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A dimerized chain of dipolar emitters strongly coupled to a multimode optical waveguide cavity is studied.
By integrating out the photonic degrees of freedom of the cavity, the system is recast in a two-band model
with an effective coupling, so that it mimics a variation of the paradigmatic Su-Schrieffer-Heeger model, which
features a nontrivial topological phase and hosts topological edge states. In the strong-coupling regime, the
cavity photons hybridize the bright dipolar bulk band into a polaritonic one, renormalizing the eigenspectrum
and strongly breaking chiral symmetry. This leads to a formal loss of the in-gap edge states present in the
topological phase while they merge into the polaritonic bulk band. Interestingly, however, we find that bulk
polaritons entering in resonance with the edge states inherit part of their localization properties, so that multiple
polaritonic edge states are observed. Although these states are not fully localized on the edges, they present
unusual properties. In particular, due to their delocalized bulk part, owing from their polaritonic nature, such
edge states exhibit efficient edge-to-edge transport characteristics. Instead of being degenerate, they occupy a
large portion of the spectrum, allowing one to probe them in a wide driving frequency range. Moreover, being
reminiscent of symmetry-protected topological edge states, they feature a strong tolerance to positional disorder.
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I. INTRODUCTION

A key challenge in the growing field of topological photon-
ics [1–3] is to understand the interplay between the physics
of topological phases of matter [4,5], such as the remarkable
presence of topological edge states robust against perturba-
tions [6], and the one of strong light-matter coupling, which
has been shown to significantly modify material properties
[7]. The underlying effect of the strong light-matter interac-
tion is an effective long-distance coupling mediated by cavity
photons, which has proven to be of major importance for topo-
logical phenomena [8]. In particular, an active literature has
recently been devoted to extensions of one-dimensional topo-
logical models, such as the renowned Su-Schrieffer-Heeger
(SSH) model [9] with additional couplings [10–31].

Here, we go one step further by addressing the effects
of the strong coupling between a multimode optical waveg-
uide and a bipartite chain of emitters (which we consider
as ideal, classical dipoles) through a microscopically de-
rived dispersive and spatially dependent light-matter coupling.
Importantly, the consideration of multiple photonic modes,
although not often envisaged, has proven to be essential to
correctly model cavity-induced effects [32–35], and is here
a key ingredient of our model. The point dipoles which we
consider represent a large variety of physical systems whose
main coupling mechanism is dipolar in nature, and governed
by classical electromagnetism. Such generic emitters model
experimental platforms as diverse as subwavelength plas-
monic, dielectric, or SiC nanoparticles [11,36–38], magnonic
microspheres [30,39,40], microwave antennas [41,42], semi-
conductor excitons [43], cold atoms [44–46], or any other
two-level emitters, as they behave as classical dipoles in the
single excitation manifold [47].

While a preliminary investigation of such a polaritonic
SSH model has been conducted in Ref. [17], highlighting
the impact of the light-matter coupling on the topological
phases of the system, here, we focus on the fate of the edge
states exhibited by the system. Importantly, to do so, we
refine the model derived in Ref. [17] in order to avoid any
boundary effects that could influence the edge states. From
the hybridization of the dipolar and cavity photon excitations
into polaritons, we observe in the strong light-matter coupling
regime the formal loss of the in-gap edge states that are
present in the topological phase of the original SSH model,
with their merging into the polaritonic bulk band. Although
this may at first appear detrimental to the topological prop-
erties of the system, here we demonstrate that, interestingly,
bulk polaritons in resonance with the formally lost edge states
inherit a large edge localization, so that we coin these new
cavity-induced states “polaritonic edge states.”

Originating from the diffusion of edge localization onto
numerous bulk polaritons, we show that such exotic edge
states present properties that are of particular interest. Specif-
ically, dissipative transport simulations allow us to unveil
exceptional polaritonic edge state transport, as well as a wide
frequency range at which the latter states can be driven. Fur-
thermore, the consideration of a disordered bipartite chain
enables us to reveal the remarkable tolerance of the polaritonic
edge states to positional disorder.

The paper is organized as follows: In Sec. II, we introduce
the model which we use to describe a dimerized chain of
emitters strongly coupled to a multimode optical cavity,
and derive an effective bipartite Hamiltonian taking into
account the effective coupling between the dipoles mediated
by the cavity photons. We study the bulk spectrum of the
related two-band Hamiltonian in Sec. III and investigate its
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FIG. 1. Sketch of a dimerized chain of emitters (considered as oscillating dipoles) polarized along the x direction, arranged along the z
axis, and placed in the middle of a mirror waveguide cavity with open ends and lengths Lx , Ly, and Lz → ∞. The dipoles, each with bare
resonance frequency ω0, belong either to the A or B sublattice and are separated by the alternating distances d1 and d2, so that the lattice
constant d = d1 + d2.

topological phases in Sec. IV. Section V is dedicated to the
study of the unusual multiple polaritonic edge states that are
present in the Hamiltonian finite spectrum, while in Secs. VI
and VII we study, respectively, their transport properties
and their robustness against positional disorder. Finally in
Sec. VIII, we summarize our results and discuss further
perspectives of our work. Three Appendixes complement and
detail some of the technical aspects of our paper.

II. DIMERIZED CHAIN COUPLED TO A MULTIMODE
OPTICAL CAVITY

We consider a dimerized chain of dipoles coupled to a
multimode optical waveguide cavity with perfectly conduct-
ing mirrors in the x and y planes, as sketched in Fig. 1. To
model such a system, we rely on the approach developed in
Ref. [17] and employ the polaritonic Hamiltonian within the
Coulomb gauge

H = Hdp + Hph + Hdp-ph. (1)

A. Quasistatic dipolar Hamiltonian

The first term on the right-hand side of Eq. (1) corresponds
to the Hamiltonian of a finite dimerized chain of 2N dipoles,
where N is the number of unit cells,1 coupled through a qua-
sistatic dipole-dipole interaction. Ignoring counter-rotating
terms, such dipolar Hamiltonian reads as [13]

Hdp = h̄ω0

N∑
m=1

(a†
mam + b†

mbm)

+ h̄�

2

N∑
m,m′=1
(m �=m′ )

fm−m′ (a†
m am′ + b†

m bm′ + H.c.)

+ h̄�

N∑
m,m′=1

gm−m′ (a†
m bm′ + H.c.). (2)

In the expression above, the bosonic operators a†
m (b†

m) and am
(bm) create and annihilate, respectively, a dipolar excitation
on the site m of the sublattice A (B), polarized along the x axis
and with resonance frequency ω0. The strength of the all-to-all

1We consider a lattice with an even number of sites.

quasistatic dipolar coupling is � = (ω0/2)(a/d )3, with d the
lattice constant of the chain, and where a = (Q2/Mω2

0 )1/3 is
a length scale which characterizes the strength of each point
dipole with charge Q and mass M. The Hamiltonian (2) repre-
sents a variation of the dipolar SSH model of Ref. [48], which,
as a toy model, only considered nearest-neighbor coupling.
Here, the intrasublattice (A↔A or B↔B) and intersublattice
(A↔B) all-to-all quasistatic couplings are included and read
as, respectively [13],

fm−m′ = 1

|m − m′|3 (3a)

and

gm−m′ = 1

|m − m′ − d1/d|3 , (3b)

where d1 is the intradimer distance. The difference between
the dipole-dipole distances d1 and d2 defined in Fig. 1 encodes
the dimerization of the chain, and is quantified by the dimer-
ization parameter

ε = d1 − d2

d
. (4)

While the intersublattice coupling (3b) preserves the chiral
symmetry of the model, the intrasublattice one (3a) breaks it,
destroying a priori the (chirally protected) topological phase
of the SSH model.2 However, inversion symmetry still allows
the dipolar Hamiltonian (2) to feature a quantized Zak phase
as well as edge states [51,52].

The model encapsulated in Eq. (2) has been studied in
Ref. [13], where it has been shown that due to the fast 1/|m −
m′|3 decrease and the small value of the quasistatic intrasub-
lattice dipolar coupling, the spectrum of the Hamiltonian, as
well as its topological phases, are almost unchanged from the
original SSH model. Its edge states, however, are naturally not
anymore protected by chiral symmetry, and hence do not show
a formal robustness against chiral-preserving disorder.

