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The substantial amount of recent research into spin torques has been accompanied by a revival of interest
in the spin-Hall effect. This effect contributes to the spin torque in many materials, including topological
insulator/ferromagnet devices, Weyl semimetals, and van der Waals heterostructures. In general, the relative
sizes of competing spin torque mechanisms remain poorly understood. Whereas a consensus is beginning to
emerge on the evaluation of the proper spin current, the role of extrinsic disorder mechanisms in the spin-Hall
effect has not been clarified. In this work, we present a comprehensive calculation of the extrinsic spin-Hall
effect while focusing on the bulk states of topological insulators as a prototype system and employing a fully
quantum-mechanical formalism to calculate the proper spin current. Our calculation of the proper spin current
employs a 4×4 k · p Hamiltonian describing the bulk states of topological insulators. At the same time, we
provide a qualitative explanation of the proper spin currents calculated based on an effective 2×2 Hamiltonian
obtained via a Schrieffer-Wolf transformation. We find that the extrinsic contribution to the proper spin current,
driven by side jump, skew scattering, and related mechanisms, is of a comparable magnitude to the intrinsic
contribution, making it vital to take such disorder effects into account when seeking to understand experiments.
Among the scattering effects considered, side jump scattering is the primary contributor to the extrinsic spin-Hall
effect. The total spin conductivity calculated here is too small to explain experimentally measured spin torques,
hence we expect the spin-Hall effect to make a negligible contribution to the spin torque in topological insulator
structures.
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I. INTRODUCTION

The spin-Hall effect (SHE), the generation of a transverse
spin current in response to an applied electric field, has wit-
nessed a surge of renewed interest in recent years due to its
relevance to spin torques, which provide a promising avenue
towards electrical control of magnetic degrees of freedom
[1–6]. Following its prediction [7–11], the SHE has been
observed in semiconductors [12,13] and metals [14–23]. Re-
cently, it has been studied in more exotic materials such as
topological insulators, Weyl semimetals [24,25], and van der
Waals heterostructures [26–33]. Spin torque devices that uti-
lize the spin Hall effect do this by generating spin currents
in a material with spin-orbit coupling which flow into an
adjacent magnetic material in which the polarized spins exert
a torque on the magnetization. The inverse spin Hall effect has
also received considerable research interest [34–41], as it has
its own spintronic applications in spin-to-charge conversion.
While spin currents of intrinsic origin have received most
theoretical attention [42–45], the need persists for a more
profound understanding of extrinsic spin currents, which form
the subject of this work.

The difficulty in theoretically studying the spin-Hall effect
lies in the definition of the spin current. The intuitive and
conventional definition of the spin current is the product of
the spin and velocity operators [46–55]. However, the genera-
tion of a spin current generally requires spin-orbit coupling,
which causes spin precession and hence nonconservation.

This makes the conventional definition meaningless in most
contexts of interest. One way to address this is to circumvent
the spin current altogether by calculating directly the spin
density and/or spin accumulation [56–59]. However, there are
many systems where the spin current itself is the quantity of
interest, including magnetic systems with sizable spin-Hall
torques, discussed below. The charge current generated in the
inverse SHE is the Onsager inverse of the spin current in the
SHE [45], and hence employing the correct physical definition
of the spin current is also important for understanding this
effect. To evaluate the spin-Hall effect in spin-orbit coupled
systems, one needs to evaluate the proper spin current, which
takes into account the torque dipole arising from spin pre-
cession [45,60–67]. The torque dipole is notoriously difficult
to evaluate for Bloch electrons, and, until recently, available
theories only provided results for simple two-dimensional
(2D) effective spin-1/2 models, with the spin primarily in
the plane. However, there have been new developments in
the understanding of the SHE and the proper spin current.
Two recent theories have brought to light the relationship
between the intrinsic proper spin current and the underlying
topological structure of the Hilbert space, with very similar
results [44,45]. A quantum-mechanical study determined the
intrinsic contribution to the proper spin current and SHE, re-
lating the intrinsic proper spin current to the interband matrix
elements of the Berry connection [44]. The results are broadly
in agreement with the evolving semiclassical understanding
of the SHE [45], in which the intrinsic proper spin current is
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FIG. 1. Spin-Hall effect mechanisms: (a) Intrinsic mechanism, electrons with opposite spin experience opposite spin-orbit fields due to the
band structure of the material, and hence they tend to follow different trajectories. (b) Skew scattering, electrons scattering off of impurities
in the material will scatter in different directions depending on their spin. (c) Side jump, electrons scattering off of impurities are displaced
spatially and the direction will depend on their spin; the net effect of these displacements can generate a current. These scattering effects can
occur due to the spin-orbit coupling of the impurity or due to the interplay between the impurity potential and the materials intrinsic spin-orbit
coupling.

expressed in terms of the Berry curvature. The semiclassical
study also considered nonuniform systems, including first-
order spatial gradients, which is necessary for spin currents
in equilibrium [45].

A complete description of the spin Hall effect must
necessarily include extrinsic mechanisms due to impurity
scattering. Scattering introduces sizable transport effects that
are independent of the disorder strength, making them indis-
tinguishable from intrinsic mechanisms. This has been studied
in depth using the conventional definition of the spin current
[68–73], and it is also known to occur in the anomalous Hall
effect [74–76]. Extrinsic effects on the proper spin current
have been studied in the past in Ref. [68], which presented
a formula for the proper spin current that included disorder
effects. This work clearly showed that the inclusion of dis-
order is vital for an accurate calculation of the proper spin
current, as it showed that disorder effects can sometimes be
the dominant contribution to the proper spin current. The
complex semiclassical approach of Ref. [68] requires the use
of fictitious electric and magnetic fields with respect to the
wave packet center of mass, and it does not directly relate
to topological quantities. Furthermore, although the approach
can be applied more generally, the formula presented is re-
stricted to specific 2D spin-1/2 systems with the spin lying
in the plane. This calls for a general, systematic theory of
disorder in the context of the proper spin current and the SHE.

