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Graphene nanoribbons (GNRs) are thin strips of graphene with unique properties due to their structure
and nanometric dimensions. They stand out as basic components for the construction of different types of
nanoelectromechanical systems (NEMS), including some very promising sensors and pumps. However, various
phenomena, such as unintended mechanical vibrations, can induce undesired electrical currents in these devices.
Here, we take a quantum mechanical approach to analyze how currents induced by fluctuations (either thermal
or of some other kind) in suspended GNRs contribute to the electric current. In particular, we study the pumping
current induced by the adiabatic variation of the Hamiltonian of the system when a transverse vibration (flexural
mode) of a GNR suspended over a gate is excited. Our theoretical approach and results provide useful tools and
rules of thumb to understand and control the charge current induced by fluctuations in GNR-based NEMS, which
is important for their applications in nanoscale sensors, pumps, and energy harvesting devices.
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I. INTRODUCTION

Being one of the strongest materials ever tested [1] with
large thermal and electrical conductivities [2,3], graphene and,
in particular, the more tunable graphene nanoribbons (GNRs)
have become the conductive building blocks of innumer-
able nanoelectromechanical systems (NEMSs). GNR-based
NEMSs have been studied as electromechanical resonators
[4–7]; electron pumps [8–14]; sensors of mass, pressure,
strain, and temperature [15–17], as well as detectors of
vibrations [18] and gases [19]; switches [20]; ultrasmall ac-
celerometers [21]; and even viral detectors for COVID-19
[22].

In all of the above examples, it is essential to study the
various phenomena that can limit the use of the proposed
devices, such as the noise in electrical currents. Besides the
thermal (or Nyquist-Johnson) noise [23,24], other phenom-
ena can also interfere with the detected electrical currents.
For example, suspended GNRs are in constant mechanical
motion at room temperature, which can induce measurable
oscillations in the electrical current, as recently shown [25].
Of course, oscillations are not only due to thermal exci-
tations and other phenomena, such as the propagation of
vibrational waves through the material, which can also cause
them.

Typically, the calculations of instantaneous electric cur-
rents induced by vibrations are based on classical models of
time-dependent capacitances [25]. Here, instead, we adopt
a quantum mechanical approach to this problem and ana-
lyze the contributions to the current due to the adiabatic
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quantum pumping [26–28] arising from the stochastic oscilla-
tion of GNRs. Quantum pumping currents are a consequence
of the delayed response of electronic wave functions to a time-
dependent Hamiltonian which, in the present case, originates
from the movement of the nuclei. In this regard, a comment
is in order to avoid confusions. Since the oscillations of in-
dividual vibrational modes are independent, the generation of
pumping currents produced by them is expected to average to
zero over a period. This is because, to have a finite pumped
charge per cycle, more than one time-dependent parameter
needs to be moved with a fixed phase [26]. However, even if
the pumping currents have a null mean value, this does not
prevent them from contributing instantaneously to the total
current and, thus, to the current noise, when the Hamiltonian
parameters move stochastically. This crucial point marks a
clear difference with some previous works, e.g., Refs. [10,12–
14]. While there the authors studied the pumped charge in
GNRs (meaning the average dc current per cycle), here we
are interested in the maximum value of the instantaneous
adiabatic pumping currents induced by stochastic fluctuations
of GNRs.

In particular, we study a common configuration of GNR-
based NEMSs consisting of a GNR suspended over a
controllable gate, see Fig. 1(a). There, we evaluate the contri-
bution to the electric current due to quantum pumping induced
by the movement of the lowest frequency (acoustic) modes
for the transversal vibration of suspended GNRs, also known
as flexural modes [12]; see Figs. 1(b) and 1(c). To this end,
we adapted the theoretical description of adiabatic quantum
pumping [26] to the generic case of vibrational normal modes
[28]. Our methodology and results are not only relevant for
different types of sensors and pumps based on GNRs, but
they can also be extended to other applications such as energy
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FIG. 1. (a) Scheme of the studied system: A suspended GNR
between two metallic contacts freely oscillating, at a distance d0, over
a gate with gate voltage Vg. We only consider the lowest frequency
(acoustic) modes for the transversal vibration of the GNRs in a
classical approximation and assume a rectangular membrane model
to describe them. The shown mode corresponds to (nx, ny ) = (1, 0).
(b) Other examples of normal modes with (from left to right):
(nx, ny ) = (1, 1), (2, 0), and (2, 1). (c), (d) Logarithm of the scaled
emissivity Ĩk in the low-temperature limit as a function of nx and ny

for square nanoribbons with armchair (aGNR) and zigzag (zGNR)
edges. Ĩk has units of 1/eV and is proportional to the maximum value
of the pumping current during a period. The size of the ribbons is
L = 449 a (with a = 0.246 nm) and the Fermi energy is εF = 0.1 eV.

harvesting at the nanoscale [25,28,29] or to other systems such
as carbon nanotubes.

The paper is organized as follows. In Sec. II, we present the
theoretical framework, including the different models and ap-
proximations used in our calculations. In Sec. III, we explore
the role of different system parameters on the fluctuation-
induced currents, including the length, type of border, and
Fermi energy of GNRs. At the end of this section, we also
present a realistic estimation of the expected value of currents.
In Sec. IV, we develop a semiclassical theory to evaluate the
zero-frequency noise of thermally induced pumping current
and use it to compare with Nyquist-Johnson zero-frequency
noise. Finally, in Sec. V we summarize and discuss the main
results.

II. THEORETICAL FRAMEWORK

Due to the vast number of variables that can potentially
influence the current induced by the oscillations of GNRs,
throughout the paper we focus on certain limits, approxima-
tions, and simplified models that allow us to obtain simple
expressions that nonetheless can be used to understand the
general features of the studied phenomenon.

FIG. 2. Examples of GNRs with zigzag (zGNR) and armchair
(aGNR) edges (blue and orange sites) connected to two semi-infinite
contacts on the left and right (red sites). Note that the contacts are
also made of GNRs of the same width and type. The green rectangles
show how a row is defined for each type of GNR (to be used in
Sec. III B).

A. GNR: Electronic modeling

1. Hamiltonian

Considering energies close to the Fermi energy, the de-
scription of the electrons in graphene can be carried out by
means of a tight-binding model [30]. Given the energy dif-
ference between the σ and π molecular orbitals, and the fact
that the band of π orbitals is the one found around the Fermi
energy, we will only consider pz atomic orbitals. Thus, we
have the following Hamiltonian:

Ĥ =
∑

i

εiĉ
†
i ĉi −

∑
〈i, j〉

ti, j ĉ
†
i ĉ j, (1)

where εi is the energy of site i, ĉ†
i and ĉi are the creation

and annihilation operators in the pz orbital of site i, and
ti, j represents the hopping amplitude between sites i and j.
Furthermore, the sum 〈i, j〉 is restricted to nearest-neighbor
sites. In the absence of defects and external disturbances, εi

is set to zero for simplicity, while the bare hopping amplitude
takes the value ti, j ≡ t0 = 2.66 eV [30].