2In the language of the 10-fold way [49], the latter intrasublattice
coupling leads the Hamiltonian (2) to belong to the AI symmetry
class, which is trivial in one dimension, instead of belonging to the
AIII symmetry class of the so-called generalized SSH model with
all-neighbor intersublattice coupling [50], which has a Z topological
invariant.
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B. Coupling to a multimode optical waveguide cavity

The second and third terms on the right-hand side of Eq. (1)
account, respectively, for the photonic degrees of freedom and
their minimal coupling to the dipolar Hamiltonian presented
above. In contrast to Ref. [17], where hard wall boundary
conditions for the cavity in the three space directions have
been considered when studying the finite system, here we
consider periodic boundary conditions in the z direction and
perfect mirrors in the x and y directions only, so that we model
a finite dipole chain embedded into an infinite cavity with
longitudinal size Lz → ∞ (see Fig. 1). This limit is equivalent
to an open waveguide cavity, with open boundary conditions
in the z direction. Our motivation to consider such waveguide
cavity is twofold. First, it represents a more feasible experi-
mental realization than a closed cuboidal cavity. Second, as
we are in particular interested in the properties of the edge
states forming around the first and last dipole of the chain,
we wish to avoid any boundary effects due to the cavity walls
at the two ends of the chain. While this choice of boundary
condition could be viewed, at first sight, as a minor change, it
in fact drastically affects some of the properties of the system,
as discussed in Appendix A.

By quantizing the electromagnetic field inside the photonic
cavity depicted in Fig. 1, one obtains [53] an infinite number
of photonic modes with dispersion

ω
ph
k,l = c|k − Gl |. (5)

Here, c is the speed of light in vacuum, and k =
(πnx/Lx, πny/Ly, q) is the photonic wave vector, with
nx, ny ∈ N, while the longitudinal quasimomentum q ∈
[−π/d,+π/d] belongs to the first Brillouin zone. Gl =
2π l ẑ/d (l ∈ Z) represents the set of reciprocal lattice vectors,
so that the dispersion (5) is 2π/d periodic. The considera-
tion of all these photonic bands that are folded within the
first Brillouin zone, known as (photon) umklapp processes or
diffraction orders, is here justified by our wish to compute
bulk topological quantities in Sec. IV, which formally require
periodicity in the first Brillouin zone.

As justified in detail in Ref. [17], by choosing a specific
cavity geometry Ly = 3Lx and 3a � Lx � 20a, only the low-
est photonic band (nx, ny, q) = (0, 1, q) is at resonance with
the two dipolar ones. This allows us to consider solely the
photonic modes with dispersion

ω
ph
q,l = c

√(
π

Ly

)2

+ q2
l (6)

with ql = q − 2π l/d , so that the photonic Hamiltonian in
Eq. (1) reads as

Hph =
∑
q,l

h̄ω
ph
q,l c

†
q,l cq,l . (7)

Here, the bosonic operator c†
q,l (cq,l ) creates (annihilates) a

transverse photon with longitudinal quasimomentum q and
umklapp band index l .

As discussed in Appendix A, the light-matter, minimal
coupling Hamiltonian in Eq. (1) then reads as [17]

Hdp-ph = ih̄
N∑

m=1

√
d

Lz

∑
q,l

ξq,l eimql d

× (a†
m e−iχq,l + b†

m eiχq,l )cq,l + H.c., (8)

with the light-matter coupling strength

ξq,l = ω0

√
2πa3ω0

dLxLyω
ph
q,l

. (9)

The phase χq,l = qld1/2 in Eq. (8) encodes the fact that pho-
tons interact differently with dipolar excitations belonging to
the A or B sublattice, due to the spatial dependence of the
light-matter coupling inside the cavity.

To conclude the presentation of the model, we note that
the effect of image dipoles originating from the cavity walls,
as well as counter-rotating terms, are neglected in our de-
scription. We have checked that such additional terms, just as
including higher photonic bands, do not qualitatively change
any of the results of our paper [54].

C. Effective dipolar Hamiltonian

Since we are mainly concerned by how the strong light-
matter interaction renormalizes the dipolar subsystem, we
integrate out the photonic degrees of freedom by performing a
Schrieffer-Wolff transformation [55] on the Hamiltonian (1).
Such a unitary transformation, which we detail in Appendix B,
allows us to perturbatively decouple the photonic and dipo-
lar subspaces to second order in the light-matter coupling
strength (9).

Focusing on the dipolar subspace, we obtain the effective
bipartite Hamiltonian

H̃dp = h̄ω̃0

N∑
m=1

(a†
mam + b†

mbm)

+ h̄�

2

N∑
m,m′=1
(m �=m′ )

f̃m−m′ (a†
m am′ + b†

m bm′ + H.c.)

+ h̄�

N∑
m,m′=1

g̃m−m′ (a†
m bm′ + H.c.). (10)

Here, the onsite frequency ω0 and the intrasublattice and in-
tersublattice sums fm−m′ and gm−m′ are renormalized by the
cavity photons [compare with Eq. (2)] as

ω̃0 = ω0 − d

2π

+∞∑
l=−∞

∫ +π/d

−π/d
dq

ξ 2
q,l

ω
ph
q,l − ω0

, (11a)

f̃m−m′ = fm−m′ − 1

�

d

2π

+∞∑
l=−∞

∫ +π/d

−π/d
dq

ξ 2
q,l ei(m−m′ )ql d

ω
ph
q,l − ω0

,

(11b)
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and

g̃m−m′ = gm−m′

− 1

�

d

2π

+∞∑
l=−∞

∫ +π/d

−π/d
dq

ξ 2
q,l ei(m−m′−d1/d )ql d

ω
ph
q,l − ω0

,

(11c)

where we took the continuous limit for the quasimomentum
q, by considering an infinitely long cavity with Lz/d → ∞.

Our real-space perturbation theory provides a transparent
interpretation of the effects of the strong light-matter cou-
pling, as the above renormalized quantities account for an
effective coupling between the dipoles which is mediated
by the cavity photons. Importantly, we have checked that
such perturbation theory qualitatively reproduces the results
obtained from a diagonalization of the full polaritonic Hamil-
tonian (1), as long as the cavity height Lx � 10a.

The integrals in Eq. (11) are evaluated analytically in
Appendix C. On the one hand, the quasistatic, power-law
dipole-dipole couplings fm−m′ and gm−m′ of Eq. (3) are renor-
malized by the addition of a quasiexponential decay, whose
characteristic length is governed by the cavity transverse di-
mensions Lx and Ly [see Eq. (C6)]. On the other hand, the bare
dipole frequency ω0 is only slightly redshifted [see Eq. (C3)].

Tuning the cavity transverse dimensions so that the pho-
ton dispersion (6) approaches resonance with the two dipolar
bands then allows one to enter in the strong light-matter cou-
pling regime. Hence, the Hamiltonian (10) can be viewed as a
variation of a dipolar SSH model, with hoppings being highly
modified by the strong coupling to a multimode optical cavity.
In the sequel of this paper, we therefore refer to such a model
as a polaritonic SSH model.

Although strong coupling does not fundamentally modify
the symmetries of the effective Hamiltonian [compare Eqs. (2)
and (10)], it can significantly increase the chiral-breaking,
intrasublattice interaction (11b), which can become dominant
over the chiral-preserving, intersublattice one (11c). As we
will discuss in the next Sec. III, this increased asymmetry be-
tween the two sublattices strongly modifies the bulk spectrum.
As we will show in Sec. IV, the topological phases of the
effective Hamiltonian (10) are also affected by the light-matter
coupling.

III. BULK HAMILTONIAN AND FOURIER
DIAGONALIZATION

To study the bulk spectrum of the polaritonic SSH model,
we consider here the thermodynamic limit where the number
of emitters 2N goes to infinity, so that we can use periodic
boundary conditions for the chain.

