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Two-dimensional (2D) materials offer a large variety of optical properties, from transparency to plasmonic
excitation. They can be structured and combined to form heterostructures that expand the realm of possibility to
manipulate light interactions at the nanoscale. Appropriate and numerically efficient models accounting for the
high intrinsic anisotropy of 2D materials and heterostructures are needed. In this article, we retrieve the relevant
intrinsic parameters that describe the optical response of a homogeneous 2D material from a microscopic ap-
proach. Well-known effective models for vertical heterostructure (stacking of different layers) are retrieved. We
found that the effective optical response model of horizontal heterostructures (alternating nanoribbons) depends
on the thickness. In the thin layer model, well adapted for 2D materials, a counterintuitive in-plane isotropic
behavior is predicted. We confront the effective model formulation with exact reference calculations such as
ab initio calculations for graphene, hexagonal boron nitride (hBN), as well as corrugated graphene with larger
thickness but also with classical electrodynamics calculations that exactly account for the lateral structuration.
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I. INTRODUCTION

The extraordinary optical and electromagnetic (EM) prop-
erties of two-dimensional (2D) materials have been broadly
investigated from visible light to microwaves [1–4], leading
to developments in various domains such as photovoltaics
[5,6], biosensors [7,8], superabsorbers [9,10] and transparent
conducting films [5,11]. The description of the EM response
of a single layer has been debated recently [12–21] based on
a thin-film model which assigns an effective permittivity to a
layer with a given thickness, or on a 2D model which sets a
surface susceptibility or conductivity at the interface between
two media [16,17,19].

It is clear that anisotropy is essential in the description
of 2D materials. As an example, recent ellipsometry results
on MoS2 and graphene have shown that the out-of-plane re-
sponse plays a crucial role in their optical response [15,19]. In
particular, the comparison between the thin-film and surface
susceptibility models required this out-of-plane response to
be carefully handled as the materials are not periodic in that
direction [17,21].

The stacking of 2D layers modifies their electronic prop-
erties as shown for the stacking order of multilayer graphene
[22–25] or for the transition from direct to indirect band gap
for transition metal dichalcogenides (TMDs) [26,27]. These
effects mainly occur close to the Fermi level and affect less
the EM response in the visible or UV range. The stacking also
results in long-range (electrostatic) interactions that modify
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the optical response in the absence of change in the electronic
structure of the system [12,21]. This long-range interaction
should also be accounted for to retrieve the single-layer op-
tical response from quantum simulation based on supercell
techniques (periodic repetition of the single-layer separated
with vacuum) [12].

The high number of possible heterostructures and their
atomic complexity, as well as their intrinsic anisotropy,
demand a robust but computationally tractable approach. Ver-
tical heterostructures, the stacking of identical or different
2D layers, have been widely investigated in the last decade
[9,28–36], in particular with an effective medium approach
[17,28,37]. However, the thickness range of validity for a thin
film or surface susceptibility effective models has not been
explored. On the other hand, horizontal heterostructures of
single-layer materials have been less studied [31,35,38,39]
and the effective models have not been confronted to exact
methods that account for the structuring.

In this paper, first, we investigate the validity of the
effective model for vertical 2D heterostructures with a
graphene-hBN bilayer and we explore the limits of this ap-
proach with respect to the number of layers. Second, turning
to horizontal heterostructure, we show that the optical re-
sponse of 2D materials nanoribbons are correctly described
with a different effective model than thick ribbons and
nanorods [35,40]. In particular, we show that 2D materials
horizontal heterostructures optically behave like a uniform
uniaxial material, isotropic in the plane.

In Sec. II, starting from a microscopic framework, we
define surface susceptibilities of 2D materials which are
independent of the thickness, for both in-plane and out-of-

2469-9950/2023/108(24)/245412(11) 245412-1 ©2023 American Physical Society

https://orcid.org/0000-0003-1288-116X
https://orcid.org/0000-0002-8324-0522
https://orcid.org/0000-0002-2564-1221
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.245412&domain=pdf&date_stamp=2023-12-13
https://doi.org/10.1103/PhysRevB.108.245412


BRUNO MAJÉRUS et al. PHYSICAL REVIEW B 108, 245412 (2023)

plane polarizations, retrieving in a microscopic approach, that
includes among others smooth transitions between layers, the
results obtained from a macroscopic point of view in [21]. On
this basis, the effective models for vertical and horizontal het-
erostructures are retrieved. The reference numerical methods,
with which effective model will be compared, are described in
Sec. III. A first-principles quantum approach [time-dependent
density functional theory (TDDFT)] is performed when the
size of the system permits, e.g., for vertical heterostructure,
and a classical electrodynamics approach that exactly
accounts for the structuring [rigorous coupled wave analysis
(RCWA)] is used for horizontal heterostructure. In Sec. IV
we apply the effective models on various heterostructures and
we compare the results with reference simulations. Graphene
multilayers and a graphene-hBN bilayer are investigated for
vertical heterostructures while graphene nanoribbons and
graphene-hBN hetero-nanoribbons are studied for horizontal
heterostructures.

