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Valley coupling constructed topological two-parameter charge pump
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Valley coupling is proposed to construct a spatially separated two-parameter pump based on the O- or Y-
shaped Kekulé (Kek) graphene superlattices (GSs) with a sandwiched graphene layer. It is shown that for the
O-shaped Kek GS pumping structure, pumped charges with an integer number can be obtained in a pumping
cycle at the Fermi energy residing in the effective energy gap. Particularly, this quantization only from the
contribution of intervalley reflection is thoroughly different from the one in previous two-parameter pumps
only with the intravalley reflection. This stems from the Hamiltonian of an antiunitary symmetry, leading to
a phase analogous to a topological superconductor and thus a perfect pseudo-Andreev reflection in the valley
version. The quantization also can be attributed to the topological interfacial state (TIS) arising in between the
two pumping sources due to different quantum valley Hall insulator (QVHI) phases. However, for the Y-shaped
Kek GS one, the current coming from both the intravalley and intervalley reflections is nonquantized. This is
due to the time-dependent coupling term between two valleys only emerging in the A sublattice, which induces
no QVHI and no resultant TISs. Our findings may not only pave a new road to design the quantized charge
pump device based on the GS, but also provide a sharp experimental signature to detect the O-shaped one and
distinguish between the two GSs.
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I. INTRODUCTION

The quantum parametric pump [1–3] in mesoscopic elec-
tron structures, characterizing many-body systems, has been
recently attracting extensive interest, particularly thanks to
the potential application for realizing novel current stan-
dards. In general, it is implemented through two or more
time-dependent system parameters with a phase difference,
yielding a dc current with no external bias [4,5], which ex-
plicitly breaks time-reversal symmetry [6–8]. In particular,
a quantized charge pump, in which an integer number of
charges can be pumped out during a cycle, has been the
principal challenge in this field [9–13].

The most celebrated quantized pump usually refers to the
Thouless topological pump (TTP) [4]. Specifically, integral
charges can be pumped out by a one-dimensional (1D) mov-
ing potential in a cycle at the Fermi energy residing in the
energy gap, which is opened by the pumping potential. This
1D periodic system is topological, in which the topological
invariant is identical to the pumped charge in each cycle.

The quantum pump has been explored in Dirac systems
such as graphene [9,14–16], silicene [17,18], as well as topo-
logical insulator [19–21]. For instance, a quantized charge
pump based on the pristine graphene can be realized by intro-
ducing two staggered potentials [9], whose topological origin
is formally different from that of the TTP. Its quantization can
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be ascribed to the adiabatic evolution of interfacial states born
between the two pumping sources, which are topologically
protected. However, here we investigate the two-parameter
charge pump based on graphene superlattice (GSs) with the
valley-related interaction for a Kekulé (Kek) GS.

Electrons in two-dimensional (2D) graphenelike materials,
such as graphene, silicene, and transition metal dichalco-
genides, possess the extra valley degree of freedom besides
the conventional charge and spin counterparts [22–24]. This is
because the six corners of the hexagonal Brillouin zone belong
to two inequivalent groups, i.e., the so-called K and K ′ val-
leys, which leads to the formation of valleytronics [22,25,26].
By inducing the Kek distortion [27–30] or adatom poten-
tials [31,32], several works have been devoted to constructing
GSs in order to realize the valley manipulation [32–34]. The
GS formed by the periodic lattice distortion, G = K − K ′, is
called the Kek GS [35–37].

The Kek GS has become a promising candidate for val-
leytronics applications [38,39]. This is because inequivalent K
and K ′ valleys of pristine graphene folded on top of each other
can produce nontrivial properties that the pristine graphene
does not possess, such as gap opening in the Dirac cone
[40–42], valley-momentum locking [30], as well as electron
fractionalization [43,44]. For the Kek GS, great advances have
been theoretically achieved; meanwhile, it was successfully
generated in some experiments based on specific atomic sub-
strates such as Li, Rb, Cs, or Na [45–47]. The valley coupling
can be equivalent to an artificial magnetic field [48], and
this field can rotate the valley pseudospin as the electron
propagates through the GS [32] like the spin rotation by an
exchange field in spintronics [49].
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There are two shaped Kek GSs. One is the O-shaped
Kek GS [30,44,50], where the carbon-carbon bond strength
is altered as in a benzene ring, displaying the property of
an opened energy-band gap. The O-shaped Kek GS is now
called a valley-version topological insulator. The other is
the Y-shaped Kek GS [51] with the honeycomb lattice on a
graphene-copper superlattice. In each superlattice unit cell,
one of six carbon atoms has no copper atom below it, lead-
ing to a shorter nearest-neighbor bond. Several energy band
structures have been proposed for the Y-shaped Kek GS, such
as two gapless valley bands with valley-momentum locking
[29,30], one valley band with a gap opened and the other one
with a linear dispersion [33,52], as well as two valley bands
with partial gap opening [53]. The Y-shaped Kek GS possess-
ing the third type of band was chosen in this paper. Moreover,
the valley coupling in the two Kek GSs can bring about lots of
novel physical properties, such as the valley precession [29],
valley supercurrent [54], and supercurrent rectification effect
[53].