2. Electronic properties

Graphene nanoribbons are usually cuts in a certain direc-
tion. Based on the direction of the cut, typically two edge
types are described: the zigzag edge [Fig. 2(a)] and armchair
edge [Fig. 2(b)]. To classify the ribbons, the following con-
vention will be used: GNRs with armchair (zigzag) edges are
classified by the number of dimer lines (zigzag lines) across
the width of the ribbon. In addition, the notation N-aGNR
(N-zGNR) will be used for armchair (zigzag) GNRs, where
N is the number of dimer lines (zigzag lines) [30].

N-aGNR and N-zGNR have very different electronic prop-
erties that arise from their contrasting boundary conditions.
Some aGNR exhibit semiconductor behavior, while others are
metallic. An analytical calculation of the eigenvalues of the
tight-binding Hamiltonian allows us to show that the energy
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gap �N of N-aGNR oscillates with the width of the ribbon
[31] besides the obvious decaying limit �N → 0 for N → ∞.
In particular, we have that �N = 0 for N = 3� + 2, where �

is an integer, making it metallic or semiconducting otherwise
[30,32].

Unlike the previous case, the zGNRs retain the semimetal-
lic character of graphene, regardless of their width. Another
interesting feature is the formation of a pronounced peak in
the density of states for ε = 0, which results from the forma-
tion of partially flat and degenerate bands with zero energy
[30]. The presence of these highly confined electronic edge
states has been confirmed by scanning tunneling microscopy
and spectroscopy [30]. They have a topological protection that
makes them robust against different types of disturbances such
as vacancies or Anderson-type noise [30,33].

3. System and contacts

In our calculations, we will assume the configurations
shown in Fig. 2 of the system depicted in Fig. 1(a). There, we
define a finite central region (blue and orange dots in Fig. 2)
that is able to oscillate and is coupled to two semi-infinite and
identical contacts, left (L) and right (R) (red dots), that are also
made of GNRs of the same type as that of the central region.

B. GNR: Oscillating membrane model

We are going to assume that the GNRs are large enough
to be able to approximate its transversal normal modes of
vibration by those of a rectangular membrane (limit of the
continuum for low-frequency acoustic modes). We also as-
sume that this membrane is placed in the xy plane, and
z(x, y, t ) is a function that describes its displacement with
respect to said plane, see Fig. 1(a). Consequently, the equa-
tion that governs the transverse movement of the membrane is
(see Appendix A for more details)

z(x, y, t ) =
∞∑

nx,ny=0

sin

(
nxπ

Lx
x

)
cos

(
nyπ

Ly
y

)
qnx,ny , (2)

where Lx and Ly are the length and width of the central region,
respectively, and the amplitude of the mode qnx,ny (defined by
the pair of integers nx = 1, 2, ... and ny = 0, 1, ...) is

qnx,ny ≡ Anx,ny cos(ωnx,nyt + φnx,ny ). (3)

Figure 1(b) shows some examples of modes for different
pairs (nx, ny). In the above equation, the phase φnx,ny of the
oscillation is arbitrary, the maximum amplitude of q will be
discussed afterwards, and the frequencies of the normal modes
are given by

ωnx,ny = v

√(
nxπ

Lx

)2

+
(

nyπ

Ly

)2

, (4)

where v is the speed of sound in graphene (for low-frequency
transversal acoustic waves). For simplicity, from now on we
will collapse the pair of indices nx and ny into a single one k.
A central quantity that will be needed in our calculations is
the maximum velocity of the normal modes, given by

q̇k,max = Akωk . (5)

The energy associated with the normal modes of graphene,
see Appendix B, can be written as

Ek = mc
(

1
2 q̇2

k + 1
2ω2

k q2
k

) = 1
2 mcA2

kω
2
k , (6)

where mc is the mass of a carbon atom. Now we can use
equipartition theorem together with the above equation to
derive an estimation for Ak , which yields

Ak = 1

ωk

√
2kBT

mc
. (7)

As we will see in Eq. (11), the above expression implies that
the maximum value of the pumping current is independent of
the frequency of the mode.

C. Quantum pumping current

The objective of this section is to derive an expression that
allows us to calculate the maximum value of the pumping
current on the reservoir r, I (1)

r,k,max ≡ max[I (1)
r,k (t )], over a period

of oscillation of a given normal mode k of a suspended GNR.
This pumping current, typically denoted with a superscript
(1), is associated with the first order term of an adiabatic
expansion of the observable current, and arises from the de-
layed electronic response of the system to the time variation
of some classical parameters; see Appendix C. It has been
thoroughly studied by using different formalisms [26,34,35]
and in a variety contexts (even outside quantum transport [36])
but only as a way of generating dc currents controlled by the
movement of at least two systems’ parameters.

Since our interest here lies in stochastic variations of the
system’s parameters (the vibrational normal modes qk), it
is necessary to highlight that the associated pumping cur-
rents average to zero in one period of qk (t ). However, this
does not mean that I (1)

r,k (t ) is always zero. On the contrary,
vibration-induced currents can instantaneously (at a given
time) contribute to the total current which, as discussed in the
Introduction, can potentially interfere with current measure-
ments in sensors based on GNRs, for example.

We will work under a perturbative limit of the modes, i.e.,
small amplitudes of the oscillation, and thus q(t ) ≈ q0, where
q is the vector containing the amplitudes qk of all normal
modes, and q0 ≡ 0 is the equilibrium position of the system.1

Therefore, we can approximate I (1)
r (t ) as

I (1)
r (t ) = e

∑
k

dnr (q)

dqk
q̇k (t ) ≈ e

∑
k

(
dnr

dqk

)
q0

q̇k (t ), (8)

where (dnr/dqk )q0
is the emissivity due to the kth normal

mode evaluated at q0. This emissivity can be written in terms
of the scattering matrix S of the system as [26](

dnr

dqk

)
q0

=
∫

dε

2π

(
−∂ f

∂ε

) ∑
α∈r,β

Im

[
∂Sαβ

∂qk
S∗

αβ

]
q0

, (9)

where f is the equilibrium Fermi function (we are assuming a
zero bias voltage configuration), α and β are channel indices

1In our model, the equilibrium position (no excitation of vibrational
modes for the oscillation of GNRs) corresponds to a flat still mem-
brane, equivalent to setting q0 = 0.
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of the contacts, and we require α ∈ r, since we want to cal-
culate the emissivity at contact r to determine the associated
quantum pumping current I (1)

r . If we additionally take the limit
of low temperatures, Eq. (9) reduces to(

dnr

dqk

)
εF,q0

=
∑
α∈r,β

1

2π
Im

[
∂Sαβ

∂qk
S∗

αβ

]
εF,q0

. (10)

It is interesting to note that the above equation holds even at
finite temperatures if the right-hand side of Eq. (9) depends
linearly on the energy around εF. Due to the approximation
used, emissivities do not depend on time. Then, the maximum
value of the kth contribution to the pumping current I (1)

r,k (de-

fined through I (1)
r (t ) =∑k I (1)

r,k ) is simply

I (1)
r,k,max =

∣∣∣∣∣e
(

dnr

dqk

)
εF,q0

q̇k,max

∣∣∣∣∣, (11)

where q̇k,max is the maximum value of q̇k .