II. EFFECTIVE MEDIUM THEORY FOR 2D MATERIALS
AND HETEROSTRUCTURES

In this section, macroscopic response functions are related
to microscopic response functions and effective models are
deduced for heterostructures.

A. The irreducible and external susceptibilities

The time dependencies of the potentials are supposed to be
harmonic, i.e., V (t ) ∝ eiωt . Below, this factor is not shown for
the sake of conciseness. Vapp(r) is a periodic potential with a
uniform amplitude Ṽapp applied on a material at a microscopic
(atomic) scale,

Vapp(r) = Ṽapp eik·r. (1)

The induced and total potentials Vind(r) and Vtot (r) can be
written as follows:

Vind(r) = Ṽind(r)eik·r, (2)

Vtot (r) = Ṽtot (r)eik·r, (3)

where the spatial variation of the functions Ṽtot (r) and Ṽind(r)
are related to the local fields (LFs) and have the same spatial
periodicity as the unit cell of the material. We define here the
irreducible susceptibility χ (r, r′) and the external susceptibil-
ity ξ (r, r′) by

Ṽind(r) = −
∫

χ (r, r′)Ṽtot (r′) d3r′, (4)

Ṽind(r) = −
∫

ξ (r, r′)Ṽapp d3r′, (5)

where the integrals span over the whole space. These suscepti-
bilities can be calculated from the more usual irreducible and
external polarizabilities [41,42]. The macroscopic dielectric
function of a material is obtained through the average of the
potential over the unit cell � [43–45]:

εM = Ṽapp

〈Ṽtot (r)〉 . (6)

FIG. 1. Model of a 2D material layer between two media.

Taking the average of the total potential from Eq. (5) and
with Vtot (r) = Vext (r) + Vind(r), one gets

1

εM
= 1 − 1

V

∫
�

∫
ξ (r, r′)d3r′d3r, (7)

1

εM
≡ 1 − ξM, (8)

with V the volume of the unit cell. The macroscopic external
susceptibility ξM defined by Eq. (8) relates the total displace-
ment field to the polarization field:

P = ξMD. (9)

This susceptibility was already defined in [21] as the displace-
ment susceptibility. In contrast, the macroscopic irreducible
susceptibility χM , the usual susceptibility of electromag-
netism, is defined by

P = ε0χME, (10)

and is obtained from Eq. (8):

χM = 1 − εM = ξM

1 − ξM
. (11)

In general χM cannot be obtained directly by averaging
Eq. (4), because of the spatial variations of the total potential
Ṽtot in the unit cell, associated with the local fields effect.
However, if the material is homogeneous, the LFs are neg-
ligible and the total field can be replaced by its spatial average
in Eq. (4) [43,46] and

εM = 1 + 1

V

∫
�

∫
χ (r, r′)d3r′d3r, (12)

εM ≡ 1 + χM, (13)

where χM is equal to that obtained using Eq. (11).

B. Permittivity and surface susceptibilities of 2D materials

Bidimensional materials cannot be considered strictly 2D
because the electronic wave function extends in the normal di-
rection. Therefore, the microscopic dielectric function varies
along this direction. In order to determine this permittivity
both numerically (e.g., using TDDFT [12,44]) and experimen-
tally (e.g., using ellipsometry [15,19,47]), 2D materials can be
modeled as a layer with a constant permittivity over a thick-
ness L [12,44]. In the most general case, the layer of thickness
L is embedded between two media of different permittivities
εa and εb as represented in Fig. 1 (left). Following [21],
this layer can be described as a 2D material of permittivity
ε2D with thickness d surrounded by vacuum (Fig. 1, right).
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(a) (b) (c)

FIG. 2. Permittivity of a 2D material as a function of the position
across the layer within (a) a thin-film model, (b) a surface polariza-
tion model, and (c) a more general description of the spatial variation.