In particular, Beenakker et al. [55] showed that the Hamil-
tonian of the O-shaped Kek GS exhibits an antiunitary sym-
metry that is formally equivalent to the charge-conjugation
symmetry in a superconductor and predicted a valley flip
effect via the pseudo-Andreev reflection in a normal G/GS
junction. This correspondence leads to the possibility of a
phase transition into a phase analogous to a topological super-
conductor (TSC). Like the Cooper pair potential, the coupling
term between the K and K ′ valleys in the GS behaves as the
role of the valley condensation. Thus, the O-shaped Kek GS
can be taken as a valley-condensed superconductor. On the
other hand, the introduction of the valley coupling in the O-
shaped Kek GS can endow the Dirac electrons with a nonzero
mass term by opening up an energy gap in the Dirac points.
Similar to the staggered potential introduced into graphene,
the O-shaped Kek GS actually becomes a quantum valley Hall
insulator (QVHI) [56]. However, the experimental evidence of
O-shaped Kek GSs is still lacking [52].

Owing to the above-mentioned novel property of the two
shaped Kek GSs, naturally, one may ask whether there exist
peculiar pumping characteristics such as quantized current
when the valley coupling strength is taken as a pumping
parameter. This is the main motivation of this paper.

Therefore, we propose a scheme to realize a quantum
charge pump based on two O- or Y-shaped Kek GSs and a
normal G sandwiched in between them, in which two time-
dependent and out-of-phase valley couplings of two GS are
taken as pumping parameters, as depicted in Fig. 1(a). By em-
ploying lattice and continuum models, respectively, we have
obtained the pumping current. It is found that for the O-shaped
Kek GS pumping structure, there exists an integer number of
electrons pumped out adiabatically in a cycle at the Fermi
energy locating in the effective energy gap, which is only
provided by the intervalley reflection. This can be explained
by the fact that the Hamiltonian with an antiunitary symmetry,
formally resembling the charge-conjugate symmetry, leads to
a phase analogous to a TSC and a resultant perfect valley flip
effect. The quantization could also be ascribed to the adiabatic
evolution of the topological interfacial state (TIS) emerging
between the two GS regions with different QVHI phases,
which is robust against a certain degree of disorders. The
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FIG. 1. (a) A schematic sketch of the G/GS1/G/GS2/G setup.
The coupling strengths �1,2(t ) of the GS1,2 regions as pumping
sources with the length LP are set as the time-dependent pumping
parameters, the length of the middle (sandwiched) G region is L0,
and the left and right G leads are unbiased. In addition, the pumping
current direction is assumed along the x axis. (b) The O-shaped Kek
GS with the three neighboring-bond modifications δti (i = 1, 2, 3)
marked by the red solid lines. (c) The Y-shaped Kek GS with the
possible site-energy U0 and neighboring-bond modifications δti, in
which a substrate atom Cu vacancy (solid yellow circle) in a supercell
leads to three contracted neighboring bonds. (d) The two valleys
K and K ′ of the pristine graphene folded into the � point of the
superlattice Brillouin zone.

quantized current direction is manipulated by such parameters
as E , pumping phase ϕ, and middle or sandwiched G length
L0. However, for the Y-shaped Kek GS pumping structure, the
current comes from the intravalley and intervalley reflections,
where a quantized platform is not exhibited. Particularly, the
current direction is not reversed by adjusting L0, which is
thoroughly different from the O-shaped one. This stems from
the time-dependent energy gap controlled by the valley cou-
pling term only emerging at the A sublattice in two Y-shaped
Kek GS regions, which cannot generate a topological phase
transition, and thus no TIS. Furthermore, the results obtained
by the two models are identical in both the O- and Y-shaped
pumping structures. Therefore, our findings may shed light
on the generation of a quantized charge pump based on the
GS and provide an experimental subschema to detect and
distinguish Y- and O-shaped Kek GSs.

II. QUANTIZED TWO-PARAMETER PUMP
WITH THE O-SHAPED KEK GS

Let us consider a schematic two-parameter pump device
shown in Fig. 1(a), where a G layer with the length L0 is
sandwiched in between the two pumping sources GS1,2, with
GS1,2 being, respectively, the left and right GSs, and possible
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FIG. 2. Electronic band structure E − k of (a) the O-shaped Kek
and (b) Y-shaped Kek GSs.

valley currents are pumped into the left or right unbiased G
lead. The valley coupling strengths �1,2(t ) of GS1,2 with the
length LP are taken as time-dependent pumping potentials or
parameters. The O-shaped Kek GS is first considered as the
pumping source here.