In light of the above, in this paper we develop a fully
quantum-mechanical formalism for the calculation of proper
spin currents of extrinsic origin, including skew scattering and
side jump. This work aims to (i) provide a general blueprint
for calculating the full spin current in the presence of disorder,
and (ii) apply this method to calculate the full spin Hall effect
due to the bulk states of 3D topological insulators, focusing
on the disorder contributions. We determine the extrinsic spin
currents up to zeroth order in the scattering time τ , which we
take to be a measure of the disorder strength. We consider
the effects of a scalar disorder potential combined with band-
structure spin-orbit coupling, leading to skew scattering and
side jump, with the latter incorporating an electric field cor-
rection to the scattering term [78–81]. Pedagogical diagrams
of these mechanisms are shown in Fig. 1. The spin current
contributions from these two mechanisms appear to zeroth
order in the scattering time. They are independent of disorder
strength and appear due to the disorder-independent part of

the nonequilibrium density matrix ρ
(0)
E . Hence, these extrinsic

contributions to the spin current compete with the intrinsic
contributions [79,81], which by definition are independent of
the disorder strength. It is crucial to consider disorder effects
on the proper spin current: not only is this the only physi-
cally meaningful definition, but, as the study of the intrinsic
case shows, many of the conventional spin current terms are
exactly canceled by the torque dipole correction [44], and
it is natural to expect similar cancellations in the extrinsic
contributions.

We consider, as a prototype system, the bulk states of
topological insulators (TIs). This choice is motivated by the
observation that topological insulators are excellent candi-
dates for building spin torque devices due to their high
charge to spin conversion efficiency. Spin torques are es-
pecially strong in topological insulators [82–94], and large
spin torques have been demonstrated experimentally in a
plethora of ferromagnet (ferrimagnet)/TI heterostructures
[95–110], including room-temperature magnetization switch-
ing [111–114]. The extent to which the spin-Hall effect
contributes to the spin torque has yet to be conclusively settled
[83,97,105,115], and a full account of the spin-Hall effect
cannot be given without considering the extrinsic contribution
to the physical spin current.

Hence, for concreteness, after introducing the general
formalism for calculating the proper spin current in the pres-
ence of disorder, we determine the linear response of the
TI bulk density matrix to an electric field in a system with
short-ranged nonmagnetic impurities. We then formulate an
expression for the extrinsic proper spin current using the same
approach that was used in Ref. [44] for the intrinsic case.
The main results we present are as follows: (i) The extrinsic
spin-Hall effect in TIs is of a similar magnitude to the intrinsic
spin-Hall effect, as shown in Fig. 2, which may be regarded as
a summary of the central results of this work; (ii) the largest
component of the extrinsic spin current, primarily driven by
side jump scattering, should generate a fieldlike spin torque;
(iii) the size of the spin currents generated by the spin-Hall
effect in TIs should have a negligible contribution on the total
spin torque. As Fig. 2 shows, the spin conductivities due to
the SHE are of the order 103(h̄/2e)�−1m−1, which is one to
two orders of magnitude smaller than the spin conductivities
reported in experiment [95,111,112,114]. Hence, the only po-
tentially sizable bulk state contribution to the TI spin torque
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FIG. 2. The spin-Hall conductivity σ y
zx vs the Fermi energy EF

for the TI bulk states in Bi2Se3 with Zeeman field m ‖ ẑ and
|m| = 10 µeV (Bi2Se3 parameters from Ref. [77]).

is the spin transfer torque, introduced in Ref. [116]. We note,
at the same time, that the expression we present for the spin
current is general and can be applied in further studies to other
materials of interest.

This paper is organized as follows: first in Secs. II and
III we present the model Hamiltonian and linear-response
formalism based on the density matrix. Next we discuss the
calculation of the proper spin current, and we present a gen-
eral formula for its evaluation. Then in Sec. IV we present
our results for the extrinsic spin conductivity in topological
insulators, focusing on Bi2Se3 for concreteness. We show
that different components of the spin current have different
dependencies on the impurity strength and Zeeman field. In
Sec. V we discuss the role of the extrinsic and intrinsic spin
Hall effect in topological insulator spin torques and potential
ways to measure the extrinsic spin-Hall effect. Lastly, we
discuss the applicability of our proper spin current calculation
to other systems.

II. MODEL HAMILTONIAN

Bulk TI states are described by the Hamiltonian H0 = εk +
Hso + U + eE · r, where εk = C0 + C1k2

z + C2k2
‖ , the spin-

orbit Hamiltonian Hso is given by Ref. [77], U is the disorder
contribution, r is the position operator, and eE · r is the elec-
tric potential. The disorder contribution is calculated using
the Born approximation, and the electric potential is treated
perturbatively. In the basis {1/2,−1/2, 1/2,−1/2}, the spin-
orbit Hamiltonian is

Hso =

⎛
⎜⎜⎝

−M + mz m− Bkz Ak−
m+ −M − mz Ak+ −Bkz

Bkz Ak− M + mz m−
Ak+ −Bkz m+ M − mz

⎞
⎟⎟⎠,

(1)

with M = M0 + M1k2
z + M2k2

‖ , A = A0 + A2k2
‖ , B = B0 +

B2k2
z , k2

‖ = k2
x + k2

y , k± = kx ± iky, and m± = mx ± imy. In
our Hamiltonian, we include a small Zeeman field m to

remove spin degeneracy; for most of our calculations, we set
it to be 10 µeV. It can be thought of as spin splitting due to
an applied external magnetic field, as one is often used in
spin torque experiments [6]. For most of the calculation, we
have ignored the hexagonal warping terms due to the added
complexity. However, their effects have been calculated and
are discussed in Sec. IV.