This vacuum may for example represent the vacuum layers
of the supercell used in DFT, or the interlayer distance with
another 2D material in the case of heterostructures. The spatial
variation of the permittivity in this layered system (vacuum–
2D material–vacuum) is schematically represented in Fig. 2.
When d = L, it corresponds to the thin-film model. When
d → 0, the 2D material is infinitely thin and the permittivity
is represented using a Dirac distribution as for a finite surface
polarization at the interface between two materials. These two
approaches were formally combined in [21]. Other models can
be imagined such as a continuous permittivity, with a max-
imum value at the center of the atomic layer as represented
in Fig. 2(c). However, we show in the following that at a
macroscopic scale all these descriptions are equivalent.

To rigorously define the surface susceptibilities of 2D ma-
terials, we use the effective model describing the three-layer
system (vacuum–2D material–vacuum) represented on the
right side of Fig. 1 and in Fig. 2(a). This effective model has
been used to rescale the dielectric function of 2D materials
calculated using supercells [48,49]. For in-plane polarization,
it comes from the conservation over the whole system of the
tangential component of the electric field, in which case we
can use the parallel capacitors equation (S9) of the Supple-
mental Material [41,50,51]. For out-of-plane polarization, it
comes from the conservation of the normal component of the
displacement field, in which case we can use the series ca-
pacitors equation (S12) [41,50,51]. For in-plane polarization
it gives

ε
‖
eff = L − d

L
εvac + d

L
ε

‖
2D, (14)

and for out-of-plane polarization
1

ε⊥
eff

= L − d

L

1

εvac
+ d

L

1

ε⊥
2D

. (15)

The permittivities ε
‖
2D and ε⊥

2D are the permittivities of the
layer of thickness d for in-plane and out-of-plane polariza-
tions respectively.

The fact that the effective permittivity modeling is different
for ‖ and ⊥ directions is related to the role of the local field
in the optical properties of stratified media and 2D materials.
The LF affects mostly fields polarized perpendicularly to the
sheets, while it may be neglected for in-plane polarization
[12,52]. Since LFs are negligible for this polarization, εM of
Eq. (12) can be used to evaluate ε

‖
2D in Eq. (14) and, with

εvac = 1, we obtain

ε
‖
eff = 1 + 1

L S

∫
�

∫
χ‖(r, r′)d3r′d3r, (16)

with S = V/d the surface of the unit cell.

We can define the surface irreducible susceptibility for in-
plane polarization of a 2D material as

χ
‖
S = 1

S

∫
�

∫
χ‖(r, r′)d3r′d3r (17)

such that

ε
‖
eff = 1 + χ

‖
S

L
. (18)

The second term of the right-hand side of Eq. (16) is the
average value of the microscopic susceptibility χ‖(r, r′) over
a surface S and a height L. Therefore, it does not depend
directly on the variation profile of the permittivity in the layer
of thickness L or on the distance d , and Eq. (18) is valid for
other models such as those represented in Figs. 2(b) and 2(c).
While the in-plane surface susceptibility χ

‖
S is independent of

the chosen thickness L, as it accounts only for the response of
the 2D material in the volume of thickness d , we note that the
effective permittivity ε

‖
eff depends on L.

The same reasoning can be performed for the out-of-plane
polarization. Because the LF cannot be neglected, Eq. (7) is
used to obtain the effective permittivity of the layer:

1

ε⊥
eff

= 1 − 1

L

1

S

∫
�

∫
ξ⊥(r, r′)d3r′d3r. (19)

As before, the second term of the right-hand side of Eq. (19)
is the average value of the microscopic susceptibility ξ⊥(r, r′)
over a surface S and a height L. The surface external suscep-
tibility for out-of-plane polarization is then

ξ⊥
S = 1

S

∫
�

∫
ξ⊥(r, r′)d3r′d3r, (20)

and the effective out-of-plane permittivity of the layer is

ε⊥
eff = 1

1 − ξ⊥
S
L

. (21)

As for the in-plane response, the surface external suscep-
tibility is independent of the thickness, but the effective
permittivity ε⊥

eff depends on the thickness of the layer.
We emphasize, as stated above, that the surface susceptibil-

ities of Eqs. (17) and (20) are model independent, in the sense
that they do not depend on the exact variation profile of the
permittivity (see Fig. 2). They describe the average response
of the 2D material at this interface and they are the relevant
quantities to describe the optical response of 2D materials at a
macroscopic scale. In particular, they are related to the surface
polarization field by

P‖
S = ε0χ

‖
S E‖ (22)

and

P⊥
S = ξ⊥

S D⊥. (23)

Note that χ⊥
S has been used to characterize the out-of-plane

polarization of 2D materials [13,17,19,20]. However, from
Eq. (11), we see that it is not an intrinsic quantity as it depends
on the thickness L:

χ⊥
S = ξ⊥

S

1 − ξ⊥
S
L

. (24)
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FIG. 3. Schematic representation of the considered systems and
the effective models. Vertical heterostructures (a) and horizontal
heterostructures (b) of 2D materials can be represented by a thin film
(c) or a surface polarization (d).