D. Emissivities

The explicit expression of the emissivity depends on the
Hamiltonian model used. Here, we assume small displace-
ments in the direction perpendicular to the GNR plane, z.
Thus, we can take a linear regime of the diagonal elements
of the Hamiltonian,

Hii = E0 +
(

∂E

∂z

)
δzi, (12)

where δzi = [zi(xi, yi, q) − zi(xi, yi, q0)], E0 = εi = 0, and the
factor (∂E/∂z) is the same for all sites. Taking the limit
of large sizes for the GNR, within which our model should
behave like a classical parallel plate capacitor, it can be shown
(see Appendix D) that this factor should satisfy the relation(

∂E

∂z

)
= −ε0

AsiteV 2
g

d2
0

, (13)

where Asite is the area associated with each individual site, Vg

is the potential difference between the membrane and the gate
(gate voltage), d0 is the distance between the GNR and the
gate, and ε0 is the vacuum permittivity.

In GNRs, the hopping amplitudes in the Hamiltonian usu-
ally take an exponential dependence on the distance between
first neighbors [37],

ti, j = t0e
−b
( |ri−r j |

acc
−1
)
, (14)

where acc is the equilibrium distance between neighboring
atoms and b is a constant that sets how much the hoppings
change with the distance |ri − r j |. Here, the distance |ri − r j |
is a quantity that depends on the modes that are being excited
and can be expressed as

|ri − r j | =
√

a2
cc + (δzi − δz j )2. (15)

Given that we are considering that the amplitude Ak of the
modes is small, we can approximate

ti, j ≈ t0

[
1 − b

2

(
δzi − δz j

acc

)2
]
. (16)

The Hamiltonian of the system can then be divided into two
parts, H = H (E ) + H (V ), where H (E ) contains H (q0) and the
site energies’ dependence on q,

H (E )
i j =

⎧⎨
⎩E0 +

(
∂E

∂z

)
δzi i = j

−t0 i = j ± 1,

(17)

and H (V ) contains only the hoppings’ dependence on q:

H (V )
i j =

⎧⎨
⎩

0 i = j
t0b

2

(
δzi − δz j

acc

)2

i = j ± 1.
(18)

Then, using the Fisher-Lee formula, one can prove (see
Appendix E) that the derivatives with respect to qk of the
scattering matrix can be decomposed into

∂S
∂qk

= ∂S(E )

∂qk
+ ∂S(V )

∂qk
, (19)

where S(E ) and S(V ) are the scattering matrices obtained from
Hamiltonians H (E ) and H (V ), respectively. It can be readily
shown that, for small oscillations, ∂S(V )/∂qk can be neglected,
see Appendix E. Using this, and noting that S(q0) = S(E )(q0),
the emissivity takes the form(

dnr

dqk

)
εF,q0

≈
(

dn(E )
r

dqk

)
εF,q0

, (20)

where dn(E )
r /dqk is the emissivity calculated with Hamilto-

nian H (E ).
To simplify the analysis of the next sections, we define the

scaled emissivity, which removes from dn(E )
r /dqk the param-

eters related to particularities of the studied system, i.e.,

(
dñ(E )

r

dqk

)
≡
(

−ε0
AsiteV 2

g

d2
0

)−1(
dn(E )

r

dqk

)
. (21)

Finally, the maximum value of the quantum pumping current,
given by the oscillation of a mode qk with energy kBT , yields

I (1)
r,k,max =

∣∣∣∣∣eε0AsiteV 2
g

d2
0

∣∣∣∣∣
√

2kBT

mc

∣∣∣∣dñ(E )
r

dqk

∣∣∣∣
εF,q0

. (22)

This expression can be divided into three contributions: the
first one from left to right is the scaling factor and it accounts
for the gate voltage and the distance between the GNR and the
gate; the second one is the amplitude factor and it accounts for
the amplitude of the k mode oscillation (in this case given only
by the temperature), and the last one is the scaled emissivity
which is independent of the other quantities. To simplify the
notation, from now on the scaled emissivity will be denoted
as Ĩk , i.e.,

Ĩk ≡
(

dñ(E )
r

dqk

)
εF,q0

, (23)

where we omitted the r subindex since it is irrelevant for
the present case with equal contacts and zero bias voltage.
This quantity, which has units of one over energy, can be
transformed into a true current simply by multiplying it by
the scaling and amplitude factors; see Eq. (22).

245408-4



FLUCTUATION-INDUCED CURRENTS IN SUSPENDED … PHYSICAL REVIEW B 108, 245408 (2023)

FIG. 3. Scaled emissivity Ĩ(1,0) in units of 1/eV, as a function of
the Fermi energy εF for square GNRs with L = 449 a.

III. PUMPING CURRENTS INDUCED BY OSCILLATIONS
OF THE GNR

The main quantity to be discussed in Secs. III A, III B,
and III C, and plotted in Figs. 1, 3–5, is the scaled emissivity
Ĩk in the low-temperature limit, where Ĩk is proportional to
the maximum value of the pumping current during a cycle
of the k mode. In Secs. III A, III B, and III C we mainly study
the dependence of Ĩk on different characteristics of the GNRs,
while in Sec. III D we discuss a realistic estimation of the
maximum value of the vibration-induced pumping current in
typical GNRs. To carry out these tasks, we use the theory
and models previously presented, combining them with the
numerical tools provided by the KWANT package [38] for
the calculation of the scattering matrices. In the plots, all
energies are in eV while distances are in units of a ≡ √

3acc =
0.246 nm, which is the length of the primitive vectors of the
associated Bravais lattice [30].

A. Mode dependence

Here we study the effect of the mode oscillation on the
quantum pumping current through the calculation of Ĩk for

FIG. 4. Contribution of each row of atoms [calculated using
Eq. (24)] to the scaled emissivity Ĩ(1,0), for square GNRs of side
L = 449 a, and εF = 0.001 eV. The value of y is the position of the
row, in units of a. See Fig. 2 for examples of rows for each type of
GNR.

FIG. 5. Scaled emissivity Ĩ(1,0) as a function of the system’s size
L for square GNRs, with εF = 0.1 eV. The linear fits in dotted lines,
show the approximate quadratic dependence between Ĩ(1,0) and L.
Ĩ(1,0) = 10−2.01L2.11 for aGNR and Ĩ(1,0) = 10−2.97L2.09 for zGNRs.

different values of nx (in the range [1,10]) and ny (in the
range [0,10]), taking into account both zigzag and armchair
edges. For the calculations we consider, a square membrane
with length Lx and width Ly equal to 449 a ∼ 0.1 µm. This
value of Ly ensures that the aGNR is metallic (see Sec. II A 2)
and that the system is large enough to validate the rectangular
membrane model (Sec. II B). Regarding the Fermi energy,
the value εF = 0.1 eV was taken, which ensures that we are
working far from edge states for the zigzag case, which can
cause the pumping current to diverge (see Sec. III B).

