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Transport properties of hybrid single-bilayer graphene interfaces in a magnetic field

Nadia Benlakhouy,1,* Ahmed Jellal ,1,2,† and Michael Schreiber3

1Laboratory of Theoretical Physics, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 20, 24000 El Jadida, Morocco
2Canadian Quantum Research Center, 204-3002 32 Avenue Vernon, British Columbia V1T 2L7, Canada

3Institut für Physik, Technische Universität, D-09107 Chemnitz, Germany

(Received 26 May 2023; revised 23 November 2023; accepted 28 November 2023; published 19 December 2023)

We investigate the electronic properties of a hybrid system that comprises single-bilayer graphene structures
subjected to a perpendicular magnetic field. Specifically, our focus is on the behavior exhibited by the zigzag
boundaries of the junction, namely, zigzag-1 (ZZ1) and zigzag-2 (ZZ2), using the continuum Dirac model
for rigorous analysis. Our findings reveal a striking dependence of conductance on the width of the bilayer
graphene at ZZ1, providing essential insights into the transport behavior of this boundary. Moreover, we observe
a captivating phenomenon where the conductance at ZZ2 exhibits prominent maxima, demonstrating a robust
correlation with the applied magnetic field. Additionally, our investigation uncovers the profound impact of
interfaces on transmission probability, with ZZ1 being notably more affected compared to ZZ2. The variation of
the Fermi energy further highlights the significant influence of magnetic field strength on the system’s conductive
properties, resulting in distinct conductance characteristics between the two regions. The combined results of
ZZ1 and ZZ2 provide valuable insights into the system’s transport properties. Notably, a clear exponential-like
trend in conductance variation with the applied magnetic field underscores the system’s strong sensitivity to
magnetic changes.
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I. INTRODUCTION

Graphene is a two-dimensional, single-layer sheet of car-
bon atoms arranged in a hexagonal lattice structure [1]. It is
the thinnest, strongest, and most conductive material known to
science, with exceptional mechanical, electrical, and thermal
properties. Graphene has sparked widespread advancements
in various disciplines due to its potential applications [1–5].
Bilayer graphene (BLG) is a material composed of two layers
of graphene sheets stacked on top of each other. The two
layers are separated by a small interlayer hopping γ1, and can
exhibit different electronic properties depending on the stack-
ing order. When the two graphene layers are aligned in the
same direction, with their atoms directly on top of each other,
it is called AA-BLG. This results in perfect lattice symmetry,
which gives rise to a special electronic band structure that
depends on the interlayer spacing [6–8]. Another interesting
stacking is AB-BLG. In the AB-BLG configuration, the atoms
in the two layers are not aligned with each other, leading to a
slight variation in the electronic properties of the bilayer com-
pared to single-layer graphene (SLG). Indeed, in the absence
of an electric field, the electronic structure of the material
remains gapless at the K and K ′ points. The opening of a band
gap occurs when an external electric field is applied, allowing
for tunability of the electronic properties [9]. Similar results
hold for large twist angles [10]. The development of high-
quality samples and theoretical and experimental research into
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its distinctive electronic properties make AB-BLG appealing
for a variety of applications [11–19]. Another intriguing area
of research is on twisted bilayer graphene (TBG), where the
two graphene layers are rotated at a specific twist angle rela-
tive to each other. This twist-induced moiré pattern results in
a tunable electronic band structure, leading to the emergence
of novel electronic states such as Mott insulators, super-
conductors, and topological phases [20]. Additionally, the
study of transition metal dichalcogenides (TMDs) has gained
significant attention in recent years. TMDs are a class of two-
dimensional materials with a structure similar to graphene, but
they consist of transition metal atoms sandwiched between
two layers of chalcogen atoms [21].

Recent studies have shown that junctions between regions
of different numbers of graphene layers, such as the SLG/BLG
interfaces, can result in interesting properties. For instance,
in [22], the transmission probability through the SLG/BLG
junction was estimated in the absence of a magnetic field.
Theoretical investigations on the transport characteristics of
BLG with locally decoupled graphene sheets have also been
performed [13]. Moreover, a BLG flake sandwiched between
two single zigzag or armchair nanoribbons was studied, and
it was shown that oscillations in the conductance were seen
at energies greater than the interlayer coupling [23]. Re-
cently, it was found that the interface of these hybrid systems
exhibits an unconventional Landau quantization [24,25]. An-
other study was devoted to the effects of an electric bias and a
perpendicular magnetic field on the electron energy spectrum
in SLG/BLG and BLG/SLG structures [26]. It is generally
known that graphene has two main types of edges: zigzag
and armchair. Regarding the electrical structure of finite-size
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(a) (b)