Moreover, when the constitutive relation P⊥
S = ε0χ

⊥
S E⊥ is

used instead of Eq. (23), the obtained surface response func-
tions are found to problematically depend on the surrounding
media [13,17,19,20]. In the case of a 2D layer in vacuum or
when the out-of-plane susceptibility is neglected, the derived
optical responses are not affected. But recent ellipsometry
measurements on graphene and MoS2 in the visible range
[19] cannot be interpreted with a model that neglects the out-
of-plane response of the 2D material, reinforcing the need to
define truly intrinsic quantities for the 2D layer, independently
of the external media [21].

The microscopic susceptibilities of 2D materials can be
obtained numerically ab initio for a periodic system in a
supercell approach [45,46], with a vacuum layer of a few
nanometers separating repeating layers to avoid short-range
interactions between them. The thickness L then corresponds
to the height of the supercell. If, in the ab initio codes,
the macroscopic permittivity is directly given as the result
of the quantum calculations, the surface susceptibilities can
be derived from Eqs. (18) and (21). The permittivities or
susceptibilities can then be used in classical electrodynamics
approaches, implementing each 2D material with a 2D or 3D
model.

C. Effective model for 2D-material heterostructures

In this section, the in-plane and out-of-plane surface sus-
ceptibilities of horizontal and vertical heterostructures are
related to the bulk effective permittivities of a thin film of
finite thickness or to the surface susceptibilities of a surface
polarization as shown in Fig. 3, where (a) and (b) represent
the heterostructures and (c) and (d) the effective models (3D
or 2D).

1. Effective model for vertical heterostructures

A vertical heterostructure is modeled here as alternating
layers of 2D materials and vacuum [Fig. 3(a)], which can
be seen as a generalization of the approach of the previous
section. The effective permittivity of a multilayer can be found
using the parallel capacitors equation (Eq. (S9) of the Supple-
mental Material [41]) [28,37]. Similarly, the effective surface
irreducible susceptibility of a purely 2D material equivalent to

FIG. 4. (a) Schematic view of horizontal heterostructure. The
yellow box of height H includes the ribbons of 2D materials of thick-
ness L and a part of the substrate and incident medium. (b) Close-up
view of the yellow box with the different interfaces labeled
from A to E.

the multilayer can be deduced from Eq. (S9) using the relation
between the permittivity and the susceptibility [Eq. (18)] for
both the effective and individual layers:

χ
‖
S,eff =

∑
i

χ
‖
S,i. (25)

where the sum spans on each layer indexed i. A further analy-
sis of the validity of this approach is proposed in [21].

Similarly, from the series capacitors equation [Eq. (S12)]
and using Eq. (21), an effective surface external susceptibility
for the out-of-plane polarization is obtained as

ξ⊥
S,eff =

∑
i

ξ⊥
S,i. (26)

Equations (25) and (26) are equivalent to Eqs. (53) and (56)
of [21], validating the coherence of the two approaches.

2. Effective model for lateral heterostructures

A horizontal heterostructure corresponds to alternating rib-
bons of 2D materials [Fig. 3(b)]. This kind of geometry was
not considered in [21] and no model published up to now can
provide the counterintuitive results that are obtained below for
thin ribbons.

Following the same approach as for vertical heterostruc-
ture, the effective susceptibilities of thick ribbons are found,
reproducing well-known results [35,53]:

ξ x
S,eff =

∑
fiξ

x
S,i, (27)

χ
y,z
S,eff =

∑
fiχ

y,z
S,i , (28)

where fi is the volume filling fraction of each type of ribbon.
In the case of 2D materials, particular care must be taken

owing to their extremely small thicknesses. We first consider
the displacement field D and the electric field E in a unit
cell composed of two distinct materials [Fig. 4(a), yellow
rectangle]. The incident medium and substrate have large
thicknesses compared to the thickness of the 2D ribbon L. The
total thickness of the system, noted H , verifies the condition
H 
 λ with λ the field wavelength in vacuum.