A. Hamiltonian and band structure

First, the O-shaped Kek GS with periodic distortion, which
is formed by the contraction of nonadjacent bond lengths
between the six carbon atoms of graphene hexagonal lattice,
is exhibited in Fig. 1(b). The unit cell is enlarged by

√
3 × √

3
and the original K and K ′ valleys of the pristine graphene
are folded into the � point [57–59], as shown in Fig. 1(c).
Ignoring the complex argument of the valley coupling term,
the corresponding low-energy Hamiltonian is given by [30,44]

H =

⎛
⎜⎜⎝

0 h̄v f k− � 0
h̄v f k+ 0 0 �

� 0 0 −h̄v f k−
0 � −h̄v f k+ 0

⎞
⎟⎟⎠,

(1)

with k± = kx ± iky, where it acts on the spinor � =
(�KA, �KB, �K ′A, �K ′B) containing the sublattice (A and B)
and valley (K and K ′) degrees of freedom of Dirac electrons
in graphene with h̄v f = 1 and momentum k = (kx, ky). The
nondiagonal term � represents the valley coupling strength,
which only stems from the hopping energy modifications of
electrons in the honeycomb lattice δt1, δt2, and δt3. In terms of
the lattice pseudospin matrix σi (i = x, y, z) and valley Pauli
matrix τi, we may rewrite

H = h̄v f (σxkx + σyky)τz + �τx. (2)

The Hamiltonian fulfills the time-reversal symmetry, (τy ⊗
σy)H (τy ⊗ σy) = −H . If the pumping structure has trans-
lational symmetry along the y direction, an additional
antiunitary symmetry exists. Particularly, the symmetry is
formally equivalent to the charge-conjugation in a supercon-
ductor with τx switching electron and hole degrees of freedom
[55]. This may make the O-shaped Kek GS enter into a phase
analogous to a TSC [60,61], where the K and K ′ valleys
correspond to the roles of electron and hole, respectively. The
eigenvalue is given by E± = ±√

�2 + k2, with k2 = k2
x + k2

y ,
and the corresponding band structure is plotted in Fig. 2(a).
It is clearly found that the nonzero valley coupling term can
open an energy gap (2|�|) in the Dirac point and bring the
Dirac electrons with an effective mass. By analogy with the

effect of the staggered potential introduced in the pristine
graphene, the O-shaped Kek GS actually becomes a QVHI
with the nonzero valley Chern number due to the intervalley
coupling term [56].

B. Lattice model

Formalism for pumping current. In order to calculate the
pumping current, we choose to discretize the real space and
transform the above Hamiltonian into a ky-dependent 1D
tight-binding-like model. The following time-dependent qua-
siclassic Hamiltonian is employed to describe the GS [54],

H =
∑
ky, j

[C†
j H0(ky)Cj + C†

j Hx(ky)Cj+1 + H.c.], (3)

with the site energy matrix

H0(ky) = tσyτz sin kya + (4tp − 2tp cos kya)σz + �i(t )τx,

(4)

and hopping matrix

Hx(ky) = −tpσz + itσxτz/2, (5)

where C†
j (Cj) is the electron creation (annihilation) op-

erator of the jth site, t = h̄v f /a is the hopping energy
with lattice constant a, and ky is the transverse momen-
tum. The valley coupling strengths �i(t ) (i = 1, 2) as the
time-dependent pumping parameters are given by �1(t ) =
�0 cos(ωt ) and �2(t ) = �0 cos(ωt + ϕ) with the pumping
strength �0, pumping phase ϕ, and pumping frequency ω.
The tp term is introduced to remain the single Dirac cone at
the band center kx = ky = 0, but exclude the possible Dirac
cone at kx = ky = ±π/a. Moreover, for pristine graphene, the
�i(t ) and tp terms are not considered. Here, the discretization
is just along the x axis; meanwhile, the transverse momentum
ky remains in a continuum form, which means the above
Hamiltonian is in a mixed Bloch and lattice model.

The scattering matrix is employed to calculate the pumping
current. Based on the lattice Green’s function technique, the
scattering matrix can be obtained by the Fisher-Lee relation
[62],

Sαβ
qp = −δαβδqp + i

[
�α

q

]1/2
Gαβ

qp

[
�β

p

]1/2
, (6)

with α, β ∈ {K, K ′} indicating the electron in valley K or
K ′ and p, q ∈ {L, R} representing the left and right leads. In
Eq. (6), �

α(β )
q(p) is a block of the linewidth function �q(p) =

i(r
q(p) − r

q(p) ) with retarded/advanced self-energy 
r/a
q(p)

calculated numerically by the recursive method and Gαβ
qp is

the matrix block of the retarded Green’s function given by
Gr = [E − H − r

L − r
R]−1.