FIG. 1. (a) Schematic presentation of hybrid SLG/BLG interfaces of types ZZ1 and ZZ2, consisting of SLG connected to an AB-BLG
subjected to a magnetic field B. The BLG width is d (yellow region). Black thick lines represent the bottom layer with A1 (red) and B1 (blue)
sites, whereas pink lines represent the top layer with A2 (white) and B2 (green) sites. (b) Diagram illustrating a configuration in which a coil
with a rectangular cross-sectional shape and a very narrow width generates a magnetic field that closely resembles the one in our specific
scenario.

systems, it has been established that graphene with zigzag
edges exhibits localized states close to Fermi energy, but those
with armchair edges do not [27–41]. As a consequence, the
existence of an edge state results in notable variations in the
transport characteristics.

Various works on the edge states of the hybrid interface
attracted our interest. Inspired by the findings in Refs. [26],
and [22], we investigate the transport properties of SLG and
AB-BLG junctions that can be created from the block shown
in Fig. 1. Our study is centered on a unique configuration,
where SLG interfaces with an AB-BLG segment subjected
to a magnetic field. It is imperative to note that our config-
uration highlights a notably asymmetric distribution of the
magnetic field. Specifically, the magnetic field exists solely
on AB-BLG, while being absent in SLG. This asymmetric
distribution of the magnetic field within the model stands as
a distinct feature, influencing the transport properties under
examination [42]. Note that a region with a sharply cutoff
magnetic field is difficult to realize experimentally. First, we
would like to point out that due to the analytical nature of
our work, we had to use some simplifications to work on a
problem that is analytically tractable. This, of course, is only
useful if the simplifications that were used in a way mimic
an experimentally possible problem. In our case, this would
mean a problem with a magnetic field in the bilayer region and
no magnetic field in the single-layer graphene region. Such a
setup can be achieved in an approximate way as follows: one
could imagine putting a superconductor as a shield above the
single-layer regions. If the superconductor is thick enough, no
magnetic field, or at least very little, could penetrate according
to the London penetration depth. Indeed, one would also have
to expect not fully sharp edges of the field near the transitions
between bilayer and single-layer graphene regions. However,
such complicated position-dependent fields would be difficult
to treat analytically. Therefore, we chose to come up with a
simplified setup that mimics the shape one would expect, to
a good extent, a sharp drop in the magnetic field. Of course,
this is not fully accurate, but for the purposes of an analytical
model that captures the main features of our idea, it should
be fine. Indeed, similar idealizations are made in any standard

quantum mechanics course when one deals with the tunneling
problem. No potential will be realizable that has perfectly
sharp edges. Nevertheless, in many situations, it can be a
relatively good approximation.

As seen in Fig. 1, the structure’s zigzag (ZZ) junctions
cannot have the same edge interface on both sides; therefore,
they always have a pair of distinct ZZ boundaries, denoted
ZZ1 and ZZ2. When considering this distinction, within the
ZZ1 border, our conductance demonstrates a dependency on
energy and exhibits antiresonances, approaching nearly zero
under high magnetic field, because of the coexistence of two
propagating channels. Our investigation demonstrates an in-
triguing conductance behavior in the bilayer graphene (BLG)
system. This is due to the influence of both the BLG width
and the magnetic field that is being used. Specifically, we have
observed that the conductance exhibits a notable dependence
on the width of the BLG, particularly at higher energies. This
phenomenon arises due to the quantum confinement effect,
which modifies the electronic states and energy levels within
the system. Furthermore, the introduction of a magnetic field
introduces a fascinating aspect to conductance behavior. The
resonances in the transmission measurements become sig-
nificant and display a clear dependence on the strength of
the magnetic field. Turning now to the ZZ2 boundary, the
conductance as a function of the magnetic field shows max-
ima, in contrast to the ZZ1 boundary, and by increasing the
width of BLG and the Fermi energy, the conductance shows
oscillation in the ZZ2 feature. The transmission probability is
substantially influenced by boundaries and the ZZ1 bound-
ary’s confinement is more significant than that of the ZZ2
boundary. Our analysis of the conductance behavior for ZZ1
and ZZ2, varying with the Fermi energy, revealed interest-
ing trends. Notably, ZZ1 demonstrated higher conductance
compared to ZZ2, while both regions showed a rapid de-
crease in conductance with increasing Fermi energy. These
findings highlight the significant impact of the magnetic field
on the conductive properties of ZZ1 and ZZ2, resulting in
distinct conductance characteristics between the two regions.
Our combined results of ZZ1 and ZZ2 presented in this study
offer valuable insights into the overall transport properties of
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the system under investigation. One of the key observations is
the conductance variation with respect to the applied magnetic
field. Notably, a clear and consistent exponential-like trend
emerges, revealing the system’s strong sensitivity to changes
in the magnetic field.