This model is only accurate near the band center and is
valid in the regime k < 4×108 m−1. We use this k · p Hamil-
tonian here despite its limitations as it allows us to apply
our transport formalism to the problem. Our approach has
an advantage over other numerical models and methods that
struggle to properly treat disorder.

III. LINEAR RESPONSE

We use a kinetic equation formalism to calculate the linear
response of the bulk states to an electric field E, start-
ing from the quantum Liouville equation as described in
Refs. [78,81,117]. This transport formalism can be thought of
as the quantum analog of the Boltzmann equation. The linear
response of the bulk states is characterized by the following
kinetic equation:

∂〈ρE 〉
∂t

+ i

h̄
[H0, 〈ρE 〉] + Ĵ0(〈ρE 〉) = eE

h̄
· D〈ρ0〉

Dk
, (2)

where k is the wave vector, 〈ρ0〉 is the equilibrium density
matrix, 〈ρE 〉 is the nonequilibrium density matrix to first order
in the electric field, and Ĵ contains the disorder contribution.
The equilibrium density matrix is simply the Fermi-Dirac
distribution. Here 〈ρ〉 represents the disorder-averaged density
matrix. The differential D/Dk is the covariant derivative de-
fined by DÔ/Dk = dÔ/dk − i[R, Ô], where R is the Berry
connection.

To solve this kinetic equation, we break the density matrix
〈ρE 〉 up into two components: nE , a band diagonal part, and
SE , a band off-diagonal part. In the steady-state limit, the
kinetic equation for the diagonal part simplifies greatly, and
the solution can be found by solving the equation

[Ĵ0(nE )]nn = eE
h̄

· ∂ f n
k

∂k
. (3)

Carrying out the time integral for the off-diagonal part gives

SE ,nm = −ih̄
eE · Rnm

(
f n
k − f m

k

) − [Ĵ0(nE )]nm

εn
k − εm

k

, (4)

where εn
k is the energy of the eigenstate in band n with wave

vector k. The first part of (4) is purely intrinsic and will be
ignored in this calculation; the spin current due to this term
was studied in Ref. [44]. The disorder contribution Ĵ is cal-
culated in the Born approximation. The Born approximation
scattering term is

J ( f̂ ) = 1

h̄2

∫ ∞

0
dt ′〈e−ηt ′

[Û , e−iĤt ′/h̄[Û , f̂ ]eiĤt ′/h̄]〉kk. (5)

Here we consider short-ranged scalar disorder of the form
Ui = U0δ(ri − r), where the impurities are enumerated by the
index i. We are concerned with the disorderaveraged density
matrix and kinetic equation, so this index i has been summed
over. The way in which this scattering integral is calculated is
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outlined in Ref. [117]. Calculating the scattering integral (5)
and solving (3) will give the band diagonal response to order
−1 in the impurity density. Substituting this solution into (4)
will give the extrinsic off-diagonal density matrix to zeroth
order in the impurity density.

To find the diagonal part of the nonequilibrium density
matrix to zeroth order in the impurity density, we need to
include some extra corrections to the scattering term. The
band-diagonal kinetic equation to zeroth order in the impurity
density is

∂n0
E

∂t
+ i

h̄

[
H0, n0

E

] + Ĵ0
(
n0

E

) = −ĴE (〈ρ0〉) − Ĵsk
(
n−1

E

)
, (6)

where ĴE is an electric field correction to the scattering term
[78], and Ĵsk is the scattering term found by substituting
(4) back into the band-diagonal part of the scattering inte-
gral (5). In semiclassical calculations, ĴE is considered to be
part of side-jump scattering and Ĵsk part of skew-scattering
[78,80,81]. We find that these scattering terms are crucial for
a proper calculation of the extrinsic spin current.

The general definition of the proper spin current is Ĵ i
j =

d (r̂ j ŝi )/dt . The regularly used conventional spin current Ji
j =

1/2{si, v j} fails to account for the absence of spin conserva-
tion in materials with spin orbit coupling. As has been shown
in a recent paper, the proper intrinsic spin current can be
captured by the following equation [44]:

J i
jl =

∑
k

[
eEl l̂

h̄
×

∑
m

�i
m fm

]
j

, (7)

where � is a topological quantity related to the Berry connec-
tion and spin operator. This formula only captures intrinsic
spin currents and does not account for disorder contributions.
However, disorder contributions can be straightforwardly cal-
culated using the same methodology used in Ref. [44]. Here
we will evaluate these extra contributions.

