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Wiedemann-Franz law in graphene in the presence of a weak magnetic field
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The experimental work [J. Crossno et al., Science 351, 1058 (2016)] that reported the violation of the
Wiedemann-Franz law in monolayer graphene characterized by a sharp peak of the Lorenz ratio at a finite
temperature has not been fully explained. Our previous work [Y.-T. Tu and S. Das Sarma, Phys. Rev. B 107,
085401 (2023)] provided a possible explanation through a Boltzmann-transport model with bipolar diffusion
and an energy gap possibly induced by the substrate. In this paper we extend our calculation to include a weak
magnetic field perpendicular to the graphene layer, which is experimentally relevant, and may shed light on the
possible violation or not of the Wiedemann-Franz law. We find that the magnetic field enhances the size of the
peak of the Lorenz ratio but has little effect on its position, and that the transverse component of the Lorenz ratio
can be either positive or negative, depending on the parameter regime. In addition, we do the same calculation for
bilayer graphene in the presence of a magnetic field and show the qualitative similarity with monolayer graphene.
Our work should motivate magnetic-field-dependent experiments elucidating the nature of the charge carriers in
graphene layers.
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I. INTRODUCTION

In our previous work [1], we proposed a simple the-
ory that qualitatively explains the apparent violation of the
Wiedemann-Franz (WF) law in monolayer graphene (MLG)
reported in the experimental work of Crossno et al. [2]. The
WF law states that the Lorenz number L = κ/(σT ) is a uni-
versal constant in metals, L0 = π2

3 ( kB
e )2 [3,4]. Here, κ and

σ are the thermal and electrical conductivities of the charge
carrier, kB and e are the Boltzmann constant and the electron
charge, respectively. This law is largely satisfied by normal
metals described by Fermi liquids but can sometimes be vi-
olated due to inelastic scattering effects [5–7] or the bipolar
diffusion effect [1]. In Ref. [2] the authors reported a large
violation of the WF law in MLG characterized by a high peak
of L/L0 ∼ 20 at a finite temperature T ∼ 60 K and attributed
this violation to the “non-Fermi liquid” hydrodynamic ef-
fect of the quantum Dirac fluid nature of intrinsic graphene.
However, even with six free parameters, the finite-temperature
peak cannot be well explained with the hydrodynamic theory
[8], and that experimental observation in Ref. [2] remains
unexplained.

In Ref. [1] we proposed an alternative but much sim-
pler theory based on Boltzmann-transport theory, where the
scattering by short- and long-range impurities and acoustic
phonons are treated phenomenologically. No Fermi-liquid vi-
olations or exotic interaction effects were included in our
conventional Boltzmann theory in Ref. [1]. We demonstrated
that the bipolar diffusion effect, arising from the thermally
induced electrons and holes around the Dirac point, produces
a finite-temperature peak of L/L0, which can be very high
if we assume an (unintentional and uncontrolled) energy-gap
opening at the Dirac point, which is possible in experiments
due to the presence of the hexagonal boron nitride (hBN)

substrate underlying the graphene layers [9–13]. However, we
do not claim that this theory unambiguously explains all of
the experimental observations, and in particular, the presence
of a gap at the Dirac point must be validated for our theory
to explain the finite-temperature peak reported in Ref. [2]. In-
deed, it is unknown whether the hBN substrate really induces
such a gap, and if so, what the size of the gap and the shape
of the band near the gap could be. More experimental work
is needed to settle on the best explanation of that observation.
In particular, it is important that the findings of Ref. [2] are
reproduced or revised experimentally with more data so that
we have a more complete picture of the situation.

One way to extend the original experiment [2] is to add a
magnetic field perpendicular to the graphene surface [14]. In
this way, many qualitative behaviors can be checked with the
theory. Will the finite-temperature peak of L/L0 be enhanced
or suppressed by the magnetic field? Will the position of the
peak shift? In addition, the magnetic field creates transverse
motions of the electrons and holes, which give more complex
features such as the possible change in the sign of the trans-
verse component of the Lorenz ratio. But, adding a magnetic
field also complicates the physics, because now there are three
independent parameters controlling the system: temperature,
doping, and magnetic field. In addition, there could be the
fourth additional uncontrolled parameter associated with the
energy gap.

