 2(c), we can see that some band edges occur near the
Fermi levels of MBenes. With the rise of temperature, the
Fermi shell broadens. Thus, these band edges enter the Fermi
shell, giving rise to the drastic variation of the DOS versus
energy. In such a situation, as seen from Eq. (6), the Som-
merfeld correction term becomes important in affecting the
spectral function. In other words, the DDFA becomes invalid
and the temperature dependence of the spectral function gets
relevant to the ρ-T relation. Due to such a reason, the intrinsic
resistivity calculated with the temperature dependent spectral
function as shown in Eq. (3) deviates from the linear temper-
ature dependence gradually with the increase of temperature.

IV. CONCLUSION

In this investigation, we delved into the intrinsic resistivity
characteristics of two synthesized MBenes, namely Ti2B2 and
Mo2B2, utilizing the Ziman resistivity formula within the
frameworks of DFT and DFPT. Through a comprehensive
comparison encompassing the intrinsic resistivity of various
2D materials, we find that the intrinsic resistivities of Ti2B2

and Mo2B2 are positioned merely one order of magnitude
above that of graphene, while aligning with the same order
of magnitude as the exceptional conductivity showcased by
materials such as HB-plumbene. This observation unequivo-
cally underscores the potential of MBenes as a class of highly
conductive 2D metals. Additionally, as we dissect the triad
of factors governing the magnitude of intrinsic resistivity,
it becomes evident that MBenes not only possess weaker
el-ph interactions but also feature significantly larger Fermi
surfaces, thereby accommodating a substantial number of car-
riers engaged in the process of transport.

Moreover, we observed that the ρ-T relationships of
Ti2B2 and Mo2B2 do not conform to the prediction of the
Bloch-Grüneisen theory in either the high or low tempera-
ture regions. At low temperature, umklapp scattering plays
the leading role in breaking the T 4 law for 2D metals. At
higher temperature, we find that the band edges near the
Fermi level play important roles in breaking the linear re-
lationship between resistivity and temperature predicted by
DDFA. Therefore, it is essential to use the temperature de-
pendent spectral function instead of the one in DDFA when
calculating the intrinsic resistivity of metal with the complex
Fermi surface.
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Before ending our work, we would like to remark briefly
on the issue of the potential functional group decoration to
MBenes. It is well known that the surface metal atoms of
MXenes are easily passivated by certain functional species
(e.g., -OH, -F, -O). It is very difficult to get rid of such an
effect in MXenes. In contrast, there is no evidence to con-
firm the existence of functional groups on the experimentally
prepared MBenes so far. Li et al. [29] have theoretically
demonstrated that Ti2B2 and Mo2B2 have good kinetic stabil-
ity, mechanical stability, and thermal stability, even free from
the decoration of any functional groups. In the near future,
accompanying the relevant experimental studies, the theoret-
ical calculations about the electronic and transport properties
of MBenes with the decoration of functional groups will
be significant. However, in view of the diverse functional
groups, to address such a topic implies a huge computa-

tional cost, and which cannot be completely covered by our
present work. Herein, as a straightforward reasoning, we can
say that if a functional group does not change largely the
size and shape of the Fermi surface of MBenes such as the
Ti2B2 and Mo2B2 under our consideration, these materials
remain to be good metals due to their very large Fermi
surface.
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