Our findings may shed light on the intriguing phenomenon
of Fabry-Perot oscillations in transmission behavior, which
emerge as a consequence of quantum interference effects.
Significantly, our work unveils a critical threshold dictated by
the interlayer hopping term, below which a single propagating
mode dominates, leading to the absence of oscillations or in-
terference. The comprehensive analysis of the length, energy,
and magnetic field influences on the transmission provides
valuable insights into the intricate behaviors of this hybrid
graphene system. These findings hold immense implications
for various applications and research areas within the scien-
tific community.

The present paper is structured as follows. In Sec. II,
we consider an SLG/AB-BLG/SLG structure and use the
full-band continuum model to establish the energy spectrum.
We introduce a formulation to describe two kinds of zigzag
boundaries of the junction, zigzag-1 (ZZ1) and zigzag-2 (ZZ2)
in Sec. III. Section IV is devoted to the numerical analysis of
our findings and comparison with the literature. In Sec. V,
we summarize our main conclusions. In the Appendix, we
mainly formulate the details of the transfer matrix method for
the SLG and BLG interfaces.

II. THEORY AND MODEL

A. Bilayer graphene

AB-BLG is a type of bilayer graphene in which the two
layers are stacked in an AB arrangement. In this stacking
configuration, the carbon atoms in one layer sit directly above
the centers of the hexagons in the other layer, resulting in a
characteristic Bernal stacking pattern [43]. It contains A1 and
B1 atoms on layer 1 and A2 and B2 on layer 2, which are
connected by interlayer coupling γ1.

To achieve our goal, we consider the geometry depicted
in Fig. 1. Then, without taking into account the minor con-
tributions of the other interlayer couplings, the effective
Hamiltonian in the vicinity of the K valley is given by [44,45]

HBLG =

⎛
⎜⎜⎝

0 vF π† 0 0
vF π 0 γ1 0

0 γ1 0 vF π†

0 0 vF π 0

⎞
⎟⎟⎠, (1)

where the momentum π = kx + iky (h̄ = 1), Â vF = 106 m/s
is the Fermi velocity for electrons in each graphene layer,
and γ1 = 0.4 eV is the nearest-neighbor interlayer hopping
term. The eigenstates of HBLG are four-component spinors
�(x, y) = [ψA1 , ψB1 , ψA2 , ψB2 ]T . In the presence of a constant
magnetic field which is described by

B(x) = B�(x − d ), (2)

one substitutes the canonical momentum p by the gauge-
invariant kinetic momentum p + eA in Eq. (1). A = (0, Bx)
is the vector potential chosen in the Landau gauge.
We may solve the eigenvalue problem by separating the

variables and writing the eigenspinors as a plane wave in the
y direction because of the conservation of py. As a result,
we write �(x, y) = eikyyψ (x, ky) and the envelope functions
ψ (x, ky) ≡ ψ (X ) depend only on a single combination of the
variables, X = x

�B
+ ky�B, with �B = √

1/(eB) the magnetic
length. They satisfy the eigenvalue equation⎛

⎜⎜⎜⎝
0

√
2ε0â 0 0√

2ε0â† 0 γ1 0
0 γ1 0

√
2ε0â

0 0
√

2ε0â† 0

⎞
⎟⎟⎟⎠� = E�, (3)

where the annihilation â = 1√
2
(X + ∂X ) and creation â† =

1√
2
(−∂X + X ) operators are fulfilling the commutation re-

lation [â, â†] = 1, with ε0 = vF /�B. Now from Eq. (3), we
obtain four coupled equations as

−i
√

2ε0âψB1 (X ) = EψA1 (X ), (4)

i
√

2ε0â†ψA1 (X ) + γ1ψA2 (X ) = EψB1 (X ), (5)

−i
√

2ε0âψB2 (X ) + γ1ψB1 (X ) = EψA2 (X ), (6)

i
√

2ε0â†ψA2 (X ) = EψB2 (X ). (7)

By eliminating ψA1 (X ), ψA2 (X ), and ψB2 (X ), we get the
fourth-order differential equation[

2ε2
0 â†â − E2

][
2ε2

0 ââ† − E2
]
ψB1 (X ) = γ1E2ψB1 (X ), (8)

or, equivalently,(
∂2

X − X 2 − 1 − 2λ+
)(

∂2
X − X 2 − 1 − 2λ−

)
ψB1 (X ) = 0,

(9)
where λ± defines the energy bands

λ± = −1

2
+ E2

2ε2
0

±
√

ε4
0 + γ 2

1 E2

2ε2
0

. (10)