The pumping valley-dependent current ILη in a period T =
2π/ω is [5]

ILη = e

2πT

∫ T

0
dt Im Tr

[
drηη

dt
r†
ηη + dt ′

ηη

dt
t ′†
ηη

+ drηη̄

dt
r†
ηη̄ + dt ′

ηη̄

dt
t ′†
ηη̄

]
, (7)

with η = ± corresponding to K and K ′, respectively, and
η̄ = −η. Here, rηη and rηη̄ are the scattering coefficients of
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FIG. 3. Pumping charge current IL as a function of the Fermi
energy E with various (a) pumping strength �0 at LP = 150a and
(b) length LP at �0 = 0.02t . The other parameters are taken as
L0 = 0, ky = 0, tp = 0.2t , and ϕ = 0.5π .

intravalley and intervalley reflections for the injection of elec-
trons from the left lead, respectively, while t ′

ηη and t ′
ηη̄ are

intravalley and intervalley transmissions for the injection of
electrons from the right lead, respectively. These scattering
coefficients are 2 × 2 matrices obtained from Eq. (6).

The pumping charge current flowing through the left lead,
IL = ∑

η=± ILη, is calculated according to Eq. (7), which
comes from intervalley and intravalley scattering contribu-
tions, written as IL1 and IL2, respectively. It is pointed out that
the zero temperature (0 K) and adiabatic limit (ω → 0) are
assumed in Eq. (7).

In the calculations, we set the hopping energy t = 1 as the
energy unit. In this section, it is found that the current ILη only
includes the contribution from the intervalley reflection rηη̄,
which is given by ILη = e

2πT

∫ T
0 dt Im Tr[ drηη̄

dt r†
ηη̄] on the basis

of Eq. (7), indicating that IL only includes the contribution IL1

from intervalley scattering.
Results and discussions. First, the charge current IL versus

the Fermi energy E with different pumping source length LP

and pumping strength �0 is plotted in Fig. 3. It is clearly
seen that for �0 = 0.03t or LP = 200a, the pumping current
shows an obvious quantized platform (IL = ±2e/T ), in which
an integer number of electron charges (2e) are adiabatically
pumped out within a pumping cycle. The integer number 2
is related to the valley degeneracy, i.e., the incidence of an
electron from the K to K ′ valley is thoroughly equivalent
to that from the K ′ to K valley by valley coupling. The
current fulfills the particle-hole antisymmetric relationship

FIG. 4. Pumping charge current IL in the parameter (�0 − E )
space, where IL is quantized in the green region while nonquantized
outside of it. The other parameters are taken as LP = 150a, L0 = 0,
ky = 0, tp = 0.2t , and ϕ = 0.5π .

IL(E ) = −IL(−E ), a typical property of the two-parameter
charge pump device [6].

As usual, the energy range corresponding to the current
quantization in Fig. 3(a) is a little smaller than the bulk gap
�0 defined for the pristine GS with a uniform and static
valley coupling. This is because GS1 and GS2 open or close
the local energy gap asynchronously with time ωt ∈ (0, T )
when ϕ �= 0, and thus there exists a nonzero global effective
gap approximately given by Ee f = �0

√
(1 − cos ϕ)/2 from

Eq. (2). The pumping quantization is jointly tuned by length
Lp, strength �0, and Fermi energy E . The quantized platform
disappears at a small Lp and �0 due to the quantum tunneling
effect. Also, IL is nonquantized as �0 is large enough, indi-
cating the diminishment of the valley degree of freedom in
the two GSs and the absence of TIS.

The quantized-current region in the parameter space
(�0 − E ) is presented in Fig. 4, where the green region cor-
responds to the current value 2e/T , while IL is nonquantized
in the outside one. The quantized value IL = +2e/T seems to
survive in the case of lower Fermi energy, as shown in Fig. 4,
suggesting the evident existence of valley degree. These are
much different from those for the previous two-parameter
charge pumps in Ref. [9], where the pumping potentials lo-
cated in the diagonal elements of the Hamiltonian only bring
the intravalley reflection.

In addition, when �0 = 0.01t or LP = 50a, IL is nonquan-
tized and its maximum will increase with the enhancement
of �0 and LP. The reason is that there exists a finite gap of
the TIS caused by the finite-size effect for the smaller �0

and LP [63]. Thus, with the enhancement of either �0 or
LP, the quantization of IL is more likely to appear due to the
suppressing gap of the TIS. However, for a larger �0 or LP,
the width of the quantized platform of IL decreases and even
vanishes, as shown in Fig. 3 for �0 = 0.05t or LP = 500a.

We now turn our attention to another important charac-
teristic of the two-parameter pump, i.e., the current-phase
relationship shown in Fig. 5(a). It is clearly exhibited that the
relationship severely deviates from the sine behavior. Particu-
larly, the quantized platforms with an abrupt current reversal
effect between the two quantized values (+2e/T and −2e/T )
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FIG. 5. Pumping charge current IL as a function of (a) the pump-
ing phase ϕ at L0 = 0 and (b) the length L0 at ϕ = 0.5π . Here, we
set �0 = 0.03t , LP = 150a, tp = 0.2t , and ky = 0.

are displayed when E = 0.2�0. Furthermore, only as ϕ = mπ

with an integer m, IL is not quantized. The reason is that the
Fermi energy is easier to reside outside Ee f when ϕ = mπ .
However, for a larger E , the quantized platform is no longer
perfect, accompanied by a pair of peak and valley formed
around ϕ = (2m + 1)π due to the existence of resonance
level. The current IL versus the length L0 is plotted in Fig. 5(b),
reflecting the quantum interference. It exhibits an abrupt vari-
ation from the positive quantized value to the negative one,
and the reversal period of IL is decreased with the increasing
E , as shown in the previous quantum two-parameter pumps.