By performing a Fourier transformation on the effective
Hamiltonian (10), we obtain an effective two-band Hamilto-
nian in reciprocal space H̃dp = ∑

q ψ†
q H̃qψq , with the Bloch

Hamiltonian

H̃q = h̄

(
ω0 + � f̃q �g̃q

�g̃∗
q ω0 + � f̃q

)
. (12)

Here, the spinor creation operator ψ†
q = (a†

q, b†
q ), where the

bosonic ladder operators a†
q (b†

q) and aq (bq) create and

annihilate, respectively, a dipolar excitation with resonance
frequency ω0 polarized along the x axis on the A (B) sublattice,
with longitudinal quasimomentum q ∈ [−π/d,+π/d] in the
first Brillouin zone. The cavity-renormalized intrasublattice
and intersublattice sums in Eq. (12) read as in Fourier space

f̃q = fq − 1

�

+∞∑
l=−∞

ξ 2
q,l

ω
ph
q,l − ω0

(13a)

and

g̃q = gq − 1

�

+∞∑
l=−∞

ξ 2
q,l e−2iχq,l

ω
ph
q,l − ω0

, (13b)

respectively, where the reciprocal counterparts of the bare
sublattice sums (3) are [13]

fq = 2
∞∑

m=1

cos(mqd )

m3
(14a)

and

gq =
∞∑

m=0

[
eimqd

(m + d1/d )3
+ e−i(m+1)qd

(m + d2/d )3

]
. (14b)

A Bogoliuobov transformation of the effective Bloch
Hamiltonian (12) leads to the eigenfrequencies

ω̃dp
qτ = ω0 + � f̃q + τ �|g̃q|, (15)

where τ = + (−) denotes the high- (low-) energy band, and
to the eigenspinors

|ψ̃qτ 〉 = 1√
2

(
1

τ eiφ̃q

)
, (16)

where the phase φ̃q = arg(g̃q).
The renormalized dipolar dispersion (15) is shown for

increasing cavity dimensions [which encode the light-matter
coupling strength (9)] in Fig. 2 in the first Brillouin zone for
a dimerization parameter ε = 0.25 [cf. Eq. (4)]. The upper
(τ = +) and lower (τ = −) bands are displayed by green and
blue solid lines, respectively. In the figure, we further plot the
bare dipolar dispersion ω

dp
q [obtained by replacing tilded by

nontilded quantities in Eq. (15)] and the bare photonic one
ω

ph
q,l [Eq. (6)] by gray and orange dashed lines, respectively.

In Fig. 2(a), we consider a cavity height Lx = 7a. In
such a case, the photonic modes [not visible on the scale of
Fig. 2(a)] are too high in energy to significantly renormalize
the dipolar bands. Notably, only the upper polaritonic effec-
tive branch (green solid line) is redshifted around the center
of the Brillouin zone, while the lower one (blue solid line)
is essentially unaffected by the light-matter coupling. On the
one hand, only the dispersion at the center of the Brillouin
zone is renormalized due to the fact that all the modes with
large wave number are out of resonance with the photons.
On the other hand, the asymmetric behavior between the two
dipolar bands can be understood physically from the fact that
for the transverse dipole-dipole interaction at play here, the
antiparallel alignment of the dipole moments within a dimer
(↑↓) is energetically favored. It leads the low-energy band to
behave as a dark band, which only weakly couples to light,
while the high-energy band, which favors parallel alignment
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−π −π/2 0 π/2 π

0.9

1

1.1

1.2

qd

ω̃
d
p

q
τ
/ω

0

ωph
q,l/ω0

ωdp
qτ /ω0

τ = +

τ = −

(a) Lx = 7a

−π −π/2 0 π/2 π

qd

τ = +

τ = −

(b) Lx = LZak
x � 9.4a

−0.1 0 0.1
0.978

0.98

−π −π/2 0 π/2 π

qd

τ = +

τ = −

(c) Lx = 10a

0 0.4
0.978

0.98

FIG. 2. Green and blue solid lines: polaritonic dispersions ω̃
dp
q,τ=± from Eq. (15), in units of the bare dipole frequency ω0 and in the first

Brillouin zone for cavity heights (a) Lx = 7a, (b) Lx = LZak
x 
 9.4a, and (c) Lx = 10a. Gray and orange dashed lines: bare dipolar dispersion

ωdp
q [obtained by replacing tilded by nontilded quantities in Eq. (15)] and photonic one ω

ph
q,l [Eq. (6)], respectively. Only the lowest, l = 0,

photonic band is visible on the figure. Inset of (b): detail of the gap closing at q = 0 taking place when Lx = LZak
x . Inset of (c): detail of the

avoided crossing between the two dipolar bands appearing from Lx > LZak
x . In the figure, the dimerization parameter ε = 0.25 [cf. Eq. (4)],

and the umklapp index l ∈ [−lmax, +lmax] with lmax = 100. As in the remaining of the paper, the lattice constant d = 8a and the dimensionless
dipole strength k0a = ω0a/c = 0.1.

of the dipoles (↑↑), can significantly couple to light and is
thus referred to as being a bright band.

When increasing the cavity height, the photonic modes
become closer in energy from the bare dipolar ones, so that
the bright band (τ = +) is further renormalized in a standard
avoided-crossing scheme, while the dark one (τ = −) still re-
mains unaffected by the light-matter coupling. Such growing
asymmetry between the two bands makes clear the broken
chiral symmetry of the model, boosted by the cavity-induced
renormalization of the intersublattice sum f̃q in Eq. (13a). This
allows the bright modes around the center of the Brillouin
zone to increasingly fill the gap between the two bands. At
a cavity height Ledge

x (not shown), whose significance will
become clearer in the next sections, approximately half of the
gap is filled. Through our effective two-band model, we find
the latter cavity height to be close to

Ledge
x

a

 π

3k0a
− 8k0a

f0 + g0 + 0.002ω0/�

(
d

a

)2

, (17)

where we approximated the middle of the gap to 0.998ω0. In
the above equation, k0 = ω0/c, and, importantly, g0 depends
on the dimerization parameter [see Eq. (14b)]. With the pa-
rameters of Fig. 2, one has Ledge

x 
 8.7a.
At an even larger cavity height, the bright band fills entirely

the energy gap (for all q’s), so that the system is not anymore
in an “insulating” phase, but becomes “metallic” in the lan-
guage of condensed matter electronic systems. In our effective
model, such transition occurs when ω̃

dp
q=0,τ=+ = ω̃

dp
q=π/d,τ=−,

at a cavity height coined in Ref. [17] as Lgap
x . Using the same

parameters as in Fig. 2, Lgap
x 
 9.3a > Ledge

x .
Figure 2(b) displays our results for the cavity height Lx =

LZak
x 
 9.4a, where, importantly, the upper band (green line)

touches the lower one (blue line) at q = 0, as highlighted in
the inset where a zoom of the two curves around the center
of the Brillouin zone is shown. Such critical cavity height
LZak

x has been introduced in Ref. [17], and bears its name
from the topological phase transition (TPT) that arises here,
and which is associated with a modification of the Zak phase.

Our effective two-band model allows us to easily interpret
this result analytically. Indeed, from Eqs. (13)–(15), we have
ω̃

dp
q=0,τ=+ = ω̃

dp
q=0,τ=− when the renormalization of the sublat-

tice sum (13b) due to the light-matter coupling counteracts the
original sublattice sum (14b), i.e., |g̃0| = 0. Considering only
the lowest umklapp index l = 0 for simplification, this arises
for the cavity height

LZak
x

a
= π

3k0a
− 4k0a

g0

(
d

a

)2

. (18)

A detailed discussion of the unusual topological phases of our
system is presented in the next Sec. IV.

In Fig. 2(c), we further increase the cavity height to Lx =
10a, so that the proximity in energy of the photonic modes
(orange line) redshifts the upper, bright band (green line)
into the lower, dark one (blue line). This results in another
avoided-crossing scheme, now between the two effective up-
per (τ = +) and lower (τ = −) dipolar bands, as highlighted
in the inset of Fig. 2(c), where a zoom on the two curves is
provided. Hence, as long as Lx > LZak

x the two effective bands
anticross, so that the band gap for a fixed wave number q is
open again. However, we emphasize that, as was already the
case in Fig. 2(b), the energy gap for all q’s is closed, so that
the system is here metallic.

IV. TOPOLOGICAL PHASES

The topological phases of the present model have been
partly investigated in Ref. [17], where, specifically, the fate
of the bulk-boundary correspondence under strong coupling
was examined, that is, the accordance between bulk-related
topological invariants and the number of edge states in the
finite-size system. In this section, we further investigate the
topological phases of the polaritonic SSH model (1) and
deepen the results of Ref. [17]. In particular, we explore both
the ε < 0 and ε > 0 cases [see Eq. (4)] and we gain physical
insight on the topology of the system by analyzing it through
our simpler, effective two-band model.
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7 7.5 8 8.5 9 9.5 10

−0.2

−0.1

0

0.1

0.2

Lx/a

ε

ϑ̃Zak = 0

ϑ̃Zak = π ϑ̃Zak = 0

ϑ̃Zak = π

FIG. 3. Topological phase diagram from the computation of the
Zak phase ϑ̃Zak [see Eq. (19)] in the (Lx, ε) parameter space. The
green dotted, yellow dashed-dotted, and red dashed lines correspond,
respectively, to Lx = Ledge

x [see Eq. (17)], Lx = Lgap
x , and Lx = LZak

x

[see Eq. (18)]. In the figure, the umklapp index l ∈ [−lmax, +lmax]
with lmax = 100.