This paper is the followup to and extension of Ref. [1].
We include a weak magnetic field in the Boltzmann-transport
theory of Ref. [1], while keeping everything else the same.
We find that the size of the finite-temperature peak of L/L0

is enhanced by the magnetic field, while the position does
not change much. In addition, the sign of the transverse com-
ponent can either be positive or negative, depending on the
parameter regime. In addition, we repeat the same calculation
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for bilayer graphene (BLG), which is also experimentally
relevant, and find similar qualitative results. These observa-
tions can be tested experimentally to provide a step towards
explaining the intriguing observations in Ref. [2].

The rest of this paper is organized as follows: In Sec. II
we present the setup of our theory, that is, the Boltzmann-
transport theory with magnetic field and bipolar diffusion
included. In Secs. III and IV, we present the models and
results for MLG and BLG, respectively. We conclude this
paper in Sec. V.

II. THEORY

Our starting point is the Boltzmann equation,

∂ f

∂t
+ ṙ · ∂ f

∂r
+ k̇ · ∂ f

∂k
= I{ f }, (1)

where f (r, k, t ) is the distribution of electron wave packets
at position r, wave vector k, and time t . The semiclassical
equations of motion are

ṙ = 1

h̄

∂ε

∂k
− k̇ × �, (2)

k̇ = − e

h̄
(E + ṙ × B), (3)

where E (B) is the applied electric (magnetic) field and � is
the Berry curvature. We assume that f is time independent
(steady state) and f = f0 + δ f for a small perturbation δ f
near the local equilibrium:

f0(r, k) = 1

exp ε(k)−μ(r)
T (r) + 1

. (4)

In this paper we measure energies directly in the units of tem-
perature (Kelvins), so Boltzmann’s constant kB equals unity in
the formulas. In the case that the magnetic field is weak in the
sense that the cyclotron radius is much larger than the Fermi
wavelength, we can neglect Landau quantization as well as the
effect of the Berry curvature. We restrict our theory entirely
to the weak-field semiclassical regime so that the magnetic
field only adds a transverse force on the carriers without
affecting anything else. In the linear response regime of the
applied electrochemical force E = E + 1

e ∇μ and tempera-
ture gradient ∇T , the Boltzmann equation can be linearized
as [15]

v ·
(

eE + ε − μ

T
∇T

)(
−∂ f0

∂ε

)
− e

h̄
v × B · ∂δ f

∂k
= −δ f

τ
,

(5)

where v = 1
h̄

∂ε
∂k is the velocity [v = vk̂ for a scalar function

v(k) in our case], and we have used the relaxation time ap-
proximation for the collision term with relaxation time τ ,
which may depend on ε as well as T .

We only consider the case where B = Bzẑ is perpendicular
to the surface of the material. Since our system is rotationally
symmetric, without any loss of generality, the transport coef-
ficients can be calculated by assuming E and ∇T to be in the
x̂ direction and then solving the differential equation for δ f ,
and by plugging into the expressions for electrical and thermal

currents:

Jx,y = −egsgv

∫
d2k

(2π )2
vx,yδ f

= Ex(LEE )xx,yx + ∇Tx(LT E )xx,yx,

Qx,y = gsgv

∫
d2k

(2π )2
vx,y(ε − μ)δ f

= Ex(LET )xx,yx + ∇Tx(LT T )xx,yx, (6)

to extract the coefficients (here we restrict ourselves to a single
band, and the degeneracies are gv = gs = 2 in our case). The
resulting formulas are [16]