As we mentioned earlier, the nonzero valley coupling terms
�1,2(t ) can open an energy gap in Dirac points and make the
pumping sources convert into a topological phase QVHI [56].
The valley Chern number Cv = ±1 depends on the sign of
�1,2(t ). The opposite signs for �1,2(t ) in the GS1,2 regions
can produce different quantum phases and there exists a con-
ductive and topologically protected interface connecting the
two neighboring phases. Therefore, in the bulk energy gap,
the appearance or disappearance of the TIS with ωt exhibits
the feature of topological phase transition. In the following,
we will account for the topological origin of the pumping
quantization through the time-dependent evolution of the TIS
bridging the two pumping source regions. The time evolution
of the possible interface state in a self-closed system is exhib-
ited in Fig. 6, where the left and right leads are connected to
each other. It is shown that two degenerate energy levels either
for E > 0 or E < 0 traverse the energy gap with ωt , which is
just the TIS evolution. We can see that the TIS appears in some
time intervals, whereas it evolves into the bulk state in other
time intervals (see the red solid line in Fig. 6). It follows that
charges are shifted from one end to the mid interface and then

FIG. 6. Adiabatic evolution of the energy band around E = 0
with time ωt for a closed system. Here, LP = 300a, L0 = 0, ky = 0,
tp = 0.2t , �0 = 0.02t , and ϕ = 0.5π are set.

to the other end of the device, just as in the previous quantized
two-parameter pumps [9,10].

C. Continuum model

Formalism for pumping current. In this section, we utilize
a continuum model to further confirm the above pumping
quantization. The proposed G/GS1/G/GS2/G junction can
be described by the low-energy Dirac Hamiltonian of the form
[30,44]

H = h̄v f (σxkx + σyky)τz + �1(t )τx�1(x) + �2(t )τx�2(x),

(8)

where τi and σi (x, y, z) represent the valley and lat-
tice pseudospin Pauli matrices, respectively, the momentum
kx(ky) = −i∂x(∂y), �1,2(t ) have been defined above, �1(x) =
�(x)�(LP − x), and �2(x) = �(x − L0 − LP )�(2LP + L0 −
x) with �(x) being a Heaviside step function.

By solving Eq. (8), we can obtain the eigenfunctions in
each region. The eigenfunctions for the electrons in the K and
K ′ valleys moving along the ±x direction in each G region
are, respectively, given by

�K±
G = 1√

2
(1 ± 1 0 0)T e±ik0x,

�K ′±
G = 1√

2
(0 0 1 ∓ 1)T e±ik0x. (9)

In each pumping source region, we have the corresponding
eigenfunctions,

�K±
GSi = (ui ± ui vi ± vi )

T e±ikix,

�K ′±
GSi = (vi ∓ vi ui ∓ ui )

T e±ikix, (10)

where u1,2 =
√

1
2 + k1,2

2E , v1,2 =
√

1
2 − k1,2

2E , k1,2 =√
E2 − �2

1,2(t ), and k0 = E are the wave vectors in the
GS1,2 and three G regions, respectively.

Consider an incident electron from the K valley of the left
lead into GS1 in Fig. 1(a), where the wave functions in the five
different regions are constructed from the linear combination
of the corresponding eigenfunctions, respectively, which are

245420-5



DING, WANG, TAO, AND LI PHYSICAL REVIEW B 108, 245420 (2023)

written as

�I = �K+
G + rKK�K−

G + rK ′K�K ′−
G ,

�II = a1�
K+
GS1

+ b1�
K−
GS1

+ c1�
K ′+
GS1

+ d1�
K ′−
GS1

,

�III = e�K+
G + f �K−

G + g�K ′+
G + h�K ′−

G ,

�IV = a2�
K+
GS2

+ b2�
K−
GS2

+ c2�
K ′+
GS2

+ d2�
K ′−
GS2

,

�V = tKK�K+
G + tK ′K�K ′+

G ,

(11)

where �i(i = I ∼ V ) are the wave functions in the left lead,
GS1, middle G, GS2, and right lead, respectively. rKK , rK ′K ,
tKK , and tK ′K correspond to the intravalley reflection, in-
tervalley reflection, intravalley transmission, and intervalley
transmission coefficients, respectively. Moreover, rK ′K and
tK ′K , describing the valley flip effects at the two interfaces, are
analogous to the local and nonlocal Andreev reflections in the
normal metal/superconductor junction, respectively. This is
because the Hamiltonian has the same antiunitary symmetry
as in a superconductor, as mentioned above. Therefore, the
valley flip effect with nonzero rK ′K is also termed the valley
pseudo-Andreev reflection. By using the boundary conditions
at the four interfaces,