The proper spin current can be broken up into two parts:
(i) The conventional spin current {si, v j}, where the extrinsic
terms due to the conventional spin current are

Ji
jl =

∑
m,k

si
mmnEl

m

h̄

∂εm

∂k j
− si

mm

2
{R j, [Ĵ0(nEl )]od}mm. (8)

(ii) The torque dipole correction {∂si/∂t, r̂ j}.
To evaluate the torque dipole in the proper spin current,

we must allow the density matrix to have terms that are
off-diagonal in the wave vector k. To do this, we expand
the density matrix ρkk′ perturbatively in terms of a small
off-diagonal wave vector Q, such that k ≡ q+ = q + Q/2
and k′ ≡ q− = q − Q/2. Using this transformation, we can
reformulate our kinetic equation. This will give successive
equations each of increasing order in the perturbation Q; the
zeroth-order equation is simply (2). The kinetic equation to
first order in Q is

∂ρqQ

∂t
+ i

h̄
[H0q, ρqQ] + Ĵ0(ρqQ) = − iQ

2h̄
·
{

DH0q

Dq
, ρq

}
, (9)

where ρq is simply the solution to (2) and ρqQ is the density
matrix to first order in Q. This kinetic equation is solved in an
identical manner to (2), as the scattering term to linear order

in Q is identical to the scattering term diagonal in wave vector.
Due to the form of the torque dipole operator, only solutions
to the first order in Q are required for the proper spin current
calculation.

The extrinsic term from the torque dipole contribution is

I i
jl = Tr ti,q

(
∂SqQ,El

∂Qj

)
Q→0

, (10)

where ti = i/h̄[H0, si], and the part of SqQ that contributes to
the spin current is

Smn
qQ = −ih̄

Jmn(nqQ)

εm − εn
. (11)

The terms in (8) and (10) together give the extrinsic proper
spin current. Note that the kinetic equations used in this
derivation assume that the system is in the weak scattering
limit [117]. Hence, this formula can be used generally to cal-
culate extrinsic spin currents in the weak scattering limit for
any system that can be described by a single-particle Hamil-
tonian, in this work we focus on spin currents in topological
insulators.

IV. RESULTS

We solved Eqs. (2), (6), and (9) numerically to find the
linear response of the TI bulk states to an electric field, and
we calculated the induced spin currents flowing out-of-plane
‖ ẑ. We calculated the scattering term Ĵ0 by first integrating the
scattering out, then the scattering in was calculated iteratively
until convergence was reached. Further details on this part
of the calculation can be found in the Supplemental Material
[118].

We calculated the spin conductivities σ i
zx, where i = x, y, z.

This means that we have a spin current flowing in ẑ of spins
aligned along î in response to an electric field along x̂. These
are the spin conductivities relevant to spin torques, as we are
concerned with spins flowing from the TI into the interface
with the magnetic material. For the following discussion, we
set the Zeeman field m ‖ ẑ. We discuss results for other Zee-
man field orientations later. We found J z

zx to be exactly 0.
However, we found spin currents J x

zx and J y
zx to be nonzero.

A. Extrinsic contributions to the TI SHE

The primary contributions to the spin current J y
zx originate

from the electric field correction to the scattering as well as the
band-structure skew scattering. Interestingly, it has recently
been shown that these same mechanisms are also important
for the surface-state torque [119,120]. We find that there is
also a contribution from the extrinsic off-diagonal elements of
the density matrix SE , however this contribution is of a negli-
gible magnitude. This means that the primary contribution to
this spin-Hall current comes from n0

E , hence the size of this
spin current should be independent of the impurity density.

The spin current J x
zx is due to the band diagonal part of

the density matrix n(−1)
E , and it can be of a similar order of

magnitude to the intrinsic spin current. This spin current does
not have any contributions from the electric field scattering,
skew scattering, band off-diagonal elements, or the torque
dipole correction. This means that this spin current is linear in
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FIG. 3. The total extrinsic spin-Hall conductivity σs vs the Fermi
energy EF for the TI bulk states in Bi2Se3 with Zeeman field m ‖ ẑ
and |m| = 10 µeV (Bi2Se3 parameters from Ref. [77]).

the scattering time and can be enhanced in clean samples with
a lower impurity density. Estimations based on experimental
results of the bulk conductivity [121] indicate that Bi2Se3

has a scattering time of order 0.1 ps. So we chose numbers
for the impurity density and scattering potential such that we
have a scattering time of the same order of magnitude. Calcu-
lations with larger scattering times have also been included
to demonstrate the dependence of the spin current on the
impurity density. Furthermore, the spin current J x

zx is linear in
the Zeeman energy, and for a Zeeman energy of mz = 1 meV
and scattering time τ = 0.1 ps its magnitude is twice the value
of the spin current J y

zx. This shows that it is also possible to
enhance the extrinsic spin-Hall effect in magnetized TIs.

We find that in the TI bulk, the spin current due to the
torque dipole correction (10) is zero for both spin currents J x

zx
and J y

zx. The spin current from the conventional spin current
(8) is the only contribution to the extrinsic proper spin current.
However, even in this case it is crucial to use the proper spin
current and not the conventional spin current as most of the
contributions from the torque dipole correction exactly cancel
terms in the conventional spin current [44]. Further details on
these cancellations can be found in the Supplemental Material
[118].

We note that the model Hamiltonian is accurate up to
a Fermi energy of around 20 meV and remains reasonably
accurate up until 40 meV [77]. Our results beyond this point
should be regarded as approximate: they are included here
since experimentally the chemical potential of Bi2Se3 will
often be on the order of 100 meV [122–124].