Despite its broken chiral symmetry ({H̃q, σz} �= 0), the
effective two-band Hamiltonian (12) conserves inversion
symmetry (σxH̃−q = H̃qσx), where σx and σz denote the first
and third Pauli matrix, respectively. Importantly, this ensures
that the Zak phase [56]

ϑ̃Zak = i
∫ +π/d

−π/d
dq 〈ψ̃qτ |∂qψ̃qτ 〉 mod 2π (19)

is quantized, and defines a meaningful Z2 topological invari-
ant of the model [51,52].3 Due to inversion symmetry, the
Zak phase depends only on the behavior of the system at
the inversion-invariant momenta q = 0 and q = ±π/d . We
evaluate Eq. (19) using the Wilson-loop approach [58], which
is gauge invariant as well as suitable for numerical implemen-
tation.

Our results of such computation of the Zak phase (19) are
shown in Fig. 3 as a phase diagram in the (Lx, ε) parameter
space. Two TPTs between the trivial (ϑ̃Zak = 0, white regions)
and topological phases (ϑ̃Zak = π , blue regions) are visible.
A first one, induced by the variation of the dimerization of the
chain, is present at ε = 0 and indicated as a black solid line.
Such a transition characterizes the two topological phases of
the original SSH model, and results from a band-gap closing at
q = ±π/d . The second TPT, indicated by a red dashed line,
arises at Lx = LZak

x [see Eq. (18)], and is solely induced by
the light-matter coupling which leads to a band-gap closing at
q = 0 [see Fig. 2(b)].

Due to this cavity-induced transition, the nontrivial and
trivial phases of the model in the weak-coupling regime (lower
and upper left regions in Fig. 3), which, notably, are similar to
that of the original SSH model, are reversed in the strong-
coupling regime (lower and upper right regions in Fig. 3).

3We note that, in contrast to the terminology used in most of the
literature, Eq. (19) does not formally represent a Zak phase but rather
π times a winding number defined with respect to a specific choice
of unit cell, as discussed in detail in Ref. [57].

Importantly, the cavity-induced TPT happens once the sys-
tem is already metallic since LZak

x (red dashed line in Fig. 3)
is larger than Lgap

x (yellow dashed-dotted line). Therefore, as
will be discussed in the next section, while the dimerization-
induced TPT (solid black line) is associated with the presence
or absence of edge states as in the original SSH model, the
cavity-induced TPT (red dashed line), which separates two
gapless metallic phases (Lgap

x < Lx < LZak
x and Lx > LZak

x ),
does not influence the presence (or absence) of edge states.
This led Ref. [17] to conclude on the breakdown of the bulk-
edge correspondence for this system.4

Analogous behaviors have been observed theoretically in
similar bipartite systems, from driven ultracold fermions [10]
to zigzag waveguide lattices [12], toy models with next-
nearest-neighbor hopping [14], plasmonic nanoparticles in
vacuum [15], or quantum antiferromagnets [18]. Using zigzag
waveguide lattices, the presence of a nontrivial quantized Zak
phase associated with the absence of edge states (that is, what
we observe in our model in the lower right region in Fig. 3,
with ε < 0 and Lx > LZak

x ) has been recently experimentally
detected [23]. The common feature of the systems studied in
Refs. [10,12,14,15,18,23] is that there is a coupling parameter
breaking the chiral symmetry, which, once enhanced, leads
one of the bulk bands to increasingly fill the energy gap.
In our polaritonic system, such parameter is the transverse
dimension of the cavity, which allows one to tune the effective
photon-mediated dipole-dipole coupling.

V. MULTIPLE POLARITONIC EDGE STATES

We now move to a discussion of the properties of the finite
polaritonic SSH chain. Importantly, we recall that we here
consider a finite chain of dipoles embedded in an infinitely
long cavity, so that we get rid of the effects of the cavity walls
in the z direction, and model a waveguide cavity instead of a
closed one, in contrast to what was done in Ref. [17]. This has
a significant impact on the edge states which we study in this
section, as briefly discussed in Appendix A.

To determine the spectral properties of the finite sys-
tem, we write the real-space effective Hamiltonian (10)
in a 2N × 2N matrix form using the basis vector ϕ† =
(a†

1, . . . , a†
N , b†

1, . . . , b†
N ), and we numerically diagonalize it

to obtain its polaritonic eigenfrequencies ω̃
dp
n and eigenvectors

�(n) = (�1(n), . . . , �2N (n)), where n labels the eigenvalues
in ascending order.

A. Eigenspectrum

We show the result of the procedure discussed above in
Fig. 4, where the eigenfrequencies are plotted as a function of
the cavity height Lx in Fig. 4(a) and as a function of the dimer-
ization parameter ε in Fig. 4(b). To highlight the presence or
absence of edge states, the color code associated with each

4Note that in an (unphysical) model which would conserve chiral
symmetry, i.e., Hamiltonian (12) with f̃q = 0, such cavity-induced
TPT would not break the bulk-edge correspondence since Ledge

x =
Lgap

x = LZak
x , so that the system remains in an “insulating” phase,

except at the transition point.
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FIG. 4. Real-space polaritonic eigenfrequencies ω̃dp
n (in units of the bare dipole frequency ω0) as a function of (a) the cavity height Lx and

(b) the dimerization parameter ε [Eq. (4)]. The color code associated with each eigenstate n represents its probability density on the first dipole
site i = 1, so that it highlights the presence (red) or absence (green or blue) of edge states. We fix the dimerization parameter to ε = 0.25 in
(a), while the cavity height Lx = 10a in (b), and we consider a finite chain of N = 250 dimers, i.e., 500 dipoles.

eigenstate n represents its probability density |�1(n)|2 on the
first site of the chain, on a logarithmic scale.

In Fig. 4(a), we consider a dimerization ε = 0.25, corre-
sponding to the topological sector of the original SSH model.
On the left of the figure, the weak light-matter coupling
regime is considered, where the two dipolar bands are only
slightly renormalized by the cavity photons [cf. Fig. 2(a) for
the Fourier-space equivalent]. The blue color associated with
these two dipolar bands reveals no particular localization on
the first site of the chain. However, two (nearly degenerate)
in-gap edge states are visible in dark red, showing their pro-
nounced localization on the first dipole site. By comparison
with the preceding discussion on the bulk topological invari-
ant in Sec. IV, such a situation corresponds to the upper
left region of Fig. 3, where a nontrivial Zak phase is found.
We have checked (not shown) that for ε < 0, there are, as
expected, no such edge states. In the weak-coupling regime,
the bulk-edge correspondence is thus fulfilled, two edge states
being present while the two dipolar bands each present a Zak
phase of ϑ̃Zak = π . Nevertheless, we emphasize that these two
dipolar edge states are not symmetry-protected topological
edge states as the ones found in the original, chiral-symmetric,
SSH model. Indeed, we recall that due to the quasistatic
dipole-dipole coupling from Eq. (3a), the system does not
fulfill chiral symmetry, even in the absence of light-matter
coupling.

By increasing the cavity height Lx in Fig. 4(a), the lower,
dark band is not affected by the light-matter coupling and its
edge localization remains constant. However, the upper band
continuously fills the gap with the polaritons that comprise it,
the latter arising from the hybridization of the dipoles with the
cavity photons, as seen through the avoided crossing scheme
with the photonic band in the bulk spectrum [cf. Figs. 2(b) and
2(c)]. The two dipolar edge states, however, are only slightly
shifted in energy when increasing the cavity height, mainly
due to the renormalization of the bare frequency ω0 into ω̃0 

0.998ω0 [see Eqs. (11a) and (C3) for an analytical expression
of the redshift]. Physically, we attribute this weak change to
the fact that the edge states are mainly dark.