�I |x=0 = �II |x=0,

�II |x=LP = �III |x=LP ,

�III |x=LP+L0 = �IV |x=LP+L0 ,

�IV |x=2LP+L0 = �V |x=2LP+L0 ,

(12)

a set of 16 linearly independent equations are yielded. Solv-
ing these equations, we can attain the following scattering
coefficients:

rK ′K = r1 + eiϕ0t2
1 r2

1 − eiϕ0 r1r2
,

tKK = e−2ik0LPt1t2
1 − eiϕ0 r1r2

,

rKK = 0,

tK ′K = 0,

(13)

where ri = �i(t )(1 − e2ikiLP )/[(E + ki ) − e2ikiLP (E − ki )],
ti = 2kieikiLP/[(E + ki ) − e2ikiLP (E − ki )], and ϕ0 = 2kxL0.
Due to valley degeneracy, the situation for the incident
electron from the K ′ valley owns the same value of
corresponding scattering coefficients. In addition, the
transmission coefficient for the incident electron from
the left lead is equal to that from the right lead.

From Eq. (13), we can infer the scattering coefficients rηη

and t ′
ηη are thoroughly prohibited (η, η defined above), thus,

according to Eq. (7), the current formula can be rewritten as

ILη = e

2πT

∫ T

0
dt Im

[
drηη

dt
r∗
ηη + dt ′

ηη

dt
t ′∗
ηη

]
, (14)

with rηη for the incident electron from the left lead and t ′
ηη

for the incident one from the right lead. We find that when
the E < Ee f , the |t ′

ηη|2 will vanish but the |rηη|2 = 1, and
thus only the reflection coefficient rηη dose contributes to the
pumping current. This is consistent with the previous result by
the lattice model.
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FIG. 7. Pumping current IL+ as a function of (a) the energy E
at ϕ = 0.5π and (b) the pumping phase ϕ at LP = 150a and �0 =
0.03t . The other parameters are tp = 0.2t , L0 = 0, and ky = 0.

Results and discussions. We plot IL+ versus E and ϕ in
Figs. 7(a) and 7(b), respectively, which shows the quantized
platform. Because of valley degeneracy, IL− possesses the
same value with IL+. Therefore, the features we obtained have
no difference from those shown in Figs. 3 and 5(a), respec-
tively. Particularly, the pumping current could be quantized
only if E resides in Ee f . It could be inferred that the bulk states
should almost have a negligible influence on the quantized IL

because of t ′
ηη = 0 being a precondition of the results shown

in Fig. 7.
Owing to |rηη|2 = 1, the pumped charge in a period T is

equal to the winding number of the reflection coefficient rηη,
ω = 1

2πi

∮
r∗
ηηdrηη. To understand the quantized pump further,

we also exhibit the argument θ of reflection coefficient r+− as
a function of ωt and its trace in the complex plane for the
different Fermi energy E in Fig. 8. When the pumping current
is quantized at E = 0.2�0, θ (ωt ) experiences a jump of 2π

in a cycle and the orbit of r+− is a unit circle in the complex
plane, as shown in Figs. 8(a) and 8(b), respectively. However,
for the nonquantized pumping current at E = 0.8�0, a dif-
ferent situation appears in Figs. 8(c) and 8(d), where a rapid
jump of 2π is not exhibited for θ (ωt ) and thus its orbit is far
away from experiencing a circle. The trace is a closed circle
owing to the Hamiltonian being periodic and keeping invariant
as long as E < Ee f , which implies the winding of r+− being
a unit of ±1 and resultantly a unit of charge pumped out in a
cycle. Similarly, because of the valley degeneracy involved in
transport, the same situation is for r−+.

As demonstrated in Ref. [55], there exists a complete val-
ley switch in the O-shaped Kek GS. An incident electron in
the valley K is thoroughly reflected in the other valley K ′,

245420-6
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FIG. 8. The argument θ of reflection coefficient r+− evolves with
time ωτ in the (a) for E = 0.2�0 and (c) for E = 0.8�0, and the
corresponding trace in the complex plane is plotted in (b) and (d),
respectively. The other parameters are the same as that of the red line
in Fig. 7(a).

which leads to the quantized current obtained in our pumping
structure. This intervalley reflection with |rηη|2 = 1 is pro-
tected by a topological invariant named the Pfaffian invariant
[64], which resembles the complete Andreev reflection from
a Majorana zero mode. As a result, the quantized IL is also
topologically protected. In Fig. 9, we confirm the robustness
of the quantized current to disorder and plot IL versus E
and ϕ with different disorder strength W . This disorder is
modeled by the random on-site potential Hd = ∑

i vi, where
vi is the random potential uniformly distributed in the interval
[−W,W ]. It is found that the quantized IL can survive in the
weak and moderate disorders, such as W = 3�0 and 6�0.
However, the quantization will be destroyed in Ee f for the
stronger disorder W = 10�0. Therefore, the quantization is
robust against nonmagnetic disorders due to the topological
property of the O-shaped Kek GS.