In Fig. 3 we plot the total extrinsic spin conductivity versus
the Fermi energy. We set the zero of energy at the conduction-
band minimum. The plot shows that the magnitude of the
extrinsic spin conductivities tends to increase monotonically
with the Fermi energy. It also shows that the extrinsic spin
conductivities are of a comparable magnitude to the intrinsic
spin conductivity calculated in Ref. [44]. The spin conduc-
tivity σ x

zx is plotted for two different scattering times, τ =
0.1, 1 ps. Note, the scattering time is dependent on the Fermi
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FIG. 4. The extrinsic spin-Hall conductivity σ y
zx vs the Fermi

energy EF for the TI bulk states due to skew scattering and electric
field scattering in Bi2Se3 with Zeeman field m ‖ ẑ and |m| = 10 µeV
(Bi2Se3 parameters from Ref. [77]).

energy, and these τ numbers represent the scattering time at
EF = 50 meV. Since we expect the scattering time to be on
the order of magnitude τ ∼ 0.1 ps, we expect the spin current
J x

zx to be of a negligible order of magnitude compared to J y
zx.

However, we do comment that in very clean samples this may
not be the case.

Figure 4 shows the spin conductivity σ
y
zx due to the first

term in (8) from the electric field and skew scattering terms.
In this figure, we can see that the electric field correction gives
the largest contribution to the extrinsic spin current, with the
spin current due to skew scattering being roughly an order
of magnitude smaller than it is at lower Fermi energies, and
growing to be about one-third the size of it at 100 meV. Each
contribution has an opposite sign and hence they combine
destructively when calculating the total spin current.

B. Analysis of extrinsic TI spin currents

We find the direction of the Zeeman field to significantly
effect the magnitude and direction of extrinsic spin currents.
This is due to the coupling of the Zeeman terms to spin-orbit
terms in our Hamiltonian. As shown in Ref. [116],
the conduction band will have an effective spin-orbit
field of Hc = h̄/2 σ · � ≡ h̄/2 (σz�z + σ+�− + σ−�+),
where σ± = (σx ± iσy)/2, �z = −(A2k2

‖/h̄M2) mz +
(ABkz/h̄M2) k‖ · m‖, and �± = (ABkzk±/h̄M2) mz −
(B2k2

z /h̄M2) m± + (A2k∓/h̄M2) (k×m)z. We can see how
this directly relates to our spin currents that are linear
in the scattering time. For a Zeeman field ‖ ẑ we have a
spin current J x

zx that can be directly related to the term
(ABkzkx/h̄M2) mzσx in the spin-orbit field. Furthermore, for
a rotated Zeeman field aligned ‖ x̂ we find the spin current
linear in the Zeeman energy to have the spin rotated such that
we get a spin current of identical magnitude J z

zx, which can be
related to the term (ABkzkx/h̄M2) mxσz. For a Zeeman field
‖ ŷ there will be no spin current that is linear in the scattering
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TABLE I. The zero and nonzero spin currents in the TI bulk for
different Zeeman field orientations.

m ‖ x̂ m ‖ ŷ m ‖ ẑ

σ x
zx × × �

σ y
zx � � �

σ z
zx � � ×

time. This is consistent with the above analysis, as there are
no spin orbit terms with my, kx, and kz.

For the spin currents independent of the scattering time, we
find that although they are largely independent of the magni-
tude of the Zeeman field, they are dependent on the direction
of the Zeeman field. The scattering time-independent spin
currents can again be described using the effective spin-orbit
Hamiltonian. However, it requires a more detailed analysis
than was used in the previous paragraph, with reference to the
Berry connection and the derivative of the scattering matrix
elements, as these are the quantities that appear in the electric
field correction to the scattering term ĴE . In the following anal-
ysis, we consider the electric field to be ‖ x̂ and the scattering
time-independent component of the band diagonal nonequi-
librium density matrix nE ∝ Rx, ∇kxUk′k. For a Zeeman field
‖ x̂, the band diagonal component of the Berry connection Rx

contains a term (A3Bkxkykz/4M4)σz, and the band diagonal
component of the spin operator is sy,d = (h̄A2kxky/4M2)σz.
The band diagonal velocity operator vz has a factor ∝ kzI.
Hence, it is clear that the trace Tr[synEvz] will be nonzero
and that there is spin current J y

zx,mx that is third order in the
spin-orbit field ∝ |�|3. When the Zeeman field is aligned ‖ ŷ,
the band diagonal component of the Berry connection Rx

contains a correction of the form −(ABkz/2M2)σz. This cor-
rection to the Berry connection is due to the Schrieffer-Wolf
transform that was used to obtain the effective 2×2 Hamilto-
nian. The leading term in the band diagonal component of the
spin operator sy is (h̄/2)σz. Hence, the product of these terms
with the velocity operator will yield a nonzero spin current
J y

zx,my that is first order in the spin-orbit field ∝ |�|. When
the Zeeman field is aligned ‖ ẑ, the band diagonal component
of the Berry connection Rx contains the term (−ky/k2

‖ +
A2ky/2M2)σz. Interestingly, ∇kxUk′k will also yield a term
(ky/k2

‖ )σz that will exactly cancel with the first term from the
Berry connection. The band diagonal component of the spin
operator is sy,d = (h̄ABkykz/4M2)σz. Hence, the product of
these terms with the velocity operator will yield a nonzero
spin current J y

zx,mz that is second order in the spin-orbit field
∝ |�|2. Thus, for each of the three orientations of the Zeeman
field considered, we find that the spin current J y

zx will be of a
different order in the spin-orbit field.