(LEE )xx = e2

2

∫
dε

(
−∂ f0

∂ε

)
D

τv2

1 + ( eτvBz

h̄k

)2 ,

(LEE )yx = e2

2

∫
dε

(
−∂ f0

∂ε

)
D

( eτvBz

h̄k

)
τv2

1 + ( eτvBz

h̄k

)2 ,

(LT E )xx = − e

2

∫
dε

(
−∂ f0

∂ε

)
D

τv2

1 + ( eτvBz

h̄k

)2 (ε − μ),

(LT E )yx = − e

2

∫
dε

(
−∂ f0

∂ε

)
D

( eτvBz

h̄k

)
τv2

1 + ( eτvBz

h̄k

)2 (ε − μ),

(LT T )xx = − 1

2T

∫
dε

(
−∂ f0

∂ε

)
D

τv2

1 + ( eτvBz

h̄k

)2 (ε − μ)2,

(LT T )yx = − 1

2T

∫
dε

(
−∂ f0

∂ε

)
D

( eτvBz

h̄k

)
τv2

1 + ( eτvBz

h̄k

)2 (ε − μ)2,

(7)

and that LET = − 1
T LT E , where D is the density of states. The

set of equations defined by Eq. (7) are the finite-magnetic-field
generalization of the basic Boltzmann-transport theory for our
problem.

Now the above can be calculated for each band, and the
total transport coefficients are the sums of them (we do not
consider interband scatterings here). The calculation is done
with fixed carrier density n, where the chemical potential μ is
obtained self-consistently,

n =
∫

+
dεD+ f0 −

∫
−

dεD−(1 − f0), (8)

where the range of the first (second) integral is in the conduc-
tion (valance) band, and ± denotes the band indices.

Now the electrical and thermal conductivity matrices are

σ = LEE

κ = LT T − LT E L−1
EE LET . (9)

Here, the bipolar diffusion effect is automatically included.
We define the effective Lorenz number componentwise:

Lxx = κxx

σxxT
, Lxy = κxy

σxyT
. (10)

For both components, the Lorenz number equals L0 = π2

3e2

in the regime where the Wiedemann-Franz law is satisfied,
so below we will present the results using the Lorenz ratio
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FIG. 1. Longitudinal and transverse Lorenz ratio for MLG as a function of T for various choices of 	, n, and Bz. The scattering parameters
in the cases of 	 = 0 K (first column) and 	 = 60 K (second column) are A/C = 2.78 × 10−5 K−2, B/C = 4.63 × 10−6 K−3, and in the case
of 	 = 600 K (third column) are A/C = 2.78 × 10−9 K−2, B/C = 4.63 × 10−12 K−3. The unit of Bz is 0.2Ce−1v−2

F .

Lxx,xy/L0. Note that such a componentwise treatment for the
Lorenz ratio in the presence of a magnetic field was used also
in hydrodynamic theory [17].

III. MONOLAYER GRAPHENE

The MLG is typically modeled by linearly dispersive gap-
less conduction and valance bands [18]. However, we consider
the possibility of a gap opening as in Ref. [1], which may be
due to the hBN substrate [9–13]. Since the exact behavior near
the gap is unknown, we use the simplest model for the gap
as in Ref. [1] (note that the result for parabolic dispersion is
qualitatively similar as shown in Sec. IV, so the exact shape
near the gap should not affect our qualitative result):

ε+(p) = +vF |p|, ε−(p) = −vF |p| − 	, (11)

where 	 is the size of the gap, and vF ∼ 1 × 106 m/s is the
Fermi velocity of graphene. The subscripts label the conduc-
tion (+) and the valance (−) band. The density of states is
(including the spin degeneracy gs = 2 and valley degeneracy
gv = 2)

D+(ε) = 2ε

π h̄2v2
F

for ε > 0,

D−(ε) = 2(−	 − ε)

π h̄2v2
F

for ε < −	. (12)

For the relaxation time τ , it is known that the domi-
nant transport mechanisms in graphene are the scattering
by short-range disorder, long-range disorder, and acoustic
phonon [18]. As in Ref. [1], we consider only these three
mechanisms, using the phenomenological model derived from

Refs. [19,20]:

τ+(ε) = 1

Aε + BT ε + C
ε

, τ−(ε) = τ+(−	 − ε). (13)