The dependence of Ĩk on the excited mode is illustrated in
Fig. 1(c) for armchair edges and in Fig. 1(d) for zigzag edges.
It is clear, in both cases, a relationship between the symmetry
of the normal modes and the pumping current: If nx is even or
if ny is odd, the pumped current is negligible. This behavior
can be explained by analyzing the contribution of each atom l
to the total emissivity of a mode k, that is,(

dñr

dqk

)
=
∑

l

(
dñr

dzl

)
∂zl

∂qk
, (24)

where (dñr/dzl ) is the emissivity given by moving only atom
l . If we now assume that the system is infinite and that all
atoms are equivalent, in the sense that their variation equally
affects the scattering matrix, we can write(

dñr

dqk

)
≈
(

dñr

dzl

)∑
l

∂zl

∂qk
. (25)

Then, based on this assumption, we see that it is only the
position of each atom [zl ≡ zl (xl , yl , q)] and the normal mode
involved qk which determines its contribution to the total
current. Thus, for those vibrations where nx is even or ny is
odd, any contribution to the pumping current is canceled by
a contribution of the opposite sign. It is important to note
that, even if the previous approximation is not completely
valid (for example, due to the finite size of the system), it
can still be expected in certain cases that the maximum value
of the pumping current is zero. This occurs when the system
presents a reflection symmetry with respect to a line that cuts
the nanoribbon in half. In that case, for any pair of sites i
and j in mirror positions with respect to a line parallel (or
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perpendicular) to the direction of transport, the emissivities
per atom must be equivalent, i.e.,(

dñr

dzi

)
=
(

dñr

dz j

)
. (26)

Given that for ny odd (nx even), the following relation holds:

∂zi

∂qk
= − ∂z j

∂qk
, (27)

it is clear that Ĩk = 0.
As can be seen in Fig. 1, the above arguments hold quite

well for even nx on both types of ribbons. This is reason-
able considering that the system is truly infinite in the x
direction. Let us recall that we are using as contacts semi-
infinite nanoribbons of the same width and type as that of
the suspended system. In this way, the pumping current is
strictly zero for nx even, when the positions of the equivalent
atoms coincide exactly with a reflection with respect to a line
perpendicular to the direction of transport that cuts the system
in half. The deviations from this are very small for the values
of L used and therefore the pumping currents are negligible, as
can be seen. With respect to the y direction, the system is finite
and, furthermore, for GNRs with zigzag edges there is no
strict reflection symmetry along this direction, see Fig. 2(a).
For this reason, deviations from our previous reasoning are
expected, and this explains that some current (although orders
of magnitude smaller) can be appreciated for odd ny. GNRs
with armchair edges, on the other hand, do present a reflection
symmetry along the y axis, see Fig. 2(b), so it is expected that
the pumping currents are exactly zero for odd ny.

We verified that the same type of behavior shown in
Figs. 1(c) and 1(d) is also repeated for different Fermi en-
ergies and other sizes of the GNR, as long as the ribbon is
not too small. Another general characteristic of the studied
system is that the lower frequency modes yield, by far, the
largest contribution to the pumping current. In particular, the
mode that generates the highest value of Ĩk is the one with
nx = 1 and ny = 0. This is reasonable since, for this mode,
the movement of all the sites contributes with the same sign to
the pumping current and, thus, there are no cancellations. In
Fig. 1(a), we depict the shape of this mode, while in Fig. 1(b)
we show some other modes with negligible contributions to Ĩk .
Based on the previous results, from now on we will only work
with the mode with nx = 1 and ny = 0, denoting the scaled
emissivity as Ĩ(1,0).

B. Fermi energy dependence

In this section, we will study how the maximum pumping
current behaves for different values of the Fermi energy, εF.
Again, we will consider both edges for the GNR. In Fig. 3,
we show Ĩ(1,0) as a function of the Fermi energy for square
nanoribbons of sides Lx = Ly = 449 a and for the mode with
nx = 1 and ny = 0. In this figure, it can be seen that for large
Fermi energies the type of edge does not seem to have an
effect on the maximum value of the pumping current. In both
cases, the pumping current increases roughly linearly with
the number of conduction channels, which increases with the
energy. For small Fermi energies, however, there is a clear
difference in the behavior of the curves. In the case of aGNRs,

Ĩ(1,0) converges to a fixed value as εF goes to zero. Let us
recall that because of the values of Ly used, there is always one
conduction channel at εF ≈ 0 for this type of nanoribbon. On
the other hand, for zGNRs, the maximum value of the current
increases rapidly as εF approaches zero. In fact, for εF = 0,
the pumping current diverges, causing numerical problems in
our calculations. This effect can be explained by noticing that
zGNRs possess edge states at this energy with zero group
velocity [30], causing the divergence of the associated den-
sity of states. The relation between the density of states and
the pumped currents have been established in many different
contexts [13,39].

To confirm that edge states are causing the abrupt increase
of the pumping currents, we evaluate the contribution of each
row of atoms to the total current by means of Eq. (24). In
Fig. 2, it can be seen how these rows are defined for each
nanoribbon type (see the green area). Figure 4 shows the
contribution per row to Ĩ(1,0) for εF = 0.001 eV. As can be
seen, zGNR rows close to the edges (located at y = 0 and
y = 449) are the ones that contribute the most to Ĩ(1,0). On the
contrary, aGNR rows near the edges do not seem to play any
particular role in the currents. It should be mentioned that, in
real systems, a true divergence of the pumping current is not
expected since the coupling with the environment (causing,
for example, decoherence [40]) should regularize it. However,
at least a sharp peak of the pumping current should appear
in potential experiments for εF = 0. In our case, without a
specific model for the interaction with the environment, we
cannot estimate the value of the pumping current precisely
at this value. Finally, it is interesting to discuss the effect of
finite temperatures in Fig. 3. Since the result of this is the
convolution of the emissivity with the derivative of the Fermi-
Dirac function [compare Eqs. (9) and (10)], its expected effect
is simply to smooth (or average) the curves over a range of the
order kBT .2

According to the above discussion, there are two ways of
increasing the pumped currents for zGNRs: either by adjust-
ing the Fermi energy close to zero (and thus taking advantage
of edge states and the divergence of the density of states that
they cause) or by setting the Fermi energy to a large value
(which naturally includes more conduction channels through
which the current can be pumped). For aGNRs, the only
available strategy is the second one.

C. Size dependence

In experiments with GNRs, these systems can sometimes
have sizes on the order of a micrometer [41–44]. Since this
involves a large number of atoms, performing numerical cal-
culations for systems with those sizes involves an enormous
computational cost. One way of estimating the value of the
current Ĩk for long nanoribbons is to study the behavior of this
quantity as a function of size to make an extrapolation.

2Take into account that for Fermi energies εF too close to the Dirac
point (|εF| � kBT ), the calculation of pumping currents at finite
temperatures would present numerical issues due to the divergence
of emissivities there, see Eq. (9).
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We calculate the maximum value of the pumping current
for square nanoribbons of different sizes L = Lx = Ly and for
both types of edges. The particular widths used (Ly values)
were chosen such as to guaranty that the aGNRs are metallic.
Based on the previous analysis, we took nx = 1 and ny = 0,
and chose εF = 0.1 eV for the calculations. This value of εF

is far enough from the Dirac point (thus avoiding numerical
problems) and is, in principle, experimentally accessible [45].

In Fig. 5 we see, for both edges, that the log-log plot of |Ĩk|
with the size of the nanoribbons follows an approximate linear
behavior for large values of L. There is also some dispersion
around this linear behavior. However, this is not surprising
since we are using the zero temperature limit of Ĩk , which
is very sensitive to the density of states at the Fermi energy.
Therefore, every time a new conduction channel appears at
this energy (a consequence of an increase in L), a jump in
the density of states is expected (due to the emergence of
van Hove singularities), also causing a jump in Ĩk . The fit-
tings shows that both edges follow an approximate quadratic
dependence with L, for both edges. That is, the pumping
currents scale with the surface of the system (L2) and not
with the width (L), as is the case of the zero-order current
I (0) (proportional to the number of conduction channels at the
studied energy).