A summary of the zero and nonzero spin currents can
be found in Table I. As is shown in this table, there is an
additional nonzero spin current J z

zx for a Zeeman field aligned
‖ ŷ. This spin current is independent of disorder strength,
and its size is around three orders of magnitude smaller than
the other spin currents we have calculated. We find that the
magnitude of this spin current is linear in the Zeeman en-
ergy. To describe this spin current, we must again refer to
the Berry connection and spin operators in the effective spin-

TABLE II. Extrinsic spin conductivities for Bi2Se3, Bi2Te3, and
Sb2Te3, calculated for Fermi energy EF = 50 meV, scattering time
τ = 0.1 ps, and Zeeman field m ‖ ẑ with |m| = 10 µeV (material
parameters from Ref. [77]).

Bi2Se3 Bi2Te3 Sb2Te3

σ x
zx (h̄/2e) �−1 m−1 8.0 1.3 −0.15

σ y
zx (h̄/2e) �−1 m−1 −189.6 −50.9 −21.0

orbit Hamiltonian. The Berry connection Rx will contain a
component (A2ky/2M2)I. The spin operator sz will contain a
component (ABkykz/2M3)myI. This term is a correction due
to the rotation of the spin operator sz by the Schrieffer-Wolf
transform. These terms will yield a spin current J z

zx that is
to second order in the spin-orbit field ∝ |�|2. However, this
spin current J z

zx has a factor of my/M, which is the ratio of
the Zeeman splitting to the band gap. Due to this additional
factor, this spin current will be negligible in most cases.

The model Hamiltonian we used can also describe Bi2Te3

and Sb2Te3. A comparison of the extrinsic spin-Hall conduc-
tivities of each material can be found in Table II. These results
show that, of these three materials Bi2Se3 should have the
largest extrinsic spin-Hall effect.

C. Hexagonal warping

Up to this point, our calculations have ignored the hexago-
nal warping terms that appear in topological insulators. These
extra warping terms in the Hamiltonian have the form

Hw = R1

2
(k3

+ + k3
−)I ⊗ σy + i

R2

2
(k3

+ − k3
−)σz ⊗ σx, (12)

where R1 and R2 are material-specific parameters. These terms
were ignored because they increase the complexity of the
dispersion and eigenstates. However, we did do some calcula-
tions with them to approximate their effect on the proper spin
current. We find that the warping terms have no effect on the
magnitude of the spin current at lower Fermi energies where
our model is valid.

V. DISCUSSION

Here we have demonstrated a straightforward method for
calculating the proper spin current due to impurity scattering.
This, along with our previous work on intrinsic spin currents
[44], provides straightforward formulas for calculating the
total proper spin current. This method can be applied gener-
ally to other systems of interest, and it can be applied to any
system, for example van der Waals heterostructures and other
exotic materials [23–33]. In this work, we applied our method
for calculating the proper spin current to topological insula-
tors and calculated the spin conductivity of Bi2Se3, Bi2Te3

and Sb2Te3 both with and without hexagonal warping. We
find that the “side jump” scattering term ĴE is the dominant
contribution to the extrinsic spin Hall effect. Furthermore, we
find that the extrinsic spin-Hall effect is of a similar magnitude
to the intrinsic Hall effect in topological insulators [44]; this
is demonstrated in Fig. 2, where both extrinsic and intrinsic
spin conductivities are plotted. We find that when the Fermi
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energy is in the conduction band, the spin conductivity of the
bulk TI states is σ

y
zx ∼ 103(h̄/2e) �−1 m−1.

In the present study, we focused solely on short-ranged
scalar impurities. However, our methodology allows for the
inclusion of more complex scattering potentials, and it can
be applied to further investigations of the spin-Hall effect,
incorporating spin-orbit scattering beyond what we have con-
sidered. Our spin current equations are applicable to both
3D and 2D systems. In the case of 2D systems, additional
consideration may be required for weak localization effects,
which can be incorporated through modifications to the linear-
response formalism outlined here [125].

A. Approaches to the evaluation of the proper spin current

Following the proposal of the proper spin current [60],
various approaches have been devised to tackle the highly
nontrivial task of its evaluation. The approaches adopted in-
clude the quantum-mechanical methodology of this work and
Ref. [44], the semiclassical method of Ref. [45], and the
Keldysh method of Ref. [68]. Two features shared by all
transport theories relevant to this study, including the Kubo
formula, are the treatment of the external potential as a clas-
sical quantity V (r), and the assumption (εF τ/h̄) � 1, which
ensures that quantum interference effects are suppressed. Be-
yond this point, there are important differences between the
approaches mentioned above, and unfortunately a direct com-
parison is not straightforward for the reasons outlined below.

The quantum kinetic theory presented in this work, which
complements the intrinsic results of Ref. [44], treats the re-
sponse of the electronic system fully quantum mechanically
and is equivalent to the Kubo linear-response formalism (the
family tree of linear-response theories has been outlined in
Ref. [78]). The aim of the calculation is to determine the
expectation value of the operator d/dt (r̂ŝ), which is decom-
posed into the conventional spin current and the torque dipole.
Whereas a special technique is developed to treat the posi-
tion operator appearing in the torque dipole, the methodology
follows the standard philosophy of nonequilibrium quantum
mechanics.

The approach of Ref. [45] is based on semiclassical wave-
packet dynamics, which require one to treat the position and
momentum of an electron simultaneously within a frame-
work consistent with the uncertainty principle. The formalism
constructs the spin current by adding a number of distinct
contributions following the prescriptions of classical physics
and Maxwell’s equations, and referencing the center of mass
of a wave packet.