III. TWO-PARAMETER PUMP WITH
THE Y-SHAPED KEK GS

A. Hamiltonian and band structure

In this section, we turn our attention to the charge pump
based on the Y-shaped Kek GS, as shown in Fig. 1(a). The
Y-shaped Kek GS with one of six carbon atoms in each super-
lattice unit cell deposited on the substrate-atom (Cu) vacancy,
as exhibited in Fig. 1(c), induces a shorter nearest-neighbor
bond. In spite of modifications of both the hopping energy
of electrons and site energy of the carbon atom in relation to
the Cu vacancy, we only consider the site-energy modification
(U0 �= 0) in the following Hamiltonian for simplicity. The unit
cell enlarged by

√
3 × √

3 also folds and couples the original
two valleys into the same � point, as shown in Fig. 1(d). The
corresponding low-energy Hamiltonian [29], being the same
as that of the periodic adatoms-modified graphene studied in
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FIG. 9. The current IL as functions of (a) E and (b) ϕ for various
disorder strengths W . The other parameters are the same as those
corresponding to the black line in Fig. 7.

Ref. [31], is written as

H = h̄v f (τzσxkx + σyky) + �

2
(σ0 + σz )τx, (15)

where the second term represents the valley coupling effect
with strength �, as in Eq. (2), fulfilling the time-reversal
symmetry. Notedly, a coupling or a “chiral” coupling term
between the K and K ′ valleys only occurs at the A sublat-
tice in the Hamiltonian. The eigenvalues are simply given

by E± = ±�
2 ±

√
( �

2 )2 + k2, with k2 = k2
x + k2

y . The corre-
sponding band structure is shown in Fig. 2(b), where the
valence or conduction band in the two valley-helical energy
bands has moved up or down by the magnitude |�|. This
means the bands open up only a half gap, compared with the
O-shaped Kek GS shown in Fig. 2(a).

B. Lattice model

Formalism of the pumping current. By using the lattice
Green’s function method, we calculate the pumping current
and the quasiclassic Hamiltonian reads as [53]

H =
∑
ky, j

[C+
j H0(ky)Cj + C+

j Hx(ky)Cj+1 + H.c.], (16)

with the site-energy matrix

H0(ky) = tσy sin kya + (4tp − 2tp cos kya)σz

+ �i(t )(σ0 + σz )τx, (17)

and hopping matrix

Hx(ky) = −tpσz − itσxτz/2. (18)
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FIG. 10. Pumping charge current IL , IL1, and IL2 as a function of
the Fermi energy E with (a) �0 = 0.01t and (b) 0.02t . Here, we set
tp = 0.02t , LP = 400a, ky = 0, L0 = 0, and ϕ = 0.5π .

Particularly, we can find that the current ILη stems from the
contributions of both rηη and rηη̄, which are given by Irηη

L =
e

2πT

∫ T
0 dt Im Tr[ drηη

dt r†
ηη] and Irηη̄

L = e
2πT

∫ T
0 dt Im Tr[ drηη̄

dt r†
ηη̄]

on the basis of Eq. (7), respectively. This indicates that IL

comes from the contributions of both the intervalley and in-
travalley reflections, namely, IL1 and IL2.

Results and discussions. First, we present the pumping
currents IL, IL1, and IL2 as a function of E under different �0

in Fig. 10. Similarly, it is found that IL = 2ILη due to the val-
ley degeneracy ILη = ILη̄ and still satisfies IL(E ) = −IL(−E ).
Although the currents IL, IL1, and IL2 do not show a quantized
platform, they can reach very sizable values. The absence of
a quantized platform is an important difference from that for
the pump device based on the O-shaped Kek GS. Obviously,
IL1 is almost equal to IL2 all the time. With the enhancement
of E from −�0 to 0, the currents, which are always greater
than 0, first increase and then decrease with a trend toward
zero, accompanied by slight fluctuations. The larger �0 is,
the more frequently the currents fluctuate. In addition, with
�0 increased, the maximum of currents is larger, such as
the maximum of IL exceeds 4e/T at �0 = 0.02t shown in
Fig. 10(b).