Therefore, by solving Eq. (9), we can obtain the energy spec-
trum

E±
n = ±

{
ε2

0 (2n + 1) + γ 2
1

2

±
√

γ 4
1

4
+ (2n + 1)γ 2

1 ε2
0 + ε4

0

⎫⎬
⎭

1/2

, (11)

where n is an integer, the Landau level index. For γ1 → 0, the
last equation reduces to that of a single layer with spectrum

E = ±ε0

√
2n + 1 ± 1. (12)

Additionally, the general solution of Eq. (9) can be expressed
in terms of Weber’s parabolic cylinder function Dλ(Z ) [46],
where Z = √

2X . Therefore, by solving Eq. (9), we can obtain
the energy as done by [18] with considering just the magnetic
field, and also the general solution of Eq. (9) can be written in
terms of Webers parabolic cylinder function Dλ(Z ) [46], with
Z = √

2X . Thus, we have

ψB1 (Z ) = ψ+
B1

(Z ) + ψ−
B1

(Z ), (13)
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(a) (b)

FIG. 2. Spectrum representations: (a) SLG as function of wave
vector and (b) BLG as a function of magnetic field.

with

ψ+
B1

(Z ) = c+Dλ+ (Z ) + c−Dλ+ (−Z ),
(14)

ψ−
B1

(Z ) = d+Dλ− (Z ) + d−Dλ− (−Z ),

with the constants c± and d±. The rest of the components can
be derived using the coupled equations. ψA1 (Z ) = ψ+

A1
(Z ) +

ψ−
A1

(Z ) can be obtained by substituting Eq. (13) into Eq. (4),

ψ+
A1

(Z ) = c+νλ+Dλ+−1(Z ) + c−ν∗λ+Dλ+−1(−Z ),
(15)

ψ−
A1

(Z ) = d+νλ−Dλ−−1(Z ) + d−ν∗λ−Dλ−−1(−Z ),

where ν = − i
√

2ε0
E . Combining ψA1 and ψB1 in Eq. (5) gives

ψA2 (Z ) = ψ+
A2

(Z ) + ψ−
A2

(Z ) with

ψ+
A2

(Z ) = c+ζ+Dλ+ (Z ) + c−ζ+Dλ+ (−Z ),
(16)

ψ−
A2

(Z ) = d+ζ−Dλ− (Z ) + d−ζ−Dλ− (−Z ),

and ζ± = E
γ1

− 2ε2
0 λ±

γ1E . Finally, from Eq. (7), we obtain

ψB2 (Z ) = ψ+
B2

(Z ) + ψ−
B2

(Z ), with

ψ+
B2

(Z ) = c+ν∗ζ+Dλ++1(Z ) + c−ν∗ζ+Dλ++1(−Z ),

ψ−
B2

(Z ) = d+νζ−Dλ−+1(Z ) + d−νζ−λ−Dλ−+1(−Z ). (17)

B. Single-layer graphene

The eigenspinors of SLG are given by solving the time-
independent Schrödinger equation for the Hamiltonian

HSLG = vF k · σ, (18)

to end up with the wave function


(x, y) = eikyy

(
φA(x)
φB(x)

)
, (19)

where the two x-dependent components are given by

φA(x) = aα−eikxx − bα+e−ikxx, (20)

φB(x) = aeikxx + be−ikxx, (21)

and we have

kx =
√

E2 − k2
y , α± = kx ± iky

E
, (22)

with two constants a and b. Figure 2 provides a depiction of
the energy spectrum for both systems. Specifically, Fig. 2(a)
illustrates the dispersion relation for SLG as a function of

wave vector, while Fig. 2(b) displays the first three lowest
levels of BLG in relation to the magnetic field B. It is worth
nothing that a comparable result for BLG can be found in [47].

III. SLG AND BLG JUNCTION

Our presumption is that charge carriers always move from
left to right. We consider a system that combines SLG and
BLG. In this system, the leads on the left and right are SLGs,
while in between they are connected to an AB-BLG subjected
to a magnetic field. In the following, we take into considera-
tion two different zigzag boundary types: zigzag-1 (ZZ1) and
zigzag-2 (ZZ2).

A. Zigzag boundary, ZZ1

The front-most line of the bilayer edge is created by B1

and A2 sites, as shown in Fig. 1. Note that ZZ1 is aligned
to the honeycomb lattice’s zigzag direction. Then we use the
continuity of wave functions to obtain, at x = 0,

φA(x = 0) = ψA1 (Z1), (23)

φB(x = 0) = ψB1 (Z1), (24)

ψB2 (Z1) = 0, (25)

and at x = d ,

ψA1 (Z2) = φA(x = d ), (26)

ψB1 (Z2) = φB(x = d ), (27)

ψB2 (Z2) = 0, (28)

where we have set Z1 = √
2ky�B and Z2 = √

2( d
�B

+ ky�B).