As can be seen from Fig. 4(a), the fact that the dipolar
edge states and the upper bright band are not similarly shifted
in energy as we increase the cavity height allows the po-
laritons that comprise the latter band to reach the edge-state
eigenfrequencies. Such merging of the dipolar edge states
into the bright band arises at a cavity height Ledge

x , marked
as a green dotted line. From this particular cavity height
on, we observe the formal disappearance of the two dipolar
edge states. Nevertheless, all of the polaritons belonging to
the bright band with an eigenfrequency close to that of the
edge states inherit their edge localization, as visible through
the red spot on the right of Fig. 4(a), which grows as the cavity
height is further increased. We coin these particular states
“polaritonic edge states.” As we will see in the following,
such peculiar states share some of their properties with the
original edge states, but also with photonic states originating
from the cavity. From two very localized and nearly degen-
erate in-gap edge states in the weak-coupling regime, we
thus get in the strong-coupling regime numerous polaritonic
edge states that are present in a broad frequency range in
the bulk of the spectrum. We insist, however, on the fact
that this transition from two dipolar to multiple polaritonic
edge states does not represent a TPT. Indeed, it is not asso-
ciated with a change of bulk topological invariant, as visible
in Fig. 3.

The above-discussed results contrast with what we observe
while computing the bulk topological invariant in Sec. IV.
Indeed, for cavity heights Ledge

x < Lx < LZak
x , a nontrivial Zak

phase of π is found (see the upper left region in Fig. 3),
while numerous polaritonic edge states are present. Thus, the
bulk-edge correspondence in terms of number of edge states
is not anymore satisfied. Moreover, the TPT visible as a red
dashed line for Lx = LZak

x does not interfere with the polari-
tonic edge states which we observe in the finite spectrum of
Fig. 4(a). We attribute the latter breakdown of the bulk-edge
correspondence to the fact that the TPT takes place in a system
which is already metallic, as LZak

x > Lgap
x , the gap having been

closed by the complete chiral symmetry breaking induced by
the light-matter coupling.
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FIG. 5. Real-space polaritonic eigenfrequencies ω̃dp
n /ω0 as a

function of the participation ratio PR(n), as defined in Eq. (20). The
color scale represents the corresponding probability density on the
first site, i = 1, of the chain. In the figure, the cavity height Lx = 10a,
the dimerization parameter ε = 0.25, and the chain is comprised of
N = 250 dimers.

In Fig. 4(b), we investigate the effect of the dimerization
parameter ε, and consider the strong light-matter coupling
regime with a cavity height Lx = 10a > LZak

x . We observe
here the absence of edge states when ε < 0, as it is the case in
the usual SSH model. Looking at the two right frames of the
Zak phase diagram in Fig. 3, the bulk invariant indicates, how-
ever, a topological phase for ε < 0. Therefore, the bulk-edge
correspondence is again not verified here. When ε > 0, we
find ourselves in the case studied previously on the right side
of Fig. 4(a), and we observe that increasing the dimerization
parameter ε enlarges the energy window in which polaritonic
states inherit edge localization.

B. Participation ratio and scaling with the system size

To study in detail the polaritonic edge states and to max-
imize the frequency range where they appear, we consider
in the following a dimerization ε = 0.25 and a cavity height
Lx = 10a. To characterize their localization properties, we use
the participation ratio (PR), defined as

PR(n) =
(∑2N

i=1 |�i(n)|2)2∑2N
i=1 |�i(n)|4 . (20)

Such a quantity provides information on the typical number
of dipole sites i occupied by an eigenstate n.

Our results are displayed in Fig. 5 for a chain of N = 250
dimers, where the eigenfrequencies are plotted as a func-
tion of the PR on a logarithmic scale, with the color code
representing again the probability density at the first site.
Interestingly, the PR of the polaritonic edge states, visible as
colored dots from light blue to dark red, follows a bell-shaped
curve approximately centered around the eigenfrequency that
corresponds to the edge states in the weak-coupling regime
(ω̃dp

n 
 0.998ω0). Within the parameters used in the figure,
we observe here eight polaritonic edge states for which at
least 5 % of the probability density is found on the first site
of the chain only, distributed in a frequency window of about
0.01ω0. However, their PR contrasts with that of an edge state
in the original SSH model or in the weak-coupling regime,
here taking large values in between about 40 and 200, instead
of approximately 2.
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FIG. 6. Scaling of (a) the participation ratio and (b) the proba-
bility density on the first site with the number of dimers N . The
dark red triangles correspond to the dipolar edge states present in the
weak-coupling regime, with a cavity height Lx = 7a [cf. Fig. 4(a)].
The colored dots correspond to the first six states with the lowest
participation ratio in the strong-coupling regime, with a cavity height
Lx = 10a. The black dashed line in (a) shows the maximum growth
rate of the PR for a bipartite chain 4(N + 1)/3. In the figure, the
dimerization parameter ε = 0.25.

This difference is illustrated in Fig. 6(a), where we plot the
scaling of the participation ratio PR(n) with the number of
dimers N , for the six polaritonic edge states with the lowest
PR (colored dots), as well as for the two dipolar edge states
present in the weak-coupling regime [visible on the left of
Fig. 4(a)], for a cavity height Lx = 7a (dark red triangles).
Extended states, i.e., states with a localization length larger
than the system, are characterized by a PR scaling linearly
with the number of dimers N , while the PR of states that are
formally localized must be size independent. Following such
classification, one observes in Fig. 6(a) that the polaritonic
edge states are not formally localized, their PR scaling with
the system size, with a growth rate approaching the maximal
one for a bipartite chain 4(N + 1)/3, shown as a black dashed
line. While for small chain sizes a clear difference in PR is vis-
ible between each polaritonic edge state, such a dissimilarity
fades out when the number of dimers N increases. We explain
this behavior by the increasing number of polaritonic edge
states when the size of the chain increases. Indeed, as the den-
sity of states with an eigenfrequency around ω̃0 increases, the
number of polaritonic states which resonate with the original
edge states, and hence which inherit their edge localization,
grows. The six states we show in Fig. 6(a) are therefore more
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FIG. 7. Probability density |�i(n)|2 along the sites i of a chain comprised of N = 250 dimers, for the states n with (a) the first, (b) second,
(c) third, and (d) fourth lowest participation ratio. The red and blue dots represent, respectively, sites belonging to the A and B sublattices. The
cavity height Lx = 10a and the dimerization ε = 0.25.

and more similar as N increases. Such scaling with the PR
is drastically different from the one we observe in the weak-
coupling regime (dark red triangles), in which the edge states
have a constant PR of about 2, as it is the case in the original
SSH model [6]. This key difference between edge states in
the weak- and strong-coupling regimes originates solely from
the fact that in the latter case, polaritonic edge states feature a
significant bulk part, induced by their hybridization with the
cavity photons, and are therefore no longer only localized on
the ends of the dipole chain, so that their localization length
increases naturally with the size of the chain.

In Fig. 6(b), we present our results for the scaling of the
probability density on the first site of the chain |�1(n)|2 with
the number of dimers N , for the same states as in Fig. 6(a).
In the weak-coupling regime, as in the original SSH model,
almost half of the probability density of the edge states is
located on the first site of the chain (the other half being
localized on the last site), independently of the system size.
In the strong-coupling regime, however, the situation is less
usual. While for small system sizes, a fifth of the probability
density of some polaritonic edge states can be located on the
first site of the chain only, such fraction decreases and tends
towards a constant value, around a few percent, when the
chain becomes longer. Similarly to the scaling of the PR, such
a behavior is explained by the growing number of polaritonic
edge states when the system size increases. This leads the edge
localization to be shared between more and more polaritonic
edge states. Interestingly, we will demonstrate in Sec. VI that
despite this diffusion of the edge localization between numer-
ous states, driven-dissipative transport simulations with lossy
dipoles, taking into account the linewidth of the excitations,
allow these polaritonic edge states to be probed.

C. Polaritonic edge states

To conclude this section, and before studying the transport
properties of the polaritonic edge states, we here discuss their
shape in real space. To this end, the probability density along
a chain of N = 250 dimers is shown in Fig. 7 in the strong-
coupling regime (Lx = 10a) and for ε = 0.25, for the four
most localized states with the lowest PR. The probability den-
sity is represented on a logarithmic scale, while the horizontal
axis has been truncated to focus on the edges of the chain.
The red (blue) points correspond to sites belonging to the A
(B) sublattice. One observes that these four polaritonic states
display a clear localization on their edges, with more than an

order of magnitude higher than their probability density in the
bulk of the chain. Two distinct regimes of spatial extensions
are apparent on each of these states. First, on the first few
and last few sites, the states are exponentially localized on the
edges, with for some of the states an alternation between sites
A and B, as is the case of the chirally symmetric topological
edge states of the original SSH model. Second, in the bulk
of the chain we observe a non-negligible probability density,
evenly distributed along the chain, similarly to extended plane
waves. While the first regime is reminiscent of topological
edge states of the original SSH model, the second demon-
strates the polaritonic nature of these states, having inherited
the delocalized, plane-wave nature of the cavity photons.