According to the above results, we can estimate the value
of Ĩk for a square nanoribbon with sides close to one microm-
eter, L ≈ 4065 a. This gives an extrapolated scaled emissivity
of approximately Ĩk ∼ 4 × 104 eV−1. This value will be useful
in the following section.

D. Realistic estimation of pumping currents

With the information collected so far, we are able to esti-
mate the maximum value of the pumping current, I (1)

L,(1,0),max,
in a realistic context. Just for the sake of comparison, we will
take the amplitude factor as given by temperature only, see
Eq. (22).

For the reasons discussed in the previous sections, we
choose nx = 1, ny = 0, εF = 0.1 eV, and L ≈ 4065 a. With
these parameters, the extrapolated value of the scaled emis-
sivity in the low-temperature limit yields between 4.03 ×
105 eV−1 (extrapolating for aGNRs) and 3.74 × 104 eV−1 (ex-
trapolating for zGNRs). According to Eq. (22), we see that we
still need to specify d0, T , Vg, and Asite to obtain a concrete
value for the current. The factor Asite is simply the area of the
graphene unit cell divided by two, Asite = 0.026 nm2. For the
rest of the parameters, we took Ref. [41] as a guide, fixing the
rest of the quantities at: d0 = 150 nm, T = 5 K, and Vg = 1 V.

By substituting all the above values in Eq. (22), we obtain a
value of I (1)

L,(1,0),max between 1 and 10 pA. These contributions
can be increased by taking advantage of the dependence of
I (1)
L,(1,0),max on d0. For example, reducing the separation to d0 =

15 nm, it follows that I (1)
L,(1,0),max lies between 0.1 and 1 nA.

Just to put into context the above values of pumping cur-
rents, we can compare them with some measured values of
currents in nanodevices. In Ref. [25], a fluctuation-induced
current of the order of 10 pA is observed working with mi-
crometric sheets of suspended graphene at temperatures two
orders of magnitude higher than that used in our estimate. An-
other example is that of irradiated graphene experiments such

as the one in Ref. [46], in which electric currents of the order
of 10 pA at room temperature have also been measured. Work-
ing with mechanical resonators based on monolayer graphene,
the authors of Ref. [6] measured currents of the order of pA
at temperatures of 5 K. In conclusion, the estimated values of
pumping currents induced by thermal vibrations seem plau-
sible of being measured and, in principle, their effect should
not be neglected since they can potentially interfere in some
experiments.

Before continuing, here a comment is in order. The
formalism used to describe the pumping current assumes
that the vibrational degree of freedom behaves classically.
This is valid as long as the vibrational energy is far from
the zero point energy, which for thermal excitation implies
h̄ωk/2kB � T . Considering a GNR with Lx ∼ 10−6 m,
nx = 1, ny = 0, and taking v ≈ 12.9 km/s [47], we estimate
h̄ω(1,0)/2kB ∼ 0.05 K. This very small temperature value also
shows that the application of the equipartition theorem for the
mechanical degrees of freedom used in Sec. II B does not con-
tradict the low-temperature limit for the energy dependence of
the electronic scattering matrix used in Eq. (10).

Finally, it is important to highlight that the presented esti-
mations correspond to pumping currents induced by thermal
excitations of the vibrational modes. Other forms of ambient
vibrations, such as sound waves traversing the sample, could
give rise to considerably larger amplitudes of the normal
modes [increasing the amplitude factor in Eq. (22)] and thus
much larger values of I (1)

L,(1,0),max are possible. Therefore, the
above estimations are the minimal expected values of the
pumping currents in a real case scenario.

IV. CURRENT NOISE INDUCED BY THERMAL
OSCILLATIONS OF GNRs

In previous sections, we show that fluctuation-induced
pumping currents can be strong enough to be measurable,
even for thermal excitations of the nanoribbons, affecting the
observed currents of different nanodevices. Considering that
stochastic fluctuations of the nanoribbons should induce what
is essentially noise in the current determinations, it is fair
to wonder how strong is this new form of noise, which we
dubbed current noise induced by thermal vibrations (CNITV),
as compared with more standard forms of current noise.

In this section, we develop a semiclassical approach to
evaluate CNITV. This form of current noise is associated with
the first-order terms of the adiabatic expansion of the current
Î (1) (or pumping current) and should not be confused with
Nyquist-Johnson or shot noise, which are due to zero-order
terms of the current operator Î (0). In particular, we are won-
dering what the correlation function of the pumping currents
is between contacts α and β, S(1)

αβ (τ ), induced by stochastic
thermal variations of the parameters of a system’s Hamilto-
nian. Here, we evaluate this quantity by means of

S(1,sc)
αβ (τ ) = 〈{�I (1)

α (t )�I (1)
β (t ′)

}
s

〉
c, (28)

where τ = t − t ′, {AαAβ}s = (AαAβ + AβAα )/2, 〈...〉c stands
for the average over stochastic trajectories of the classical
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parameters of the Hamiltonian,3 and �I (1)
α = I (1)

α − 〈I (1)
α 〉c.

The pumping current I (1)
α is the quantum expectation value

〈...〉 of the first order current operator Î (1)
α , i.e., I (1)

α = 〈Î (1)
α 〉.

This expectation value is zero once averaged over stochastic
trajectories, i.e., 〈I (1)

α 〉c = 〈〈Î (1)
α 〉〉c = 0. Therefore, �I (1)

α is
simply I (1)

α .
Note that Eq. (28) corresponds to a semiclassical approxi-

mation of the fully quantum current-noise [48,49]

S(1)
αβ (τ ) = 〈〈{�Î (1)

α (t )�Î (1)
β (t ′)

}
s

〉〉
c, (29)

where we replaced the current operators by their quantum
expectation values. In this sense, at least for α = β, Eq. (28)
can be thought of as a lower limit to S(1)(τ ). First, note that
their difference �S = S(1)

αα (τ ) − S(1,sc)
αα (τ ) gives

�S = {〈〈Î (1)
α (t )Î (1)

α (t ′)
〉〉

c − 〈〈Î (1)
α (t )

〉〈
Î (1)
α (t ′)

〉〉
c

}
s
. (30)

Now, for τ = 0, it holds〈[
Î (1)
α (t )

]2〉− 〈Î (1)
α (t )

〉2 � 0, (31)

due to the Cauchy–Schwarz inequality, while for τ → ∞,〈〈
Î (1)
α (t )Î (1)

α (t ′)
〉〉

c = 〈〈Î (1)
α (t )

〉〉
c = 0, (32)

since each trajectory of the classical parameters over which
we are averaging is stochastic. Therefore, S(1)

αα � S(1,sc)
αα for

τ = 0 and S(1)
αα = S(1,sc)

αα = 0 for τ → ∞. In our case, the
time-dependent variation of the acoustic transversal modes of
graphene qi(t ) is the origin of the current noise, and thus

�I (1)
α (t ) = e

∑
k

(
dnα

dqk

)
(q̇k (t ) − 〈q̇k (t )〉c). (33)