Here the parameters A, B, C represent the scattering strengths
of short-range disorder, acoustic phonon, and long-range
Coulomb disorder, respectively (the magnetic field is denoted
by “Bz” to avoid confusion with the coefficient “B” here). At
zero magnetic field, only the ratios between the parameters af-
fect the Lorenz ratio. Although scaling τ by a constant affects
the Lorenz ratio at nonzero Bz, it only changes the unit of it.
We try several different combinations of the parameters (as in
Ref. [1]), finding that they give the same qualitative results.
Since the experimental value of these parameters is unknown,
we will just choose one set of typical (A/C, B/C) for each
	 and present the results using a unit of Bz that depends on
C. This also means that the maximum Bz that satisfies the
weak requirements cannot be pinned down in our results, as
the actual value depends on C, which is unknown. With such a
large number of unknown parameters in the problem, our goal
is neither data fitting nor precise quantitative predictions but
aiming at the expected qualitative dependence of the effective
Lorenz ratio in the presence of a finite magnetic field.

We present the magnetic-field-dependent result of the
Lorenz ratio as a function of T in Fig. 1 and as a function
of n in Fig. 2. We observe that (1) the Wiedemann-Franz
law is asymptotically satisfied for both the longitudinal and
transverse component as T → 0; (2) for the longitudinal
component, the finite-temperature peak is enhanced by the
magnetic field, and the enhancement is larger at lower density;
(3) the position of the finite-temperature peak is almost inde-
pendent of Bz; and (4) for the transverse component, the value
can be either positive or negative, depending on the parameter
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FIG. 2. Longitudinal and transverse Lorenz ratio for MLG as a function of n for various choices of 	, T , and Bz. The scattering parameters
and the unit of Bz are the same as in Fig. 1.

regime, which is expected due to the complex behavior or the
electron and holes in the presence of the magnetic field. For
completeness, we also present the Lorenz ratio as a function
of Bz for a particular choice of parameters in the left column
of Fig. 5. We caution, however, that our theory would not
apply at “larger” values of Bz where strong field effects such
as Landau quantization would come into play.

IV. BILAYER GRAPHENE

Near the Fermi surface, the BLG is modeled by parabolic
dispersive conduction and valance bands [18]. As in the case
of MLG, we consider the situation where a gap is opened and
use the simplest model:

ε+(p) = +|p|2
2m

, ε−(p) = −|p|2
2m

− 	, (14)

where 	 is the size of the gap, and m ≈ 0.2 eV/v2
F is the

effective mass [18]. The density of states is (including the spin
degeneracy gs = 2 and valley degeneracy gv = 2)

D±(ε) = 2m

π h̄2 for ε > 0 or ε < −	.

We use the same scattering mechanisms for τ as in MLG,
but the scattering exponents are different because of the mod-
ified band structures. From the result of Ref. [21], we use the
following phenomenological model:

τ+(ε) = 1

A + BT + C
ε

, τ−(ε) = τ+(−	 − ε). (15)

Here the parameters A, B, C represent the scattering strengths
of short-range disorder, acoustic phonon, and long-range
Coulomb disorder, respectively, as in the MLG case.

We present the result of the Lorenz ratio as a function of
T in Fig. 3 and as a function of n in Fig. 4. We observe that
the behavior is qualitatively similar to the case of MLG. In

particular, there is a high finite-temperature peak when there
is a gap but only manifests a small peak when there is no gap,
as in the case of MLG found in Ref. [1], and the peak becomes
higher for nonzero Bz. However, the quantitative details are
different from those of MLG. (Note that different combina-
tions of scattering parameters can also lead to some difference
in the quantitative details, so one should not compare the
MLG and BLG results presented here too literally.) Again,
for completeness, we present the Lorenz ratio as a function of
Bz for a particular choice of parameters in the right column of
Fig. 5.

V. CONCLUSION

Using the Boltzmann-transport theory with a magnetic
field, we show that the large finite-temperature peak of Lxx/L0,
observed in Ref. [2] and possibly (qualitatively) explained by
our previous paper [1], is enhanced, but not shifted much, by
the presence of the magnetic field. In addition, we note that the
sign of Lxy/L0 may either be positive or negative, depending
on the parameter regime. Such qualitative behaviors are the
same in both MLG and BLG.