If the electric field is polarized along the ribbon and parallel
to the interface (i.e., along the y axis), it is conserved at the
interfaces [namely at points A, B, C, D, and E depicted in
Fig. 4(b)]. Therefore, as the wavelength of the field is much
larger than H , the electric field is uniform over the whole
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structure, which is the condition to apply the parallel ca-
pacitors equation Eq. (S9) (see Supplemental Material [41]).
Accordingly, the effective susceptibility of the layer is

χ
y
S,eff,2D =

∑
fiχ

y
S,i, (29)

similarly to Eq. (28) with the subscript 2D indicating that this
equation is valid for 2D materials.

When the electric field is polarized across the ribbon in
the material plane (x axis), the electric field (E‖) is conserved
at the interface at points A, B, C, and D. At point E , the
displacement field normal to the surface is conserved and the
electric field is discontinuous. Therefore, neither the electric
field nor the displacement field are constant over the whole
structure. The formal conditions to apply strictly the parallel
or series capacitors equations are then not fulfilled.

Nonetheless, as the thickness L of each ribbon is much
smaller than its width, one can consider that the electric field
does not vary between A and B (or between C and D). Only
close to the interface between the ribbons does the field vary
truly. Consequently, in a first approximation, we consider the
electric field constant over the two ribbons, neglecting the
variation in the small volume around the interface between
the two ribbons. The parallel capacitors equation (S9) applies
and

χ x
S,eff,2D =

∑
fiχ

x
S,i, (30)

which gives the same expression as the effective susceptibility
in the y polarization (if the 2D materials are isotropic in the
plane). The 2D heterostructure is then isotropic in the 2D
plane. This is a counterintuitive result. This conclusion is
also different from the one obtained for thick heterostructures
[Eq. (27)] that has been used in previous works on 2D materi-
als [35,53]. We will numerically analyze further these results
later in the paper.

Finally, for electric fields across the 2D materials (along
the z axis), the displacement field normal to the interface is
conserved at the interfaces A, B, C, D but not E , where the
electric field parallel to the interface is conserved. As in the
previous case, the displacement field can be approximated as
being constant across the ribbons, thus Eq. (S12) leads to

ξ z
S,eff,2D =

∑
fiξ

z
S,i. (31)

As for the x direction, this is not the same result as for the
thick ribbon effective model, which will also be numerically
tested later in the paper.

This effective model for horizontal heterostructures is valid
even for ribbon widths of the same order of magnitude as the
wavelength. The only necessary condition is that this width
needs to be much larger than the layer thickness such that the
fields vary slightly in the ribbon.

As a consequence of the in-plane isotropy of the effective
model, the optical response of such structured 2D materials at
normal incidence does not depend on the polarization except
if there are features that cannot be captured by the effective
model. For instance, as surface plasmon resonances are phe-
nomena appearing due to the structuring of the material, they
cannot be described by the effective layer model. Therefore,
comparing the spectra of the effective system to the proper

system and inspecting the discrepancies can highlight the
plasmonic resonances taking place in the ribbons.

III. NUMERICAL METHODS

In this section, we describe the reference numerical meth-
ods employed to illustrate the range of applicability of the
surface susceptibilities and the effective models presented in
Sec. II C. An ab initio atomistic method is used to determine
the susceptibilities of 2D materials and of vertical heterostruc-
tures. The optical response is then obtained using the surface
susceptibility model of a vertical heterostructure. On the other
hand, a classical electrodynamic method is used to determine
the absorption of horizontal heterostructures based on the
susceptibilities of the individual components. In the last case,
ab initio approaches are not feasible due to the large number
of atoms in the unit cell but the horizontal structuring of the
materials is fully accounted for, as well as the anisotropy.
Those two methods are then complementary in order to verify
the relevance of the effective models.

A. Time-dependent density functional theory (TDDFT)

The surface susceptibility of graphene, hBN, and a bi-
layer graphene-hBN has been calculated using the GPAW

implementation of TDDFT [54], within the random-phase
approximation. Highly corrugated graphene with a thickness
larger than a single layer of flat graphene was also investigated
for comparison. The height of the unit cell of graphene and
hBN is 1.70 nm. For the bilayer, the graphene and hBN layers
were separated by 0.34 nm of vacuum, which corresponds
to the interlayer distance in graphene and is close to the
average interlayer distance of graphene-hBN heterostructures
accounting for van der Waals corrections [55]. In this case,
the total height of the cell is 2.0 nm. The ground states of
graphene, hBN, and the bilayer were calculated using a GGA-
PBE (generalized-gradient approximation of Perdew, Burke,
and Ernzerhof) functional [56], a k-point grid of 256 × 256 ×
1, and an energy cutoff of 350 eV. For the TDDFT calculation,
a cutoff energy of 250 eV was used. Corrugated graphene is
modeled using a unit cell containing 50 atoms forming a hill of
height 0.25 nm in a cell of height 2.50 nm as described in [57].
Its ground state is calculated using the LDA, a 48 × 48 × 1
k-point grid, and a cutoff energy of 400 eV. The cutoff energy
for the TDDFT calculation is 20 eV. The GW and BSE (Bethe-
Salpeter equation) corrections are not calculated here as we
are focusing on the comparison between the single layer and
the heterostructure optical response to validate our effective
approach and, for that purpose, only a qualitative description
of the optical response of individual layers at the same level
of approximation is required.