Replacing this in Eq. (28), taking into account that veloc-
ities of different modes are not correlated, i.e., 〈q̇k q̇k′ 〉c =
〈q̇k〉c 〈q̇k′ 〉c, and that their stochastic average is zero,
〈q̇k (t )〉c = 0, we obtain

S(1,sc)
αβ (τ ) = e2

∑
k

(
dnα

dqk

)(
dnβ

dqk

)
〈q̇k (t )q̇k (t ′)〉c . (34)

Now we will assume a generic model for the autocorrelation
function of velocities

〈q̇k (t )q̇k (t ′)〉c ≈ kBT

mc
e−|t−t ′|/τk , (35)

which fulfills the equipartition theorem for t = t ′, while in-
cluding the effects of a finite correlation time τk for each
normal mode k. This kind of exponentially decaying corre-
lation function can indeed be derived analytically for simple

3The electronic Hamiltonian H varies when the GNR oscillates
with a given normal mode (as explained in Sec. II D). Let us recall
that the movement of the GNR is considered classically here, so
q (the vector containing the amplitude of the normal modes) is a
parameter of H . In our paper, we are considering small amplitudes of
the normal modes, so q(t ) ≈ q0. However, q̇ will still change stochas-
tically due to thermal fluctuations. Therefore, when calculating the
current noise, one has to average over the stochastic variation of q̇,
that is, 〈...〉c, which is different from 〈...〉, the expectation value of
some quantity.

models; see, for example, Ref. [50]. Inserting Eq. (35) into
Eq. (34) and taking the limit of small τk gives4

S(1,sc)
αβ (τ ) ≈

[
2e2kBT

mc

∑
k

(
dnα

dqk

)(
dnβ

dqk

)
τk

]
δ(τ ), (36)

where the term in brackets is the zero-frequency noise of the
CNITV, S(1,sc)

αβ (ω = 0). It is interesting to compare this term

with the Nyquist-Johnson zero-frequency noise, S(NJ)
αβ (ω = 0),

typically used to assess current noise. In the limit of small
temperature, the latter is given as [51]

S(NJ)
αβ (ω = 0) = −4kBT

e2

h

∑
η∈α,η′∈β

Tηη′ , (37)

where Tηη′ is the transmission coefficient between conduction
channels η and η′ belonging to contacts α and β, respectively,
and Tηη = −∑η �=η′ Tηη′ . If we wonder when S(1,sc)

αα (ω = 0)
will be the dominant source of current noise, i.e., S(1,sc)

αα >

S(NJ)
αα , this implies the condition, in the low temperature limit,

h

2mc

(
∂E

∂z

)2

Ĩ2
(1,0)τ(1,0) � −

∑
η,η′∈α

Tηη′ , (38)

where the right-hand side of the equation is the total trans-
mittance and, in agreement with the previous sections, we
assume that the mode (nx, ny) = (1, 0) gives the dominant
contribution to the pumped current.

Typically, defects in quasi-one-dimensional systems like
GNRs reduce dramatically the transmittance while pumping
currents are not necessarily affected in the same way. In-
deed, the peaks in the density of states caused by defects
can favorably affect the pumping currents [13]. The scaling
with the length of the sample also favors pumping currents.
Note that the emissivity is approximately proportional to the
length of the system [as Eq. (24) suggests], while the total
transmittance in the coherent limit of the current is, at best,
independent of the length of the sample. Let us recall that,
in quasi-one-dimensional systems with defects, the transmit-
tance is exponentially suppressed with the length [52,53].

The above reasoning sets some general conditions where
one would expect the CNITV to be the dominant contribu-
tion to the current noise: elongated samples with defects.
For example, we consider a GNR with Lx = 800 a, Ly =
200 a (which gives ω(1,0) = 1.9 × 1011 rad/s), 0.5% of vacan-
cies randomly distributed, εF = 0.1 eV, d0 = 15 nm, and Vg =
1 V. With these parameters, we obtained, after 70 independent
runs giving different pairs of scaled emissivities and trans-
mittances, that in 83% of the samples τ(1,0) = 1.05 × 10−8 s
is enough to make the CNITV the dominant contribution to
current noise. This means that a quality factor (taking Q =
τkωk/2) of only 103 is required, which is a modest value
compared with what is possible experimentally for graphene

4This limit means that correlations decay instantaneously as com-
pared with the measurement time. This would lead S(τ ) to be
proportional to the Dirac delta function (with a proportionality fac-
tor equal to the so called zero-frequency noise), which is an usual
assumption in noise treatment.
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resonators at low temperatures [54]. Increasing vacancies up
to 1% makes that a quality factor of 103 suffices for 92% of
the samples.

V. CONCLUSIONS

Motivated by the implementation of GNRs as pumps, sen-
sors, and recent experiments on thermal fluctuation-induced
currents, here we developed a theoretical and numerical model
to study the instantaneous value of quantum pumping currents
in these systems. In particular, we focused on calculating
the maximum value of the pumping current that arises from
the excitation of the transverse acoustic modes of suspended
GNRs. Although our calculations are strictly valid under cer-
tain conditions (namely, classical limit of vibrations, small
oscillations, low frequency transversal acoustic modes, large
ribbon sizes, and the low-temperature limit), our results can
be helpful in estimating the magnitude of this type of current.
In this context, the developed theoretical tools and our results
allow one to understand the role of the different parameters
in the fluctuation-induced currents and assess under which
conditions these currents can play an important role in actual
experiments.

As particular results of the geometry studied, we found
that pumping currents increase with the size of the system,
being approximately proportional to the area of the ribbon and
independent of the edge geometry for large sizes. The lowest
frequency modes contribute the most to the pumping currents.
The contribution of modes with nx even or ny odd is negligible,
being strictly zero when the size of the system tends to infinity.
While for large Fermi energies there are no significant differ-
ences between zigzag and armchair GNRs, for energies close
to the Dirac point marked divergences appear. The behavior of
aGNRs depends on their width, which makes them metallic or
semiconductor. Metallic aGNRs present a relatively small and
energy-independent pumping current, while semiconductor
aGNRs have zero pumping current for Fermi energy close
to the Dirac point. On the contrary, zGNRs present a strong
increase of pumping currents close to the Dirac point due to
the presence of their edge states.

Our estimations of GNRs’ pumping currents in the studied
geometries indicate that, in principle, even thermal fluctua-
tions of the ribbons should produce measurable currents and
that their effects should not be negligible for several experi-
mental setups. It is worth noting that other forms of excitation
of the GNRs, such as propagating sound waves traversing
the system, are potentially even more favorable for inducing
pumping currents.

Finally, we developed a semiclassical theory to evaluate the
CNITV. The comparison with Nyquist-Johnson noise allowed
us to set some general conditions where one would expect the
CNITV to be the dominant contribution to the current noise:
elongated samples with defects.

Our results, which include quantum effects, could provide
a more accurate calculation of fluctuation-induced currents in
experiments like the one in Ref. [25]. Given that sensing is
ultimately limited by the signal-to-noise ratio, our results can
also help to improve the design of sensors based on suspended
GNRs. This could be done, e.g., in optimal configurations
that minimize current noise and/or maximize the signal of the

fluctuation-induced current coming from a specific oscillation
of the ribbon. If fluctuating currents arising from the oscilla-
tion of GNRs could be rectified (which would depend on the
frequency and the magnitude of the current), then our results
could be used to design energy harvesters that turn ambient
mechanical excitations (above the thermal level) into electric
power.