B. Zigzag boundary, ZZ2

As far as ZZ2 is concerned, B2 sites form the front-most
line of the bilayer region (Fig. 1). Also, the continuity leads to
set of equations [22,48],

φA(x = 0) = ψA1 (Z1), (29)

φB(x = 0) = ψB1 (Z1), (30)

ψA2 (Z1) = 0, (31)

ψA1 (Z2) = φA(x = d ), (32)

ψB1 (Z2) = φB(x = d ), (33)

ψA2 (Z2) = 0. (34)

The above matching equations are worked out in the Ap-
pendix to establish the transmission probability T (E ) for each
boundary. Then a transfer matrix approach was used to get
the two transmission coefficients given in Eqs. (A20) and
(A29). They can serve to derive the conductance based on the
Landauer-Buttiker formula,

G(E ) = G0T (E ), (35)

with the unit G0 = 2e2/h.
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FIG. 3. Conductance as a function of the magnetic field for ZZ1
for various widths of BLG: d = 5 nm (blue line), d = 10 nm (black
line), and d = 15 nm (magenta line), and for various values of the
Fermi energy, (a) E = γ1, (b) E = 2γ1, (c) E = 2.5γ1, (d) E = 3γ1.

IV. RESULTS AND DISCUSSION

A. Zigzag boundary, ZZ1 and ZZ2

In this section, we analyze our key findings numerically
and discuss them. In Fig. 3, we show the conductance as a
function of the magnetic field for different widths of the BLG
varying the values of the Fermi energy E . After careful analy-
sis, noticeable variations in the conductance G(E ) at different
energy values have become evident. For example, the blue
curves exhibit noticeable variations in all panels (energies)
of Fig. 3, indicating a clear dependence of the conductance
on energy. This is a manifestation of Klein tunneling [49,50].
In Fig. 3(a), for E = γ1, the result shows 0 conductance
and there are no antiresonances because there is only one
propagating channel at the BLG. However, it is not the same
case for the E > γ1. In Figs. 3(b)–3(d), the G(E ) presents
antiresonances that appear with zero conductance for large
values of the magnetic field because of the coexistence of
two propagating channels. Figure 4 shows the conductance
as a function of the BLG width for the ZZ1 boundary for
four different values of the magnetic field. We notice that for
E = 0.5γ1, for which there is only one propagating channel
in the BLG, the conductance shows an exponential decay of
the resonance for sufficiently long widths and all magnetic
field values, as shown in Figs. 4(a) and 4(b). However, for
the highest energies, the resonances become important and
dependent on the magnetic field. We observe that the shapes
and the numbers of the resonances change from B = 0.1 to
B = 0.4 T. For sufficiently long widths, i.e., d > 4 nm, the
conductance G tends to 0. This result shows agreement with
our previous results [51]. The presence of the magnetic field
in the bilayer graphene in this SLG-BLG-SLG affects the
conductance and removes the periods of the antiresonances,
as seen in [23].

We exhibit in Fig. 5 the density plot of the transmission
probability as a function of the Fermi energy E and the width
of the BLG to examine the impact of the magnetic field. As
displayed in the plots, there are two separate regions of energy,

FIG. 4. Conductance as a function of the width of BLG d for ZZ1
for various Fermi energy values: E = 0.5γ1 nm (blue line), E = 2γ1

nm (black line), and E = 3γ1 nm (magenta line), and for various
values of the magnetic field B, (a) B = 0.1 T, (b) B = 0.2 T, (c)
B = 0.3 T, (d) B = 0.4 T.

set by the interlayer coupling E < γ1, and there are no antires-
onances due to the existence of just one propagation channel at
the BLG, in contrast to E > γ1, where the coexistence of two
propagating eigenchannels in the BLG lets the zero antireso-
nances appear. The behavior is comparable to that investigated
by González et al. [23], with a clear distinction between the
spatial periods, due to the presence of the magnetic field, and
also we observe that transmission is completely suppressed
for large widths of the BLG (d > 2.5) and the Klein tunneling
diminishes or becomes less prominent. Hence, we conclude
that in the presence of the magnetic field, Klein tunneling

FIG. 5. Density plot of the transmission probability as a func-
tion of bilayer region length d , and Fermi energy E for ZZ1, (a)
B = 0.1 T, (b) B = 0.2 T, (c) B = 0.3 T, (d) B = 0.4 T.
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FIG. 6. Conductance as a function of the magnetic field for ZZ2
for various widths of BLG d values: d = 5 nm (blue line), d = 10
nm (black line), and d = 15 nm (magenta line), and for various
values of the Fermi energy, (a) E = γ1, (b) E = 2γ1, (c) E = 2.5γ1,
(d) E = 3γ1.

is hampered, and instead Febry-Pérot resonances [52] appear
for E > γ1. The phenomenon of interest has been studied in
detail in a recent work [53], where the authors demonstrated
remarkable progress in understanding and controlling tunnel-
ing behavior in a similar system.