Finally, Ref. [68] employed the Keldysh approach while
at the same time considering fictitious electric and magnetic
fields that are nonuniform in the center-of-mass coordinates.
In the sense that this approach mixes position and momen-
tum space, it also involves a semiclassical approximation,
contained in a gradient expansion, although at the end the
nonuniformity is removed by taking the limit of the center-
of-mass coordinate approaching zero.

The various terms obtained in Refs. [44,45] cannot be
matched one by one, and a direct comparison of our work with
Ref. [45] requires further analysis. The presence of the torque
dipole is justified by the arguments presented in Ref. [60],

where this quantity was shown to aid in the formulation of
a conserved spin current. The arguments of Ref. [60] can also
be recast in fully quantum-mechanical language by employing
the Wigner transformation. The main finding of this work
was that, taking the conventional spin current ŝ, v̂ and adding
the torque dipole r̂, dŝ/dt , one arrives at the new definition
d/dt (r̂ŝ), which is conserved in many circumstances. In this
context, no such general argument can be found for the torque
quadrupole, and we conclude that the torque quadrupole
appears in Ref. [45] due to considerations specific to the semi-
classical method employed there. In other words, one cannot
simply define a quantum-mechanical torque quadrupole op-
erator and add it on to the method of Ref. [44] and the
present manuscript—such a procedure cannot be justified on
macroscopic grounds. One important difference is that the
torque quadrupole appears in the derivation in Ref. [45], since
Ref. [45] considers nonuniform systems to first order in the
spatial gradient, whereas we only consider uniform systems.
Although not attempted here, our approach can be applied to
nonuniform systems through use of a Wigner transform along
the lines of Ref. [116].

Nevertheless, we wish to stress that, apart from the position
of the spin matrix elements, all the fundamental features of
our results are shared by those of Ref. [45]: spin transport is
Hall transport, the response function is expressed in terms of
diagonal spin matrix elements and topological quantities, and
the conditions for the spin current to be nonzero in these two
approaches are essentially identical.

In contrast, the evaluation of the proper spin current fol-
lowing the method of Ref. [68] results in a spin current that
vanishes in spin-1/2 systems regardless of the model. This
is at variance with our findings and those of Ref. [45]. A
detailed comparison is hampered at this stage by the fact that
our theory does not rely on fictitious electromagnetic fields or
on an explicit gradient expansion, and by the lack of generic
formulas in Ref. [68], whose results were focused primarily
on specific models.

B. The spin-Hall effect in topological insulators

We employed an effective 2×2 spin-orbit Hamiltonian
used in Ref. [116] for our analysis. We find that the spin
currents linear in the scattering time—J x

zx, where m ‖ ẑ, and
J z

zx, where m ‖ x̂—have identical magnitude. This is the case
in both our analysis and in the numerical calculation. Con-
versely, the spin currents independent of disorder strength are
of different orders in the spin-orbit field for different orien-
tations of the Zeeman field. This implies that at low Fermi
energies, EF < 10 meV, there will be large differences in the
magnitude of the spin current J y

zx. From our analysis, we
expect |J y

zx,my | � |J y
zx,mx | � |J y

zx,mz | and that J y
zx,my will have

the opposite sign to J y
zx,mx and J y

zx,mz . This is consistent with
our numerical results at low Fermi energies as shown in Fig. 5,
where the extrinsic spin conductivity σ

y
zx has been plotted for

three different Zeeman field directions. Furthermore, we find
that even at larger Fermi energies beyond where the effective
Hamiltonian is valid, this hierarchy in spin current magnitudes
for each Zeeman field orientation still exists. For Zeeman
fields oriented ‖ ẑ or x̂, the intrinsic and extrinsic spin con-
ductivities σ

y
zx have opposite signs and the magnitude of the
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FIG. 5. The extrinsic spin-Hall conductivity σ y
zx vs the Fermi

energy EF for the TI bulk states with different Zeeman field
orientations. For Bi2Se3 with Zeeman energy |m| = 10 µeV
(Bi2Se3 parameters from Ref. [77]).

intrinsic spin conductivity increases slower than the extrinsic
spin conductivity while increasing the Fermi energy. Hence,
for these cases the spin conductivity will be at a maximum
when the Fermi energy is in the band gap, though this may not
be the case for larger Fermi energies beyond where our model
is accurate. Conversely, for a Zeeman field ‖ ŷ the extrinsic
and intrinsic spin conductivities will have the same sign and
add constructively. This is demonstrated in Fig. 6, in which
we have plotted the total spin conductivity σ

y
zx including both

intrinsic and extrinsic contributions.
It should be noted that the dependence of the spin current

on the direction of the spin-orbit field is a smoking gun for
the measurement of the extrinsic spin-Hall effect. This can
be tested using a TI/FM sample by varying the orientation of
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FIG. 6. The total spin-Hall conductivity σ y
zx (intrinsic and extrin-

sic) vs the Fermi energy EF for the TI bulk states in Bi2Se3 with
Zeeman energy |m| = 10 µeV (Bi2Se3 parameters from Ref. [77]).

a small external magnetic field and measuring the changes
in the size of the spin torque. Although the orbital effects
of a magnetic field are not considered in this work, as long
as the magnetic field is small enough any orbital effects
should be negligible. The dependence of the spin-Hall effect
on the Zeeman field and the spin-orbit field � has interest-
ing parallels to the previous work on the bulk spin transfer
torque [116].

The results we have presented for TIs have in-plane x-y
symmetry. For example, our results with m ‖ ẑ are the same
for the electric fields oriented ‖ x̂ and ‖ ŷ, and we find that
σ x

zx = σ
y
zy and σ

y
zx = −σ x

zy. This holds even when including
the hexagonal warping terms due to their threefold rota-
tional symmetry. The spin conductivities will differ for an
out-of-plane electric field, but we have not studied such a
configuration here as it is not often used in spin torque devices.