We emphasize that our current work, although a general-
ization of our earlier work [1], is both important and novel
by virtue of the singular importance of the Crossno et al.
experiment [2] we are investigating. The original experiment
was interpreted as a breakdown of the Fermi-liquid theory in
graphene and as such had a huge impact. We pointed out in [1]
that there is a compelling Fermi-liquid interpretation of the
experiment [2], and unpublished data appear to support our
claim that the maximum value of L/L0 should be ∼4 unless
a gap opens up at the Dirac point due to the hBN substrate.
The experimentalists pointed out to us that one novel way
to explore our predictions and understand the correct physics
would be to apply a magnetic field and study the magnetic
field dependence of L/L0, which provides a new tuning pa-
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FIG. 3. Longitudinal and transverse Lorenz ratio for BLG as a function of T for various choices of 	, n, and Bz. The scattering parameters
in the cases of 	 = 0 K (first column) and 	 = 60 K (second column) are A/C = 0.0167 K−1, B/C = 2.78 × 10−3 K−2, and in the case of
	 = 600 K (third column) are A/C = 1.67 × 10−6 K−1, B/C = 2.78 × 10−9 K−2. The unit of Bz in the cases of 	 = 0, 60 K is 80Ce−1v−2

F

and in the case of 	 = 600 K is 2Ce−1v−2
F .

rameter to study the system definitively [14]. Our current
work provides definitive and comprehensive predictions for
how L/L0 should behave as a function of an applied mag-
netic field, enabling a decisive experimental settlement of the
Fermi-liquid versus non-Fermi-liquid question once and for
all by varying an applied magnetic field in the experiment and
comparing with the results presented in the current work. We
emphasize that magnetotransport brings in qualitatively new

physics by introducing chirality and Hall effect into the prob-
lem, and the system now has both longitudinal and transverse
responses, introducing a profound new direction to be tested
experimentally [14]. Such magnetic-field-dependent experi-
ments are currently underway, and our predictions (before the
fact) obviously are important and necessary to settle what is
certainly an important conceptual question: Is doped graphene
a Fermi liquid or not? Our magnetic-field-dependent results

FIG. 4. Longitudinal and transverse Lorenz ratio for MLG as a function of n for various choices of 	, T , and Bz. The scattering parameters
and the unit of Bz are the same as in Fig. 3.
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FIG. 5. Longitudinal and transverse Lorenz ratio for MLG (left
column) and BLG (right column) as a function of Bz at 	 = 60 K,
T = 40 K, n = 109 cm−2. The unit of Bz is Ce−1v−2

F for MLG and
80Ce−1v−2

F for BLG. The scattering parameters are the same as in
the corresponding cases in Figs. 1 and 3.

when compared with the ongoing experimental efforts should
answer this profound question in the near future.

Note that we do not claim that our previous paper [1]
unambiguously explained the observation in Ref. [2] and
hence do not claim that the results in this paper necessarily
correspond to the reality if one adds a magnetic field to the
experimental setup in that paper. In particular, we are not
claiming that the simple assumptions used in these two papers
accurately correspond to the experimental system nor that the

simplified theory can give all the quantitative details that agree
with experimental data. Our purpose is to provide a possible
explanation, as all the previously attempted explanations are
not very successful. We are successful to the extent that the
addition of a single parameter, namely, a gap, can provide
an explanation for the intriguing data of Ref. [2]. Now, we
develop the same theory in the presence of a magnetic field,
providing further motivation for more experiments to clarify
the physics of the MLG and BLG Wiedemann-Franz law.

If future experimental results with the addition of a weak
magnetic field agree qualitatively with the results here, then
one may say that our explanation [1] is likely correct (of
course, more experiments, such as deliberately inducing a gap,
may also be necessary to settle the explanation [22]). In this
case, one may then try to extract the parameters from the data
and establish a more quantitative microscopic theory for the
transport in MLG as well as BLG. On the other hand, if future
experimental results disagree qualitatively with the results
here, then it would imply that the finite-temperature peak ob-
served in [2] cannot be explained just by considering bipolar
diffusion and the induced gap. In that case, more theoretical
works would be necessary to solve the puzzle presented in [2].
Such experiments to understand the temperature dependence
of the Wiedemann-Franz law in graphene in the presence of a
magnetic field are currently ongoing [14], and hopefully, we
will have a resolution of the puzzle posed by Ref. [2] in the
near future.
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