Next, we investigate the variation of IL, IL1, and IL2 with
ϕ under different E , as illustrated in Fig. 11. It is clearly
exhibited that the currents still deviate from the sine behavior;
however, they do not show a quantized platform. Around
ϕ ∼ (2m + 1)π , there exists a significant difference between
IL1 and IL2. For a larger E , IL1 and IL2 have clear fluctuations
due to the existence of resonance level. Additionally, the cur-
rents IL, IL1, and IL2 versus the length L0 with different E
are plotted in Fig. 12. It is found that IL, IL1, and IL2 show
an oscillatory behavior with same period. Particularly, their
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FIG. 11. Pumping charge current IL , IL1, and IL2 vs the pumping
phase ϕ with (a) E = −0.1�0 and (b) −0.8�0. The other parameters
are the same as in Fig. 10(a).

period decreases with the enhancement of E , which is similar
to the features of IL versus L0 for the O-shaped Kek GS pump
shown in Fig. 5(b). For a small E , IL1 ≈ IL2. Moreover, when
E increases, the amplitude of IL2 gets less than the that of
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FIG. 12. Pumping charge current IL , IL1, and IL2 vs the length L0

with (a) E = −0.3�0 and (b) −0.5�0. The other parameters are the
same as in Fig. 10(b).
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IL1. In addition, the sign of current is unchanged all the time,
meaning that the reversal effect of the current direction is not
realized by L0.

The features obtained by using lattice and continuum mod-
els have been verified in the previous section, so we do not
discuss the continuum model here for simplicity. Now, we ex-
plore the reason why the quantized current cannot be realized
in the Y-shaped Kek GS pumping structure. As we discussed
earlier, for the O-shaped Kek GS, the pumping quantization
could be attributed to the evolution of the TIS bridging the two
pumping sources. Notedly, the valley coupling terms at both
A and B sublattices in the Hamiltonian open up a complete
energy gap 2|�1(2)|. As a result, the GS can enter into the
QVHI phase. However, for the energy band of the Y-shaped
Kek GS shown in Fig. 2(b), it exhibits the two valley bands
with a partially opened gap |�1(2)| due to the coupling valley
term only at the A sublattice. The energy gap controlled by the
corresponding time-dependent valley coupling term in the two
GS regions cannot lead to a quantum phase transition; thus,
there is no TIS forming in the O-shaped Kek GS pumping
structure. Therefore, the different valley coupling effects in
the Hamiltonian bring essential differences between the Y-
and O-shaped Kek GSs, which are responsible for the unique
pumping characteristics, respectively.

IV. EXPERIMENTAL ACCESSIBILITY ANALYSIS

We have discussed the proposed two-parameter charge
pump devices based on the two Kek GSs. Two energy-band
gaps of O-shaped Kek GS are completely opened, whereas
the gaps of Y-shaped Kek GS are partially opened. Experi-
mentally, Gutierrez et al. [51] have successfully imaged the
Y-shaped Kek distortion in graphene grown on a Cu(111)
surface. The copper vacancies on Cu(111), bringing the mod-
ulations of both the Y-shaped hopping energy and original
site energy, lead to the occurrence of Y-shaped Kek GS. Bao
et al. [36] reported experimentally that intercalating Li atoms
between graphene sheets and an SiC substrate will form a
Kek superlattice structure. Their work first demonstrated the
O-shaped Kek modulation and showed that it exists only near
the gap edge of the Dirac cone. The successful exploration
offers a good experimental basis for our structure based on
O-shaped Kek GS. In addition, the above-mentioned Hamil-
tonians in the present work can also be used to describe the
periodic adatom-graphene superlattice [31], where the same

valley coupling term � will be controlled by the different
site-energy modifications of electrons.

V. CONCLUSIONS

In summary, by using lattice and continuum models, we
have investigated a possible quantized pump based on a
G/GS1/G/GS2/G junction with the O- or Y-shaped Kek GSs,
in which two time-dependent and out-of-phase valley cou-
plings in two GS regions are taken as pumping parameters.
Four features are exhibited as follows. For the O-shaped Kek
GS, (1) a possible quantized noiseless charge current is ob-
tained at E lying in the effective energy gap Ee f , coming from
the intervalley reflection, and (2) its direction can be reversed
abruptly by the sandwiched G length L0. However, for the
Y-shaped one, (1) the current does not show a quantized
platform, which comes from both the intravalley and inter-
valley reflections, and (2) its direction cannot be modulated
by L0.

Physically, the unique pumping characteristics of the O-
and Y-shaped Kek GS pumping structures originate from
the different corresponding Hamiltonian due to different val-
ley coupling, respectively. For the former, the intervalley
reflection-induced quantization can be deemed as a pseudo-
Andreev reflection of the valley version with unity, which
stems from the Hamiltonian of an antiunitary symmetry,
leading to a phase being analogous to a topological super-
conductor. The quantization also can be ascribed to the TIS
born in between the two pumping sources due to the different
quantum valley Hall phases. For the latter, the absence of
TISs is because the time-dependent energy gap controlled
by the coupling valley term only appearing at A sublattices
in two GS regions, which cannot generate a quantum phase
transition.

Currently, the experimental study of the Kek GS, partic-
ularly the O-shaped one, is still in its early stage, although
some achievements have been made [36,51,52]. Therefore,
our findings may pave a new way to fabricate a different
pump device based on GSs and afford a different scheme to
experimentally detect the O-shaped Kek GS and distinguish
between the two GSs.
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