There are several further aspects that could be studied,
including other vibrational modes, and different systems like
carbon nanotubes or heterogeneous multilayer 2D materials.
To assess the role of anharmonicities in the pumping currents,
large oscillation amplitudes of the modes can be explored.
Also, the effect of finite bias voltages on the induced current,
or even the consequences of local voltage thermal fluctuations,
give rise to interesting directions to follow. In this regard,
the present paper paves the way to explore these and other
exciting directions.
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APPENDIX A: TRANSVERSE NORMAL MODES
OF A RECTANGULAR ELASTIC MEMBRANE

As mentioned in Sec. II B, to study the vibrations in a GNR
we will consider that the suspended system is large enough
to be approximated by a rectangular elastic membrane. As-
suming that the equilibrium position of the membrane defines
the xy plane, we will call z(x, y, t ) the displacement of the
membrane with respect to said plane. This variable z satisfies
the wave equation

∇2z = 1

v2

∂2z

∂t2
, (A1)

where v is the speed of propagation of the wave. Mak-
ing the replacement z = F (x, y)q(t ), we separate the above
equation into a spatial equation (Helmholtz equation) and a
temporal equation:

(∇2 + k2)F = 0, q̈ + k2v2q = 0. (A2)

The solutions to the temporal equation are of the form

q(t ) = A cos(kvt ) + B sin(kvt ), (A3)

while for the spatial part it is necessary to specify the bound-
ary conditions. Once the corresponding eigenfunctions have
been obtained, the general time-dependent solution, z(x, y, t ),
can be constructed by superposition. Going back to the
Helmholtz equation, it has the form

∂2F

∂x2
+ ∂2F

∂y2
+ k2F = 0. (A4)
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If the boundary conditions are separated in the x and y di-
rections, we can apply separation of variables in the form
F (x, y) = X (x)Y (y). Substituting this into Eq. (A4) and di-
viding by F gives

k2 + 1

X

dX 2

dx2
= − 1

Y

dY 2

dy2
. (A5)

The left hand side is a function of x only, while the right hand
side is a function of y only. Therefore, this relation is only
valid if both sides are equal to a constant. With this in mind,
we write

dX 2

dx2
= −k2

x X, (A6)

and

dY 2

dy2
= −k2

yY, (A7)

with kx and ky satisfying the relation k2
x + k2

y = k2. Thus,
the two-dimensional problem has been reduced to two one-
dimensional problems, whose solutions are

X (x) = Cx cos(kxx) + Dx sin(kxx),

Y (y) = Cy cos(kyy) + Dy sin(kyy). (A8)

We are now in position to specify the boundary conditions
of the problem. We will think of a rectangular membrane
with side Lx on the x axis and side Ly on the y axis, with
the two edges in the x direction fixed and the two edges in
the y direction free. This implies that the separate solutions
of Eqs. (A6) and (A7) must comply with X (0) = X (Lx ) = 0
and Y ′(0) = Y ′(Ly) = 0 to ensure that the membrane does not
move at the fixed edges and that there is zero slope at the free
edges. Applying these conditions, we arrive at

Cx = 0, kx = nxπ

Lx
, nx = 0, 1, 2, . . . (A9)

and

Dy = 0, ky = nyπ

Ly
, ny = 0, 1, 2, . . . , (A10)

and, in consequence:

X (x) = sin(kxx), Y (y) = cos(kyy). (A11)

In conclusion, the solution of the spatial problem is of the
form

Fnx,ny (x, y) = sin

(
nxπ

Lx
x

)
cos

(
nyπ

Ly
y

)
, (A12)

with

k2
nx,ny

=
ω2

nx,ny

v2
=
(

nxπ

Lx

)2

+
(

nyπ

Ly

)2

. (A13)

The general solution to the two-dimensional wave equa-
tion can then be obtained by superposition of the normal
modes, resulting, in this case, in Eq. (2) of the main text:

z(x, y, t ) =
∞∑

nx=0

∞∑
ny=0

sin

(
nxπ

Lx
x

)
cos

(
nyπ

Ly
y

)
q(t ). (A14)

APPENDIX B: ENERGY OF NORMAL MODES

The total energy of a system composed of atoms labeled
by i, and considering only the z component of their respective
positions for simplicity, is

Etot =
∑

i

mi
ż2

i

2
+ Utot(z), (B1)

where mi is the mass of the atom i and Utot is the total
potential energy of the system. As usual, in any harmonic
approximation we expand the potential up to second order in
the displacement around the equilibrium position z0 (here sets
equal to zero for simplicity). Using this, we obtain

Etot − Utot(z0) ≈ mc

2

(
żTż + 1

mc
zTHz

)
, (B2)

where H is the Hessian matrix. Now, assuming all masses are
equal (mi = mc) and inserting UTU = I, where UHUT /mc =
�q with �q the diagonal matrix containing the square fre-
quency of normal modes, the energy results in

Etot − Utot(z0) ≈ mc

2
(żTUTUż + zTUT�qUz). (B3)

Finally, we recognize q = Uz as the coordinate vector of the
normal modes [which, in our case, we approximate as the qk

of Eq. (2)]. Then, the energy can be written as

Etot − Utot(z0) ≈ mc

2
(q̇Tq̇ + qT�qq) =

∑
k

Ek, (B4)

with Ek = mc(q̇2
k + ω2

k q2
k )/2 being the energy of the normal

mode k.

APPENDIX C: VALIDITY OF THE ADIABATIC
APPROXIMATION

Adiabatic quantum pumping arises from the first-order
correction (in a frequency expansion) to the adiabatic approx-
imation of an observable, the current in our case. Technical
details of its derivation can be found among different contexts
[27,35,39,55,56]. In the present case, the adiabatic approxi-
mation and its first-order correction will be valid when the
time it takes for the electrons to move along the lattice sites
is much shorter than the time it takes for the Hamiltonian
to change. To assess this, we take a mode with some value
nx of a GNR of length Lx (ny = 0 for simplicity). The time
τe electrons take to move (in a fluctuating GNR) between
regions with the maximum and minimum values of the on-site
energies is τe = Lx/(2nxvF), where vF is the Fermi velocity.
The frequency of the normal modes is given by Eq. (4),
which sets the variation frequency of the electronic Hamil-
tonian. Taking vF = 106 m/s and vT = 12.9 × 103 m/s (the
velocity of sound for GNR transversal modes) yields a ratio
between τe and the period of the vibration τmech = 2π/ωnx,ny

of 3.23 × 10−3, which is a reasonably small value for the
expansion. Remarkably, for ny = 0 this ratio is independent of
the vibrational mode nx and, given the expression for τe/τmech,
we do not expect large variations from this ratio for small
values of ny.
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APPENDIX D: PARALLEL PLATE MODEL

The goal of this Appendix is to give an expression for the
factor ∂zE . The key idea is using the principle of correspon-
dence between the quantum system described in Sec. II A and
its classical analog taken as the capacitor formed by a continu-
ous conductive membrane (the GNR) separated by a distance
d0 from the gate with a potential difference Vg. To simplify
the derivation, we will assume that the GNR can only move
as a whole in the z direction, such that the classical analog is
simply a parallel plate capacitor with separation d0 between
the plates. In this way, zi will be the same for all sites and
the change in the on-site energies will also be the same, i.e.,
∂zH (E ) = (∂zE )I, with I the identity matrix. To simplify the
notation, from now on we will omit the superscript (E ) since
we will be always working with the part of the Hamiltonian
that represents the variations in the site energies of the system.
Now, the question that we want to answer is the following:
What is the value of ∂zE in the tight-binding Hamiltonian such
that the system behaves as a parallel plate capacitor in the limit
of large membranes?