B. Rigorous coupled wave analysis

A homemade code based on the rigorous coupled wave
analysis (RCWA) method [58] was used. The RCWA method
solves Maxwell equations for a series of layers of finite
thicknesses with lateral structuring, as horizontal heterostruc-
ture. The method was adapted to account for the intrinsic
anisotropy of materials in order to accurately model 2D mate-
rials [41,59–61]. The RCWA approach was used for modeling
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FIG. 5. In-plane surface irreducible susceptibility (left) and out-
of-plane surface external susceptibility (right) of (from top to
bottom) graphene, hBN, and corrugated graphene. The solid line is
the real part and the dashed line is the imaginary part.

thin films and ribbons, with the dielectric functions obtained
by TDDFT.

The thicknesses of the layers representing the 2D materials
(structured or not) were arbitrarily fixed to L = 0.34 nm for
monolayer or L = 0.68 nm for bilayers. As long as these
thicknesses are coherent with the thicknesses used to obtain
the effective permittivity, the results are independent of this
choice [17].

IV. RESULTS AND DISCUSSIONS

The surface susceptibilities of graphene and hBN, as ob-
tained using TDDFT, are shown on Fig. 5. It was first verified
that χ

‖
S and ξ⊥

s are independent of the supercell thickness L
(not shown). For the in-plane susceptibility χ

‖
S (Fig. 5, left

panels) we observe the π and the π + σ plasmons around
respectively 4.5 and 14 eV, as expected without the GW and
BSE corrections [62]. The GW correction tends to blueshift
the plasmon energy and the BSE one has the inverse effect.
Together they produce a global blueshift of less than 0.5 eV
[18,63–65]. The imaginary part of the out-of-plane suscepti-
bility ξ⊥

s , responsible for the absorption, is exactly zero below
10 eV; see Fig. 5, right panels. For corrugated graphene, the
out-of-plane susceptibility is not negligible below 10 eV, due
to the atomic structure extending in the normal direction.
This highlights the role of the valence bounds in the nor-
mal direction to the out-of-plane response of 2D materials.
These TDDFT susceptibilities have been used in the follow-
ing as the susceptibilities of the 2D materials forming the
heterostructures.

The absorption spectra of the systems described by an
effective surface polarization were obtained following the

FIG. 6. Absorption by a single layer (black), 10 layers (blue) and
20 layers (red) of graphene, considering an incident angle of 70◦

within the thin-film model (solid line) and the surface polarization
model (dotted line).

method published in our previous papers [17,21]. It was
adapted to incorporate the surface external susceptibility for
the out-of-plane polarization [21]. The absorption spectra of
the thin films and the ribbons were obtained using the RCWA
method.

For all the following absorption calculations of 2D mate-
rials, the incident medium is air (na = 1) and the refractive
index of the substrate is nb = 1.5. The angle of incidence is
fixed to 70° in transverse magnetic (TM) polarization to probe
the effects of the anisotropy.

A. Vertical heterostructures

We consider two types of vertical heterostructures. First, a
system with identical layers (graphene) to analyze the limits of
the 2D model compared to the thin-film model. These struc-
tures may be synthesized experimentally up to a few layers
using the transfer techniques on chemical vapor deposition
(CVD) grown graphene for example [47]. Second, we test
the validity of the effective model for vertical heterostructure
(Sec. II C 1) on a graphene-hBN bilayer, whose optical prop-
erties have already been reported for in-plane polarizations
[32,33,64].

In Fig. 6 the absorption of a single sheet of graphene
(black), a multilayer of 10 sheets (blue) and a multilayer of
20 sheets of graphene (red) are calculated using the thin-film
model (solid lines) and the surface polarization model (dot-
ted lines), showing the robustness of the strictly 2D model,
even for 10 layers. For 20 layers, the discrepancies between
the models become significant at high energy, in particular
around the π + σ plasmon. In this case, the wavelength of
the electromagnetic wave inside the layer is no longer larger
than the thickness L, and the phase shift cannot be neglected,
which was an assumption for the 2D model. However, this
result shows that the 2D model is not restricted to single-
layered 2D materials and that few-layered 2D materials and
heterostructures can also be modeled as surface polarization.
The maximum number of layers is determined by the small-
phase shift conditions and thus does not depend only on the
thickness of the 2D material but also on its permittivity.