We will turn our attention now to the zigzag boundary
ZZ2, for which we plot the conductance as a function of the
magnetic field in Fig. 6 for three different widths of the BLG,
taking into account four different values of the Fermi energy.
In Fig. 6(a), the conductance shows maxima for B < 0.10 T, in
contrast to the ZZ1 boundary; by increasing the width of BLG
and the Fermi energy, the conductance shows oscillations in
the ZZ2 case. These results show that the transmission proba-
bility depends more strongly on boundaries, and confinement
is more important in the ZZ1 boundary than the ZZ2 bound-
ary, which is in agreement with the Ref. [22] results. In Fig. 7,
we plot the conductance as a function of the width d using the
same parameters as in Fig. 4. We observe fewer resonances
than in the ZZ1 case for B � 0.3 T. By increasing the BLG
width, we see that our conductance also vanishes for the ZZ2
boundary.

Figure 8 displays the density plots for the ZZ2 case. There
are two important differences with respect to the ZZ1 case; see
Fig. 5. First, for the energy region E < γ1, the transmission
is more important, with an obvious difference in the contrast
of the spatial resonances. We note too that the transmission
with respect to d is more similar to the ZZ1 case, but both
results indicate strong confinement at the ZZ1 boundary. In
Fig. 9, we present the conductance as a function of the Fermi
energy E . In the analysis conducted for ZZ1 and ZZ2, intrigu-
ing trends emerge. Notably, the blue line, corresponding to
B = 0.1 T, exhibits a prominent peak, suggesting an enhanced
conductance in ZZ1 compared to ZZ2. On the other hand, for
both ZZ1 and ZZ2, the black and magenta lines representing
B = 0.2 and B = 0.3 T, respectively, show a clear conver-
gence towards zero with increasing Fermi energy. These
findings indicate that higher magnetic fields lead to a rapid

FIG. 7. Conductance as a function of the width of BLG d for ZZ2
for various Fermi energy values: E = 0.5γ1 nm (blue line), E = 2γ1

nm (black line), and E = 3γ1 nm (magenta line), and for various
values of the magnetic field B, (a) B = 0.1 T, (b) B = 0.2 T, (c)
B = 0.3 T, (d) B = 0.4 T.

FIG. 8. Density plot of the transmission probability as a function
of bilayer region length d , and Fermi energy E for ZZ2, with (a)
B = 0.1 T, (b) B = 0.2 T, (c) B = 0.3 T, (d) B = 0.4 T.

FIG. 9. Conductance as a function of the Fermi energy for
(a) ZZ1 and (b) ZZ2, for various values of the magnetic field:
B = 0.1 T (blue line), B = 0.2 T (black line), and B = 0.3 T (ma-
genta line).
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FIG. 10. (a) Conductance as a function of the magnetic field for
d = 5 nm (blue line) and d = 10 nm (black line), with E = 0.1γ1.
(b) Conductance as a function of the Fermi energy for d = 5 nm
(blue line) and d = 10 nm (black line), with B = 0.1 (T).

decrease in conductance for both ZZ1 and ZZ2. This suggests
a significant influence of the magnetic field strength on the
conductance behavior in both regions, leading to distinctly
different conductive properties between ZZ1 and ZZ2.

B. Combined results

In this section, we consolidate our analysis by considering
the interfaces ZZ1 and ZZ2 within the BLG system. We aim
to elucidate the behavior of electron transmission through the
BLG positioned between two SLG regions under the influence
of a perpendicular magnetic field. The combined findings
shed light on the overall transport properties of the system.
Figure 10(a) showcases the total conductance as a function
of the magnetic field for specific separations, d = 5 nm (blue
line) and d = 10 nm (black line), both at E = 0.1γ1. These
results unveil intriguing trends in electron transport behavior
within the BLG. The observed conductance variation with
the magnetic field exhibits an exponential-like trend, signi-
fying a pronounced sensitivity to the applied magnetic field.
Figure 10(b) presents the conductance concerning the Fermi
energy for d = 5 and d = 10 nm, maintaining a constant mag-
netic field of B = 0.1 T. These findings offer valuable insights
into distinct electron transport behaviors observed within the
BLG system associated with varying widths. Specifically, for
the d = 10 nm case, an initial conductance of zero denotes
a lack of electron transmission at the lowest Fermi energy
considered. This observation strongly suggests the potential
formation of a band gap in the bilayer system at this particular
width. Conversely, for the d = 5 nm case, a contrasting trend
emerges. The conductance exhibits an initial sharp increase
as the Fermi energy rises, indicating the presence of available
electron states conducive to electron transport within the bi-
layer system at this specific width.