Consider the energy of a capacitor with parallel plates of
area A, a potential Vg, and separated by a distance d . The
energy stored in this “classical” capacitor is

E (classic) = 1

2
CV 2

g = ε0A

2d
V 2

g . (D1)

If we now think of small z displacements from a given equi-
librium position d0, we can approximate the new energy as

E (classic) ≈ E (classic)
0 + ∂E (classic)

∂z

∣∣∣∣
d0

z

= E (classic)
0 +

(
− ε0A

2d2
0

V 2
g

)
z. (D2)

Now considering the Hamiltonian model of the system, the
total energy (near equilibrium) is

〈Ĥ〉 = Tr[Ĥ ρ̂ (eq)]

≈ 〈Ĥ0〉 + Tr[(∂zĤ )ρ̂ (eq)]z + Tr[Ĥ∂zρ̂
(eq)]z

≈ 〈Ĥ0〉 +
(∑

i

(∂zHii )ρ
(eq)
ii

)
z

+
⎛
⎝∑

i j

Hi j∂zρ
(eq)
ji

⎞
⎠z, (D3)

where we perform an expansion in z around the equilibrium
position z0. Here 〈Ĥ0〉 is the average energy of the system at
equilibrium (z = 0). Note that ρ̂ (eq) is diagonal in the energy
basis, but not necessarily in the i position basis.

To find ∂zE , we are going to demand that, in the limit of
large systems, the change in the total energy of the system
corresponds to that expected for the parallel plate capacitor
described above. This implies working Eq. (D3) and then
performing a comparison with Eq. (D1) in the limit of macro-
scopic systems.

First, starting from Eq. (D3), we will show that the term
with ∂zρ

(eq)
ji is zero. To easily calculate this amount, we are

going to assume that

ρ̂
(eq)
tot = ρ̂

(eq)
leads ⊗ ρ̂ (eq)

sys , ρ̂ (eq)
sys = exp[−β(Ĥsys − μN̂ )]

�sys
,

(D4)

where �sys = Tr[exp(−β(Ĥ − μN̂ ))] and β = 1/kBT . Then,
taking the Hamiltonian of the system [see Eq. (12)] and setting
Hsys ≡ H , we see that its derivatives are of the form

∂zĤ =
(

∂E

∂z

)
1̂ ⇒ ∂zĤ

n = n

(
∂E

∂z

)
Ĥn−1. (D5)

Similarly, it holds

∂z(Ĥ − μN̂ ) =
(

∂E

∂z

)
1̂, (D6)

and then

∂z(Ĥ − N̂ )n = n

(
∂E

∂z

)
(Ĥ − μN̂ )n−1. (D7)

Using these results, it is possible to calculate the derivative
of the equilibrium density matrix

∂zρ
(eq)
ji = 〈 j|∂ze−β(Ĥ−μN̂ )

�
|i〉 + 〈 j|e−β(Ĥ−μN̂ )∂z

(
1

�

)
|i〉.

(D8)

Working with the first term, we get

〈 j|∂z

(
e−β(Ĥ−μN̂ )

�

)
|i〉 = (−β )

(
∂E

∂z

)
ρ

(eq)
ji . (D9)

On the other hand, working the second term, we arrive at

〈 j|e−β(Ĥ−μN̂ )∂z

(
1

�

)
|i〉 = β

(
∂E

∂z

)
ρ

(eq)
ji . (D10)

Thus, joining the two previous results yields ∂zρ
(eq)
ji = 0.

The fact that ∂zρ
(eq)
ji = 0 and the assumption ∂zH =

(∂E/∂z)I allows us to write 〈H〉 as

〈H〉 ≈ 〈H0〉 +
(

∂E

∂z

)
n(eq)

sys z, (D11)

where n(eq)
sys = (

∑
i ρ

(eq)
ii ) is the mean number of particles

within the system at equilibrium. Therefore, for our Hamilto-
nian model to be consistent with macroscopic theory, we must
do

lim
A→∞

(
−1

2
ε0

A

d2
0

V 2
g

)
z = lim

A→∞

(
∂E

∂z

)
n(eq)

sys z, (D12)

which gives

(
∂E

∂z

)
=

−1

2

ε0V 2
g

d2
0

lim
A→∞

n(eq)
sys

A

. (D13)

Note that n(eq)
sys is the number of sites multiplied by 1/2 (since

two electrons enter per site according to the Pauli exclusion
principle), and that the total area A can be thought of as the
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number of sites multiplied by the area occupied by each site,
Asite. Then we can write

lim
A→∞

n(eq)
sys

A
= 1

2Asite
(D14)

and, in consequence,(
∂E

∂z

)
= −ε0

AsiteV 2
g

d2
0

. (D15)

APPENDIX E: PUMPING CURRENTS DUE
TO COUPLING VARIATIONS

In this Appendix, we will show that, in the limit of small
oscillations of flexural modes, the contribution to the pumping
current due to hopping variations between neighboring atoms
can be neglected. More specifically, this involves deriving
Eq. (19) and proving that ∂S(V )/∂qk tends to zero in the
perturbative limit. To carry out this task, we will use the matrix
form of the Fisher-Lee formula [28,57,58]:

S = I − 2iW †GRW . (E1)

Here, GR is the retarded Green’s function given by

GR = lim
η→0+

[(ε + iη)I − H − �R]−1, (E2)

where H is the Hamiltonian of the system without the con-
tacts, �R is the retarded self-energy due to the contacts, and ε

is the energy of the electrons. The matrix W comes from the
relation

�α = W †�αW , (E3)

where �α is the projection operator towards the channel
α of some reservoir r, and �α is the contribution, due to
channel α, of the imaginary part of the self-energy �R, i.e.,
� = −Im(�R) and � =∑α �α .

Using Eq. (E1) and ∂Gr = −Gr∂[Gr]−1Gr , we find

∂S
∂qk

= (−2i)W †Gr ∂H (E )

∂qk
GrW

+ (−2i)W †Gr ∂H (V )

∂qk
GrW

= ∂S(E )

∂qk
+ ∂S(V )

∂qk
, (E4)

proving Eq. (19).
Now, using the chain rule

∂H (V )

∂qk
=
∑

�

∂H (V )

∂z�

∂z�

∂qk
, (E5)

where z� is the displacement of atom � in the z direction, and
studying the matrix elements of ∂H (V )/∂z� when the system
is in equilibrium, we arrive at(

∂H (V )
i j

∂z�

)
q0

=
[

(zi − z j )
t0b

acc

∂

∂z�

(zi − z j )

]
q0

. (E6)

Since evaluating at q0 implies taking zi = 0, ∀i, we have that(
∂H (V )

i j

∂z�

)
q0

∼ (zi − z j )q0
= 0. (E7)

In short, for small oscillations around the equilibrium posi-
tion, the hopping variation does not contribute to the pumping
current induced by flexural modes.
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