In Fig. 7, the TDDFT surface susceptibilities (the refer-
ence) of a graphene-hBN bilayer are compared to the effective
susceptibilities of Eqs. (25) and (26), with the single-layer
susceptibilities also obtained by TDDFT. The effective model
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FIG. 7. Real (left) and imaginary (right) parts of the surface
susceptibilities of a graphene-hBN bilayer heterostructure from the
reference model, i.e., TDDFT calculation (red lines) and the effective
model (black lines).

replicates well χ
‖
S except around 5 eV, which suggests a

coupling between the π plasmons in each 2D material. For
ξ⊥

S , the effective model fails to reproduce the TDDFT result
above 10 eV, though the global trend is conserved. This is
due to long range electronic interactions that are significant
even with large vacuum layers for out-of-plane polarization,
as highlighted in [12].

B. Horizontal heterostructure

The first structure that we consider in this section is made
of a 2D pattern alternating between graphene nanoribbons
(15 nm wide) and vacuum (5 nm), leading to a filling factor
of 0.75. To assess the domain of validity of the thin-ribbon
[Eqs. (29)–(31)] and thick-ribbon models [Eqs. (27) and (28)],
we compare a single-layer ribbon to a stack of 100 ribbons,
with a total thickness of 34 nm.

Using the RCWA method, the absorption of the graphene
nanoribbons is obtained for two polarizations of the light
with an incident angle of 70◦, namely for the component of
the electric field Etan in the surface plane either parallel or
perpendicular to the ribbons (Fig. 8). To the best of our knowl-
edge, this is the first investigation of 2D materials nanoribbons
fully accounting for the intrinsic anisotropy of the 2D mate-
rial. While for a large thickness (100 layers) the absorption
depends on the polarization, the single-layered horizontal het-
erostructure has an in-plane isotropic response. To confirm
this result, we also have considered an incident light with a
different azimuthal angle, for which the tangential component
of the electric field is neither parallel nor perpendicular to the
ribbons. No modification of the polarization of the transmitted
light has been observed, confirming the isotropy of the system.
The uniaxial response of the thin horizontal heterostructure
that our effective medium model has evidenced is then con-
firmed by the RCWA calculation, which fully describes the
horizontal structure of the system.

For thick layers, the effective model (Sec. II C) predicts
that this uniaxial character disappears and, consequently,

FIG. 8. Absorption by ribbons of graphene of 15 nm width with
a filling fraction of 0.75 calculated using the RCWA for one layer
(top) and one hundred layers (right). The incident angle is 70◦ and
the tangential component of the electric field is either perpendicular
(solid red) or parallel to the ribbons (dotted black).

when Etan is perpendicular to the ribbon, the thick and thin
ribbon effective models should differ. In Fig. 9, the refer-
ence RCWA simulations are compared to the thin-ribbon and
the thick-ribbon effective approaches for a single layer of
graphene (top) and for a multilayer of 100 sheets of graphene
(bottom). The thin-ribbon model reproduces perfectly the ref-
erence results for ribbons of a single sheet of 2D materials

FIG. 9. Absorption by ribbons of graphene with filling factor of
0.75 at an incident angle of 70◦; the tangential part of the in-plane
electric field is perpendicular to the ribbons, for one layer (top) and
100 layers (bottom). The reference model (RCWA, 15 nm width
ribbons) is in red, and the effective models are in black as dotted
(thin-ribbon model) and solid lines (thick-ribbon model).
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FIG. 10. Relative error of the effective models (thin ribbon and
thick ribbon) compared to the reference as a function of the number
of layers.

while the thick-ribbon model reproduces better the results for
the large multilayer. Inversely the thick-ribbon model, which
has sometimes been used for 2D materials, gives inaccurate
results for single-layer 2D materials [35,53].