V. CONCLUSION

After closely analyzing the impact of a perpendicular
magnetic field within BLG surrounded by SLG regions, our
investigation revealed notable insights. Our focus on this

configuration highlighted the specific influence of the mag-
netic field solely within the BLG amidst the surrounding SLG
regions. This examination sheds light on the magnetic field’s
selective impact within the BLG context, contributing to a
deeper understanding of its effect in this composite structure.
We looked at both types of zigzag boundaries. Starting with
ZZ1, we showed that the conductance as a function of the
magnetic field at normal incidence (ky = 0) seems dependent
on energy. Due to pseudospin conservation, this is an instance
of Klein tunneling. For E = γ1, the result shows zero conduc-
tance and there are no antiresonances because there is only
one propagating channel at the BLG, but for E > γ1, G(E )
presents antiresonances that appear with zero conductance for
large values of the magnetic field because of the coexistence
of two propagating channels.

As a function of the Â BLG width, we have found that for
E = 0.5γ1, for which there is only one propagating channel in
the BLG, the conductance shows an exponential decay of the
resonance for a sufficiently long width and all magnetic field
values. For the highest energies, the resonances become im-
portant and dependent on the magnetic field. Our results also
show that the shapes and numbers of the resonances change
from B = 0.1 to B = 0.4 T. For sufficiently long widths, i.e.,
Â d > 4 nm, the conductance G tends to 0.Â For the zigzag
boundary ZZ2, we found distinct behaviors compared with the
ZZ1 boundary. We observed maxima for small values of the
magnetic field in the conductance plot, in contrast to the ZZ1
boundary, and by increasing the width of BLG and the Fermi
energy, the conductance shows oscillatory behavior in the ZZ2
feature. Our results showed that the transmission probability
depends more strongly on boundaries, and confinement is
more important in the ZZ1 boundary than in the ZZ2 bound-
ary. We have also analyzed the conductance as a function of
the width and length d . We have observed fewer resonances
than in the ZZ1 case for B � 0.3 T. Increasing the BLG width,
our conductance G(E ) also vanishes for the ZZ2 boundary.

Our analysis of the conductance behavior for ZZ1 and ZZ2,
varying with the Fermi energy, revealed interesting trends.
Notably, ZZ1 demonstrated higher conductance compared to
ZZ2, while both regions showed a rapid decrease in conduc-
tance with increasing Fermi energy. These results demonstrate
the important influence of the magnetic field on the transport
properties of ZZ1 and ZZ2, leading to different conductances
between the two locations.

APPENDIX: TRANSFER MATRIX FOR SLG
AND BLG JUNCTION

In this Appendix, we briefly review the main steps of our
analytical calculations. In order to determine the transmission
probability, we impose the appropriate boundary conditions in
the context of the transfer matrix approach. More explicitly,
for boundary ZZ1, given by Eqs. (23) and (26), we obtain six
equations with six unknowns, at x = 0,

α− − rα+ = c+νλ+Dλ+−1(Z1) + c−ν∗λ+Dλ+−1(−Z1) + d+νλ−Dλ−−1(Z1) + d−ν∗λ−Dλ−−1(−Z1), (A1)

1 + r = c+Dλ+ (Z1) + c−Dλ+ (−Z1) + d+Dλ− (Z1) + d−Dλ− (−Z1), (A2)

0 = c+ν∗ζ+Dλ++1(Z1) + c−ν∗ζ+Dλ++1(−Z1) + d+νζ−Dλ−+1(Z1) + d−νζ−λ−Dλ−+1(−Z1), (A3)
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and for x = d ,

c+νλ+Dλ+−1(Z2) + c−ν∗λ+Dλ+−1(−Z2) + d+νλ−Dλ−−1(Z2) + d−ν∗λ−Dλ−−1(−Z2) = tα−eikxd , (A4)

c+Dλ+ (Z2) + c−Dλ+ (−Z2) + d+Dλ− (Z2) + d−Dλ− (−Z2) = teikxd , (A5)

c+ν∗ζ+Dλ++1(Z2) + c−ν∗ζ+Dλ++1(−Z2) + d+νζ−Dλ−+1(Z2) + d−νζ−λ−Dλ−+1(−Z2) = 0. (A6)