VI. STEADY-STATE TRANSPORT

To relate the results obtained in Sec. V with measurable
quantities, here we investigate the transport of excitations
in the polaritonic SSH model. Specifically, we focus on
the potential contribution of edge states on energy transport
throughout the chain, which has been recently unveiled exper-
imentally [59] and theoretically investigated with the help of
a simplified Tavis-Cummings model [27].

We consider a driven-dissipative scenario by adding the
driving term

Hdrive(t ) = h̄�R sin(ωdt )(a1 + a†
1) (21)

to the effective Hamiltonian (10). The equation above models
the continuous illumination of the first dipole site by a trans-
versely polarized monochromatic electric field with amplitude
E0 and driving frequency ωd , with �R = E0

√
Q2/2Mh̄ω0 the

corresponding Rabi frequency. We assume that the dynamics
can be described by the Lindblad master equation for the
density matrix

ρ̇ = i

h̄
[ρ, H̃dp + Hdrive(t )]

− γ

2

N∑
m=1

({a†
mam + b†

mbm, ρ} − 2amρa†
m − 2bmρb†

m).

(22)

Here, the damping rate γ quantifies the influence of a phe-
nomenological Markovian bath responsible for the dissipation
of the dipolar emitters. Dissipation typically originates from
radiative and Ohmic losses and, in this section, we consider
γ = 0.002ω0. Such a narrow linewidth can be achieved ex-

245417-9



THOMAS F. ALLARD AND GUILLAUME WEICK PHYSICAL REVIEW B 108, 245417 (2023)

0 20 40 60 140 160 180 200

10−4

10−2

100

102

Site i

|p i
|/

(Ω
R
/ω

0
)

(b) ε = −0.25

10−4

10−2

100

102

|p i
|/

(Ω
R
/ω

0
)

Lx/a = 10
Lx/a = 7

(a) ε = +0.25

FIG. 8. Steady-state amplitude of the dipole moment |pi| (in
units of �R/ω0) as a function of the dipole site i, for a chain
with dimerization (a) ε = +0.25 and (b) ε = −0.25. The red (blue)
symbols correspond to the weak- (strong-) coupling regime, with a
cavity height Lx = 7a (Lx = 10a). The propagation results from a
monochromatic drive on the first dipole site at a frequency ωd =
0.998ω0. The chain is comprised of N = 100 dimers with damping
rates γ = 0.002ω0.

perimentally using emitters with weak losses, such as, e.g.,
microwave resonators or dielectric and SiC nanoparticles
[11,41].

To characterize the excitation of an emitter belonging to the
A (B) sublattice, we introduce its dimensionless dipole mo-
ment pA

m = 〈am + a†
m〉 (pB

m = 〈bm + b†
m〉). Solving the master

equation (22), we obtain the steady-state amplitudes |pi| bared
by a dipole on the site i of the chain, which belongs either
to the A or B sublattice. We note that these dimensionless
amplitudes are proportional to the square root of the power
radiated in the far field by a dipole, through the classical
Larmor formula [34,60].

Figure 8 displays our findings for the steady-state ampli-
tudes |pi| of the dipole moments, scaled by the Rabi frequency
in units of the bare dipole frequency �R/ω0 and as a function
of the sites i of a chain comprised of N = 100 dimers. The
first site is driven at a frequency ωd = 0.998ω0 
 ω̃0, cor-
responding approximately to the edge-state eigenfrequencies
in the weak-coupling regime. The propagation signals are
shown in a log-linear plot for both the weak- (Lx/a = 7)
and strong-coupling (Lx/a = 10) regimes, by red and blue
symbols, respectively.

In Fig. 8(a) we consider a dimerization parameter ε =
+0.25. Edge states are clearly visible in both coupling

regimes, through a large rise of the excitation at the end
of the chain, the dipole moment increasing there by one
order of magnitude. In the first few sites of the chain, the
propagation signal quickly decays for both coupling regimes,
following an exponential decay which is reminiscent of the
nearest-neighbor dipole-dipole coupling [61]. However, for
longer distances, the transport characteristics are very dis-
tinct. On the one hand, for Lx/a = 7 (red dots), we observe
a steep quasiexponential decay, induced by the light-matter
coupling, followed by an algebraic tail decaying with the
inverse distance cubed, arising from the quasistatic dipole-
dipole coupling. On the other hand, for Lx/a = 10 (blue dots),
the propagation follows an exponential decay with a large
decay length, rendering the decay profile nearly flat. This
second exponential decay originates solely from the cavity-
induced effective dipole-dipole coupling (see Sec. II C and
Appendix C). Such a decay is physically explained by the
hybridization of the bright, upper dipolar band with cavity
photons, and stands for the polaritonic cavity-enhanced trans-
port. The slope in a log-linear plot of such a cavity-induced
exponential decay is dictated by both the damping rate γ and
the cavity height Lx, becoming flatter as the latter increases.
Therefore, the driving of the polaritonic edge states plotted as
blue dots in Fig. 8(a) presents interesting transport character-
istics, allowing for efficient end-to-end edge-state transport, as
opposed to what is observed in red for the dipolar edge state.
We note that for very long chains or more lossy dipoles, the
algebraic tail is also present in the polaritonic transport.

In Fig. 8(b), we study the propagation along the chain when
the first dipole is driven at the same frequency ωd = 0.998ω0,
now for ε = −0.25. As discussed in the previous section,
such negative value of the dimerization ε is associated with
the absence of edge states. The same transport regimes as in
Fig. 8(a) are observed, but no rise of the dipole moment is
found at the end of the chain. Moreover, there is an overall
decrease of the dipole moment amplitudes along the chain as
compared to the ε = +0.25 case. This is in agreement with the
so-called dimerization-assisted transport that has been studied
in detail in Ref. [27].

To highlight the effect of the cavity on end-to-end
transport, we display in Fig. 9 a density plot of the normalized
steady-state amplitude of the last dipole moment of the chain,
|p2N |/(�R/ω0), using a logarithmic scale, as a function of
both the cavity height Lx and the driving frequency ωd . A
chain of N = 100 dimers with a dimerization ε = 0.25 is
considered. Interestingly, Fig. 9 has similarities with Fig. 4(a),
which shows the probability density of the eigenstates at one
end of the chain as a function of the cavity height, with a
dimerization parameter also fixed to the same value as here,
so that we recover traces of the spectrum in our transport
simulations. The light orange layer on the right of Fig. 9 in
the strong-coupling regime corresponds to the driving of the
polaritons that originate from the bright, upper dipolar band
which is continuously redshifted when the cavity height is
increased [as seen in Fig. 4(a)]. Owing from their polaritonic
nature, they feature enhanced transport characteristics,
notably through the cavity-induced exponential decay dis-
cussed above in Fig. 8, explaining their large dipole moment
amplitude at the end of the chain. In contrast, when driving
at a frequency corresponding to the bare dipolar bands in the
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FIG. 9. Steady-state amplitude of the last dipole moment of the
chain |p2N | (in units of �R/ω0), for increasing cavity heights Lx/a
and driving frequencies ωd/ω0. In the figure, N = 100, ε = 0.25,
and γ = 0.002ω0.

weak-coupling regime [around ωd/ω0 = 0.980 and ωd/ω0 =
1.015, cf. Fig. 4(a)], only a small dipole moment is found
on the last site of the chain, demonstrating poor transport
properties.

Examining driving frequencies around ωd/ω0 = 1 in
Fig. 9, we observe the presence of the edge states, which show
a particularly large dipole moment at the end of the chain.
Notably, in the weak-coupling regime, here for cavity heights
Lx � Ledge

x 
 8.7a, the dipolar edge states appear as a dark
orange beam in the center left of Fig. 9. In the strong-coupling
regime, here for cavity heights Lx � Ledge

x , the polaritonic
edge states are visible through the bright yellow spot in the
center right of Fig. 9. Crucially, we observe that the latter
bright spot spreads over a broad range of driving frequencies.
Therefore, in addition to allowing very efficient edge-state
transport between the two ends of the chain, the cavity also
largely broadens the edge-state frequency band.