To better understand the transition between the two mod-
els, Fig. 10 displays the relative error between each effective
model and the reference (here the RCWA results) as a func-
tion of the number of layers. This error is calculated as the
normalized area between the curves of absorption A:

Error (%) = 100 ×
∫ |Aeff − Aref | dE∫

Aref dE
(32)

with E the incident energy. It confirms that, as shown before,
the thin ribbon model is accurate for very few layers but the
thick ribbon model works better for several tens of layers.
In between, for 3 to 30 layers, the error is above 15% for
both models and a full description of the system is necessary.
As mentioned in Sec. II C, this result is also valid for larger
ribbons, as the effective model only depends on the filling
factor, as was verified numerically up to a width of 1500 nm
(not shown).

We now investigate a lateral repetition of graphene and
hBN nanoribbons with 15 and 5 nm widths, respectively.
These nanoribbons, have already been produced using CVD
and an etching device [66,67], and may sustain plasmons
[39,68], which could be detected by comparison between the
results of the effective model and the RCWA calculation. In
Fig. 11, the three models are compared: the reference model,
the effective thin-film model and the effective surface po-
larization model. The three models agree almost perfectly,
except at two specific energies. Around 5 eV, the two effective
models fail to reproduce the details of the RCWA results
because of the plasmonic resonance that cannot be captured
by effective models. This discrepancy was not observed in the
graphene-air system, which suggests that this plasmon origi-
nates from a coupling between the π plasmon of graphene and
that of hBN, similarly to the case of vertical heterostructures.
At high energy, above 15 eV, the RCWA and the effective
thin-film model results are similar but the surface polarization
model slightly differs. In this range, the wavelength is so small
that the small phase shift approximation is no longer valid,
invalidating the strictly 2D model.

FIG. 11. Absorption from alternating ribbons of graphene and
hBN, with filling factors of 0.75 and 0.25 respectively, at an incident
angle of 70°, polarized perpendicularly to the ribbons, for three dif-
ferent models: reference model with RCWA (solid red line, width =
15 nm), effective thin-film model (solid grey line), effective surface
current model (dotted black line).

V. CONCLUSIONS

We have proposed an original approach to develop effec-
tive models for vertical and horizontal heterostructures of 2D
materials, based on the formal link between the microscopic
and macroscopic descriptions of the response functions of
the materials. The importance of using two different surface
susceptibilities, the irreducible susceptibility χ

‖
S and the exter-

nal susceptibility ξ⊥
S , defined independently from an arbitrary

thickness of the layer, has been highlighted. In particular,
it makes it possible to avoid the embarrassing definition of
a surface response function that depends on the dielectric
properties of the surrounding media.

It was only recently that experimental optical characteri-
zation highlighted the role of out-of-plane susceptibility (ξ⊥

S )
for a coherent interpretation of the measurements [19]. It will
become even more important with the rapid development of
the study of heterostructures. This anisotropy could be taken
into account together with the structuration of the material, as
in the RCWA methods or in an effective medium approach.
In some cases, the out-of-plane response can be neglected,
as, for example, at normal incidence. Also, below 10 eV,
the imaginary part of ξ⊥

S is negligible for graphene and hBN
while the real part is constant. As most of the optical features
(absorption, plasmonic excitations, etc.) depend mainly on the
imaginary part of ξ⊥

S , the optical spectra are weakly dependent
on the out-of-plane response. This justifies a posteriori the use
of models without out-of-plane responses in many previous
research efforts [10,47,69,70].

For vertical heterostructures, we recovered the well-
described effective medium model and expressed it in terms
of the susceptibilities. With this effective approach, we re-
produced quantitatively calculations from TDDFT, although
special care must be taken for plasmonic resonance and
long-range interactions for out-of-plane polarization. We also
demonstrated that the vertical heterostructure effective ap-
proach is robust up to tens of layers of graphene (more
generally as far as the phase shift of the EM fields is negligible
in the heterostructure).

The counterintuitive uniaxial response of thin alternating
nanoribbons (horizontal heterostructures) is an unexpected
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outcome of the effective medium approach based on the
surface susceptibilities. We successfully confront these pre-
dictions with RCWA numerical investigations and illustrate
the transition towards an anisotropic behavior as the thickness
increases (thick-layer model). This led to the description of
an effective model for ribbons of 2D materials different from
the effective model for thick ribbons or nanorods. In practice,
the validity of the thin-layer model is already questioned
for three-layer systems. In both cases, interface excitations,
such as surface plasmons, cannot be captured by effective
model approaches. As the RCWA method for horizontal het-
erostructure is numerically very efficient, a full description of
the heterostructure rather than an effective medium approach
is recommended to avoid questioning the limit of validity.
However, the accurate description of systems composed of

different 2D materials by a simple homogeneous thin film
or surface current presents the obvious advantage of its sim-
plicity and allows one to analyze experimental data without
numerical effort.
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