C. Spin torques in topological insulators

Spin torques in topological insulator spin torque devices
are known to be driven by various mechanisms, including
the spin-Hall effect in the bulk [43,126,127], the Rashba-
Edelstein effect (REE) in the surface states, and the spin
transfer torque (STT) due to the proximity effect with the
adjacent magnetic layer [116,128]. In the field of TI spin
torques, a crucial yet unresolved question pertains to deter-
mining the relative magnitude of each spin torque mechanism.
The Rashba-Edelstein effect is known to be sizable at the
surface topological insulators [126,129–132]. However, it has
been shown that the chemical potential lies in the bulk TI con-
duction band for most TI/FM devices [133,134], and that bulk
transport dominates in a certain parameter regime [121]. So,
spin torques due to the bulk states are unable to be neglected.
Furthermore, recently the spin density due to the STT mech-
anism in the bulk states was shown potentially to be of the
same order of magnitude as the spin density generated by the
REE in the surface states [116]. Given the low conductivity of
TI samples, it can be inferred that samples are generally quite
dirty. Hence, it is also important to consider extrinsic effects in
these materials. We find our calculated spin conductivities to
be roughly one to two orders of magnitude smaller than those
recorded in experiment, σs = (0.15−2)×105(h̄/2e) �−1 m−1

[95,111,112,114]. This indicates that the large charge to spin
conversion efficiency of TIs measured in experiment is largely
due to other spin torque mechanisms and not the spin-Hall
effect. Although experimental works calculate the spin con-
ductivity, which is related to the spin-Hall effect, what is
measured is the spin torque, which has contributions from spin
polarizations generated via other mechanisms [135].

It must be noted that directly relating the spin current to a
spin torque is difficult, due to the complexity of accurately cal-
culating the effect of the TI/FM interface on the spin current.
Although in our analysis and in most common experimental
analysis the spin current is treated as directly proportional
to the torque, this is generally incorrect. Our calculations
are of spin currents in the bulk of the TI, and hence they
do not directly relate to the spin conductivity measured in
experiment. However, despite this we are still confident in
our claim that the bulk SHE will contribute negligibly to the
spin torque, as we expect these interface effects to decohere
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and reduce the magnitude of the spin current coming from the
bulk. Spin memory loss [136,137] can occur at the interface,
which would reduce the effect of the bulk spin-Hall effect
on the spin torque, supporting the view proposed here that
the SHE is negligible in topological insulator spin torques.
Furthermore, a previous study employing the conventional
spin current Kubo formula [138] showed that inhomogeneous
spin-orbit coupling at the interface due to roughness may also
generate a spin current [139,140].

Our calculations show that the extrinsic spin-Hall effect
will generate both damping and fieldlike spin currents. We
determine that the spin currents are to be fieldlike or damping-
like based on their symmetry. Furthermore, we predict these
spin currents can be of a similar magnitude. However, they
exhibit specific differences, for example the fieldlike current
is independent of impurity density whereas the dampinglike
current is dependent on the impurity density. The dampinglike
current is linear in the scattering time and hence should be
larger in cleaner samples. The fieldlike current has no such
dependence, furthermore the intrinsic spin conductivity is also
purely fieldlike. Hence, neglecting interface effects, the field-
like contribution to the spin torque due to the spin Hall effect
will be entirely independent of the impurity density. Although
we predict the dampinglike spin current to likely be small, due
to its dependence on the impurity density it has the possibility
to be of a comparable size to the fieldlike current in very clean
samples with high charge conductivity. Hence, if the spin-Hall
effect is a significant part of the TI spin torque, we may expect
the spin conductivity to be significantly smaller in more disor-
dered samples. However, a study of spin torques in sputtered
topological insulators measured an exceedingly large spin
conductivity of σs = 1.5×105(h̄/2e) �−1 m−1 [114]. This fur-
ther indicates that the spin-Hall effect is likely negligible in TI
spin torques.

The results in this paper combined with the results in
Refs. [44,116] give a comprehensive analysis of spin torques

stemming from the TI bulk states. The bulk states give two
contributions to the spin torque, namely spin currents from
the spin-Hall effect and spin polarizations due to the spin
transfer torque mechanism. The spin-Hall effect calculated
is small and contributes negligibly to the total spin torque.
The bulk spin transfer torque calculated with an idealized
model is negligible when compared to the surface state torque,
but it can potentially be large in real samples. So, the only
bulk TI spin torque contribution that can compete with the
Rashba-Edelstein effect in the surface states is the spin trans-
fer torque. This is consistent with experimental results that
find the spin torque efficiency increases for thinner TI samples
[111], which implies that states at or near the interface are the
dominant contribution to the spin torque and that purely bulk
contributions are negligible. These results do not preclude
the possibility of a substantial spin transfer torque, since spin
polarizations from this effect are localized near the interface
where there is a proximity-induced magnetization in the topo-
logical insulator.

VI. CONCLUSION

In conclusion, we formulated a fully quantum-mechanical
way of calculating the extrinsic spin-Hall effect. We applied it
to topological insulator systems to investigate the role of the
extrinsic spin-Hall effect in topological insulator spin torques.
We found the extrinsic spin conductivity to be roughly two or-
ders of magnitude smaller than those reported in experiment,
and we concluded that its role in spin torques is negligible.
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