VII. ROBUSTNESS TO DISORDER

To complement our study of the cavity-induced polaritonic
edge states featured by the polaritonic SSH model (1), we dis-
cuss here their robustness to disorder. Specifically, we study
the effect of disorder in the intradimer and interdimer spacings
d1 and d2 (see Fig. 1), which corresponds to off-diagonal dis-
order. We consider these spacings to be uncorrelated random
variables uniformly distributed within the interval [d1,2(1 −
�), d1,2(1 + �)], where the dimensionless parameter � is the
amplitude of the spacing fluctuations and characterizes the
disorder strength.

Interestingly, the off-diagonal disorder which we consider
does not break the chiral symmetry of the bipartite chain, so
that it does not alter the topological edge states of the original
(chirally symmetric) SSH model [6]. However, as discussed in
Sec. II C, due to the dipole-dipole couplings beyond nearest
neighbors the polaritonic SSH model does not fulfill chiral
symmetry, in both the weak- and strong-coupling regimes. On
the one hand, although being reminiscent of the chiral sym-

FIG. 10. Real-space polaritonic eigenfrequencies ω̃dp
n (in units of

the bare dipole frequency ω0) as a function of the dimensionless
disorder strength �. The color code associated with each eigenstate
n represents its probability density on the first dipole site i = 1, so
that it highlights the presence (red) or absence (green or blue) of
edge states. A chain of N = 100 dimers with an average value of
the dimerization parameter ε = 0.1 embedded in a waveguide cavity
with height Lx = 10a is considered, and the data have been averaged
over 100 disorder realizations.

metry of the original SSH model, the polaritonic edge states
should therefore not present any formal robustness against
off-diagonal disorder. On the other hand, polaritons, through
their photonic part, have been proven robust against disorder,
presenting a cavity-protection effect [62,63]. The interplay
between topological polaritonic edge states and disorder is
thereby highly nontrivial.

We clarify this point by plotting in Fig. 10 the disorder-
averaged real-space polaritonic eigenfrequencies ω̃

dp
n /ω0 as a

function of the dimensionless disorder strength �, for a chain
of N = 100 dimers with an average dimerization parameter
ε = 0.1, embedded in a cavity with height Lx = 10a. As in
Fig. 4, the color code displays, on a logarithmic scale, the
probability density on the first dipole site i = 1 associated
with each eigenstate n, so that it reveals the presence (red)
or absence (green or blue) of states that are highly localized at
the two ends of the chain.

We observe in Fig. 10 the characteristic bandwidth widen-
ing as the disorder strength increases. Importantly, only the
dipolar eigenstates, corresponding to the eigenfrequencies
of the bare dipolar bands, here around ω̃

dp
n /ω0 = 0.990 and

ω̃
dp
n /ω0 = 1.005, undergo this effect. In contrast, the eigenfre-

quencies of the polaritonic states, that are highly renormalized
by the cavity photons, remain constant on average at small
disorder strength. The latter polaritons, showing the cavity-
protection effect, are visible in Fig. 10 through the yellow
stripes in the lower left region of the figure, as well as through
the red stripes, showing the polaritonic edge states, around
ω̃

dp
n /ω0 = 1. Such robustness of the polaritons against dis-

order fades out as they merge into the dipolar bands. As
anticipated by the broken chiral symmetry, the polaritonic
edge states (red stripes in Fig. 10) are therefore not formally
robust against off-diagonal disorder, but can survive at high
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levels of disorder, with a large probability density of 0.1 on
the first site up to � 
 0.25 with the parameters considered
in the figure. We attribute this tolerance to disorder both to
their polaritonic nature and to their topological origin, being
reminiscent of the topologically protected edge states of the
original, chiral-symmetric SSH model. Indeed, dipolar edge
states present in the weak-coupling regime, although not being
polaritonic, also show very good tolerance to off-diagonal
disorder, up to the closing of the band gap by the bandwidth
increase led by disorder (not shown).

Interestingly, once the off-diagonal disorder is strong
enough to let the polaritonic edge states merge into the dipolar
bands, the dipolar states with eigenfrequencies close to that
of the edge states inherit part of their edge localization, as
apparent through the orange spot in the center right of Fig. 10.
This mechanism is very similar in nature to what gives rise
to the polaritonic edge states, as we described in Sec. V, i.e.,
the fact that edge and bulk states are not similarly affected by
the increase of a given parameter (here the positional disorder
strength �, in Sec. V the cavity height Lx).

To conclude this section, we note that even a small amount
of disorder in the frequency of the bare dipoles destroys the
edge-state localization [54], in contrast with what we observe
here for interdipole spacing disorder.

VIII. CONCLUSION

In summary, we have analyzed in detail the effect of strong
light-matter coupling on topological edge states, studying
the eigenspectrum, the eigenstates, as well as the transport
properties of a bipartite chain of emitters (modeled as point
dipoles) strongly coupled to a multimode waveguide cavity.
Such a system mimics a variation of the celebrated two-band
Su-Schrieffer-Heeger model, with the addition of an effective
dipole-dipole coupling mediated by the cavity photons. We
have found such cavity-mediated coupling to take the form
of an exponential decay whose decay length increases as one
enters in the strong-coupling regime.

We have shown that the effect of the strong light-matter
coupling is to hybridize and redshift the bright dipolar band
into a polaritonic one, which strongly breaks the chiral sym-
metry of the model, and can close the energy gap, so that
the system becomes metallic. In this regime, a cavity-induced
topological phase transition, i.e., a change in the bulk topo-
logical invariant of the system, is observed. We find that
such a transition, which takes place in a gapless regime,
is not associated with the appearance nor disappearance of
edge states, leading the bulk-edge correspondence not to be
fulfilled.

In the topological sector of the original SSH model, the
strong-coupling regime leads the in-gap edge states to merge
into the polaritonic bulk band. We have unveiled that even if
the formal in-gap edge states are thus destroyed, all the polari-
tons entering in resonance with the edge states inherit part of
their localization properties. Edge localization is then diffused
into multiple polaritonic edge states that keep a delocalized
bulk part and cover a wide frequency range. Our results high-
light the peculiar properties of these polaritonic edge states,
in particular, the latter taking advantage of their polaritonic
nature to allow efficient energy transport between the two

ends of the chain. Moreover, the broadening of the edge-state
frequency band makes them sensitive to a wide range of
driving frequencies. These two unusual cavity-induced effects
on topological edge states may facilitate their experimental
detection.

Furthermore, by studying the impact of disorder on the
interdipole spacings, we have demonstrated the tolerance of
the polaritonic edge states to disorder. Thanks both to their po-
laritonic nature and topological origin, polaritonic edge states
being reminiscent of the symmetry-protected edge states of
the original SSH model, they can survive at high levels of
off-diagonal disorder.

Our model, allowing a detailed numerical and partly an-
alytical understanding of the strong light-matter coupling
effects on topological edge states, could constitute a building
block of a more general theory of topological polaritonics,
essential to the successful implementation of topological pho-
tonic technologies. A direct and attractive extension of our
present model is its generalization to ultrastrong and deep-
strong light-matter couplings, the latter allowing surprising
quantum effects [64–66].
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APPENDIX A: STRONG-COUPLING HAMILTONIAN

In the main text, we model the light-matter coupling be-
tween the dipolar chain and the multimode optical cavity by
the Hamiltonian (8). In this Appendix, we briefly give details
on its derivation.