We note that the eigenspinors for SLG at (x = 0) consist of the incident and reflected plane waves; then Eqs. (20) are rewritten
as

φA(x = 0) = α− − rα+, (A7)

φB(x = 0) = 1 + r, (A8)

and consist of the transmitted waves at (x = d )

φA(x = d ) = tα−eikxd , (A9)

φB(x = d ) = teikxd , (A10)

where r and t denote the reflection and transmission coefficients. Equations (A1) and (A2), as well as Eqs. (A4) and (A5), can
be reformulated using the transfer matrix approach [54],

GSLGPx=0

[
1
r

]
= GBLG

+,Z1

[
c+
c−

]
+ GBLG

−,Z1

[
d+
d−

]
, (A11)

GBLG
+,Z2

[
c+
c−

]
+ GBLG

−,Z2

[
d+
d−

]
= GSLGPx=d

[
t
0

]
, (A12)

with

GSLG =
(

α− −α+
1 1

)
, (A13)

Px =
(

eikx 0
0 e−ikx

)
, (A14)

GBLG
±,Z1/2

=
(

νλ±Dλ±−1(Z1/2) ν∗λ±Dλ±−1(−Z1/2)
Dλ±−1(Z1/2) Dλ±−1(−Z1/2)

)
. (A15)

Combining Eqs. (A3) and (A6), its matrix counterpart can be expressed as[
d+
d−

]
= NZZ1

[
c+
c−

]
, (A16)

with

NZZ1 = −
[(

νζ−Dλ−+1(Z1) νζ−Dλ−+1(−Z1)
νζ−Dλ−+1(Z2) νζ−Dλ−+1(Z2)

)]−1[(
ν∗ζ+Dλ++1(Z1) ν∗ζ+Dλ++1(−Z1)
ν∗ζ+Dλ++1(Z2) ν∗ζ+Dλ++1(−Z2)

)]
. (A17)

Combining Eqs. (A11), (A12), and (A16), the transfer matrix of the our structure can be obtained as[
1
r

]
= MZZ1

[
t
0

]
, (A18)

with

MZZ1 =(GSLGPx=0)−1
[
GBLG

+,Z1
+ GBLG

−,Z1
NZZ1

][
GBLG

+,Z2
+ GBLG

−,Z2
NZZ1

]−1GSLGPx=d . (A19)

From Eq. (A18), the transmission coefficient can be derived as

tZZ1 = M−1
ZZ1. (A20)

In the same way, by requiring the continuity using Eqs. (29) and (32), we get

α− − rα+ = c+νλ+Dλ+−1(Z1) + c−ν∗λ+Dλ+−1(−Z1) + d+νλ−Dλ−−1(Z1) + d−ν∗λ−Dλ−−1(−Z1), (A21)

1 + r = c+Dλ+ (Z1) + c−Dλ+ (−Z1) + d+Dλ− (Z1) + d−Dλ− (−Z1), (A22)

0 = c+ζ+Dλ+ (Z1) + c−ζ+Dλ+ (−Z1) + d+ζ−Dλ− (Z1) + d−ζ−Dλ− (−Z1), (A23)
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and for x = d ,

c+νλ+Dλ+−1(Z2) + c−ν∗λ+Dλ+−1(−Z2) + d+νλ−Dλ−−1(Z2) + d−ν∗λ−Dλ−−1(−Z2) = tα−eikxd , (A24)

c+Dλ+ (Z2) + c−Dλ+ (−Z2) + d+Dλ− (Z2) + d−Dλ− (−Z2) = teikxd , (A25)

c+ζ+Dλ+ (Z2) + c−ζ+Dλ+ (−Z2) + d+ζ−Dλ− (Z2) + d−ζ−Dλ− (−Z2) = 0. (A26)

All of these equations can be written in compact form by introducing the transfer matrix,

MZZ2 =(GSLGPx=0)−1
[
GBLG

+,Z1
+ GBLG

−,Z1
NZZ2

][
GBLG

+,Z2
+ GBLG

−,Z2
NZZ2

]−1GSLGPx=d , (A27)

where

NZZ2 = −
[(

ζ−Dλ− (Z1) ζ−Dλ− (−Z1)
ζ−Dλ− (Z2) ζ−Dλ− (−Z2)

)]−1[(
ζ+Dλ+ (Z1) ζ+Dλ+ (−Z1)
ζ+Dλ+ (Z2) ζ+Dλ+ (−Z2)

)]
. (A28)

As a result, we can express the transmission coefficient tZZ2 as

tZZ2 = M−1
ZZ2. (A29)
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