In the Coulomb gauge, emitters couple to photonic de-
grees of freedom via the usual minimal light-matter coupling
Hamiltonian (in cgs units)

Hdp-ph = Q

Mc

∑
s=A,B

N∑
m=1

�s
m · A

(
rs

m

)
, (A1)

which, importantly, mediates the retarded part of the Coulomb
interaction between the dipoles [67]. Equation (A1) couples
the momenta

�A
m = i

√
Mh̄ω0

2
(am

† − am)x̂, (A2a)

�B
m = i

√
Mh̄ω0

2
(bm

† − bm)x̂, (A2b)
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associated with the mth dipole excitation belonging to the A
or B sublattice to the vector potential

A
(
rs

m

) =
∑

k,l,λ̂k,l

√
2π h̄c2

ω
ph
k,l

[
f λ̂k,l

k,l

(
rs

m

)
cλ̂k,l

k,l + H.c.
]

(A3)

of the quantized electromagnetic field, evaluated at the po-
sition of each dipole rs

m = (Lx/2, Ly/2, zs
m), which we place

at the center of the cavity. Here, the z coordinate of a dipole
m belonging to the A or B sublattice reads as zA

m = (m −
1)d + dcav or zB

m = (m − 1)d + dcav + d1, respectively, with
dcav the distance of the first and last dipole to the ends of
the cavity in the z direction. In Eq. (A3), the bosonic ladder

operators cλ̂k,l

k,l and cλ̂k,l †
k,l , respectively, annihilate and create

a cavity photon with wave vector k, umklapp band index l ,
and transverse polarization λ̂k,l , while the mode functions

f λ̂k,l

k,l (rs
m) depend on the cavity geometry and boundary con-

ditions. As mentioned in Sec. II B and discussed in further
detail in Refs. [17,68], choosing the geometry Ly = 3Lx and
3a � Lx � 20a allows us to consider only the lowest photonic
band and a single-photon polarization, for which we therefore
drop the associated index.

Aside from the above-discussed approximation, we note
that the diamagnetic, so-called “A2”, term is neglected in the
Hamiltonian (A1) since its impact on the spectrum is only
of qualitative importance in the case of the ultrastrong or
deep-strong coupling regimes [64,69], in which we do not
enter in this study.

While Ref. [17], as well as other recent studies [34,68],
considered hard wall boundaries for the cavity in the three
space directions, here we opt for periodic boundary conditions
in the z direction. Such a choice of boundary conditions, with
the fact that only the band (nx, ny, q) = (0, 1, q) is taken into
account, leads to the mode function [53]

fq,l
(
zs

m

) =
√

2

LxLyLz
eiql zs

m x̂ (A4)

with ql = q − 2π l/d , which, once combined with Eqs. (A1)–
(A3), gives within the rotating-wave approximation the
coupling Hamiltonian (8) presented in the main text.

We note that the longitudinal photonic wave number is
given by q = 2π p/Lz with p ∈ [−Lz/2d,+Lz/2d], so that
q belongs to the first Brillouin zone, and Lz = Lchain +
2dcav, where the length of the chain Lchain = (N − 1)d +
d1. In order for our periodic boundary conditions to be
physically relevant, dcav must go to infinity, as done in
Sec. II C by considering the continuous limit for q. In that
sense, our model here is equivalent to a waveguide cavity,
with open ends far away enough from the first and last
dipoles.

Interestingly, such a distance between the cavity ends and
the chain qualitatively affects the localization of the eigen-
states of the system at the two ends of the chain. Indeed,
the finite spectrum of the polaritonic SSH Hamiltonian in a
waveguide cavity (10) and, in particular, the polaritonic edge
states which we study throughout this paper, considerably dif-
fer from what was found in Ref. [17], where a closed cuboidal
cavity with dcav = d − d1/2 was considered. With walls that
close from the ends of the chain, edge states can localize not

only on the dipoles, but also on the cavity walls, allowing
them to be more robust to the strong light-matter coupling,
and to diffuse much less in the bulk. We verified that as long
as dcav � 10d , such boundary effects become insignificant
[54]. We found that similar non-negligible boundary effects
are also at the origin of the Tamm edge states that have
been unveiled in Ref. [68] in a regular chain embedded in
a closed cuboidal cavity using a similar model as the one
employed here.

APPENDIX B: SCHRIEFFER-WOLFF TRANSFORMATION

In reciprocal space, the Bloch Hamiltonian stemming from
Eq. (1) can be represented by a 3 × 3 matrix, containing both
dipolar and photonic degrees of freedom. Focusing on the fate
of the two dipolar bands coupled to the cavity modes, we
integrate out the photonic degrees of freedom of the full po-
laritonic Hamiltonian (1) by performing the Schrieffer-Wolff
unitary transformation [55]

H̃ = eSHe−S 
 H + [S, H] + 1
2 [S, [S, H]]. (B1)

Here, using the fact that the quasistatic dipole-dipole coupling
strength �/ω0 � 1, the anti-Hermitian operator S (i.e., S† =
−S) is determined such that

[S, Hdp(� = 0) + Hph] = −Hdp-ph, (B2)

so as to eliminate coupling terms of the order of �ξ 2
q,l/ω0

3

in the effective Hamiltonian. From the condition (B2), we
find

S = − i
N∑

m=1

∑
q,l

√
d

Lz

ξq,l

ω
ph
q,l − ω0

× [eimql d cq,l (a
†
me−iχq,l + b†

meiχq,l ) + H.c.]. (B3)

The dipolar and photonic subspaces are then decoupled to
second order in the light-matter coupling strength (9),

H̃ 
 Hdp + Hph + 1
2 [S, Hdp-ph] ≡ H̃dp + H̃ph. (B4)

Computing the commutator in Eq. (B4) and focusing on the
dipolar subspace, we obtain the effective Hamiltonian (10).

APPENDIX C: EFFECTIVE COUPLING INTEGRALS

The cavity-induced renormalizations of the bare resonance
frequency and of the intrasublattice and intersublattice dipole-
dipole coupling, derived in Sec. II C [see Eq. (11)], appear as

d

2π

+∞∑
l=−∞

∫ +π/d

−π/d
dq

ξ 2
q,l

ω
ph
q,l − ω0

eiαql d = ω0a3

LxLy
I (α), (C1)

with integrals of the form

I (α) =
+∞∑

l=−∞

∫ +π/d

−π/d
dq

ω2
0 eiαql d

ω
ph
q,l

(
ω

ph
q,l − ω0

)
=

∫ +∞

−∞
dq

ω2
0 eiαqd

ω
ph
q,0

(
ω

ph
q,0 − ω0

) , (C2)

where α = 0, m − m′, or m − m′ − d1/d .
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The particular case of I (0) can be readily evaluated.
It appears in the cavity-renormalized onsite frequency [cf.
Eq. (11a)], which therefore reads as

ω̃0 = ω0 − 2ω0a2k0a

LxLy

ω0√(
ω

ph
0,0

)2 − ω0
2

×

⎡
⎢⎣arctan

⎛
⎜⎝ ω0√(

ω
ph
0,0

)2 − ω0
2

⎞
⎟⎠ + π

2

⎤
⎥⎦. (C3)

Such a term only leads to a slight shift of the bare frequency
ω0 (less than about 0.3 %), which increases with the cavity
height Lx when the photon frequency ω

ph
0,0 approaches the bare

frequency ω0.
For the intrasublattice and intersublattice coupling renor-

malizations, where α equals, respectively, m − m′ and m −
m′ − d1/d , we use the fact that in our perturbation theory
the photonic frequency remains larger than the bare dipole
one, so that we can rewrite the effective coupling integrals
I (α) as

I (α) =
∞∑

p=2

∫ +∞

−∞
dq

(
ω0

ω
ph
q,0

)p

eiαqd ≡
∞∑

p=2

Jp(α), (C4)

which can be evaluated as an infinite sum of modified Bessel
functions of the second kind Kν (z),

Jp(α) =
√

π (k0d )p

�(p/2)d

( |α|Ly

2πd

) p−1
2

K p−1
2

(
|α|πd

Ly

)
, (C5)

where �(z) represents the gamma function. In all the results
presented in this work involving the finite spectrum, namely,
Figs. 4–10, we truncated such infinite sum to pmax = 100,
having checked the irrelevance of higher-order terms. Each
term in the sum of Eq. (C5) corresponds to a nearly exponen-
tial decay and the sum is dominated by the first p = 2 term

J2(α) = (k0d )2Ly

2d2
exp

(
−|α|πd

Ly

)
, (C6)

a pure exponential decay with a clear dependence on the cav-
ity width Ly = 3Lx. Increasing the cavity height, i.e., entering
in the strong-coupling regime, leads the latter exponential
decay to fall on larger distances, so that the cavity-induced
effective dipole-dipole coupling becomes stronger. Such an
(almost) exponential decay induced by the strong-coupling
regime is directly visible through the steady-state transport
along the dipole chain, as studied in Sec. VI. It allows for
a large effective dipole-dipole coupling at intermediate dis-
tances. At very long distances, however, such cavity-induced
exponential decay is superseded by the quasistatic dipolar
couplings (3) which decay as one over the distance cubed, as
discussed in Sec. VI.
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