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The spin of a single electron confined in a semiconductor quantum dot is a natural qubit candidate. Funda-
mental building blocks of spin-based quantum computing have been demonstrated in double quantum dots with
significant spin-orbit coupling. Here, we show that spin-orbit-coupled double quantum dots can be categorised
in six classes, according to a partitioning of the multidimensional space of their g tensors. The class determines
physical characteristics of the double dot, i.e., features in transport, spectroscopy, and coherence measurements,
as well as qubit control, shuttling, and readout experiments. In particular, we predict that the spin physics is
highly simplified due to pseudospin conservation, whenever the external magnetic field is pointing to special
directions (“magic directions”), where the number of special directions is determined by the class. We also
analyze the existence and relevance of magic loops in the space of magnetic-field directions, corresponding to
equal local Zeeman splittings. These results present an important step toward precise interpretation and efficient
design of spin-based quantum computing experiments in materials with strong spin-orbit coupling.
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I. INTRODUCTION

Double quantum dots (DQDs) are workhorses in the exper-
imental exploration of quantum computing with electron spins
[1–4]. DQDs allowed spin qubit initialization and readout in
early experiments based on the Pauli blockade transport effect
[5–7]. Since then, numerous experimental demonstrations of
single- and two-qubit gates [1,6–8], qubit readout [9–11],
qubit shuttling [12,13], and few-qubit quantum processors
[14–16] have been completed.

Spin-orbit interaction often plays a pronounced role in the
physical properties of DQDs. This is the case, for example,
for electrons and holes in III-V semiconductors such as InAs
and InSb, or holes in group-IV semiconductors such as Si
or Ge. Spin-orbit interaction can be an asset or a nuisance;
for example, it enables coherent electrical spin control [7,17–
22], but also contributes to decoherence [23,24]. Hence, un-
derstanding spin-orbit-related features and opportunities is of
great importance for spin-based quantum computing.

One important consequence of the spin-orbit interaction
for spin-based qubits is the renormalization of the g factor.
In fact, an anisotropic Zeeman splitting has been observed in
a wide range of experiments [20,25–32], implying that the
magnetic response of a spin qubit in a semiconductor with
strong spin-orbit coupling must be described by a g tensor,
and not by a scalar g factor. The anisotropy of the g tensors is
caused by an interplay [33–35] of spin-orbit interaction, elec-
tric fields, and mechanical strain, such that these effects are
often strongly inhomogeneous due to the symmetry-breaking
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character of the nanostructured environment of the DQD.
These inhomogeneities, in turn, can include significant
nonuniformity of the g tensors in quantum dot arrays, as
well as strong misalignment [27,31,36] between the principal
directions of the g tensor and the high-symmetry crystallo-
graphic directions of the sample.

In this work, we classify spin-orbit-coupled DQDs into
six different classes according to their g tensors, see Fig. 1.
The classification is conveniently carried out in a gauge of
pseudospin-conserving tunneling. In such a gauge, the clas-
sification is based on the combined g tensor M = g−1

R gL

constructed from the g tensors gL and gR of the two dots. In
fact, the classification is defined by the eigenvalue structure
of the combined g tensor M, i.e., how many of its three
eigenvalues are positive, negative, or complex.

We show that the eigenvectors of M associated with
positive or negative eigenvalues specify special “magic”
magnetic-field directions. Directing the magnetic field along
these “magic directions,” a conserved pseudospin can be de-
fined, yielding a major simplification of qubit dynamics.

We highlight pronounced physical features associated with
these magic magnetic-field directions: (i) spectral cross-
ings in the magnetic-field-dependent and detuning-dependent
DQD spectrum, observable via microwave spectroscopy, via
pronounced features in quantum capacitance, or via a finite-
magnetic-field Kondo effect, (ii) prolonged spin relaxation
time (relaxation sweet spot), and (iii) high-fidelity qubit shut-
tling. We also discuss related features for two-electron DQDs.

We also discuss the relation between our classification and
the often-used theoretical framework where local g tensors
are assumed to be isotropic and identical, and spin-dependent
tunneling is caused by weak Rashba- and Dresselhaus-
type spin-orbit interactions, which together define a single
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FIG. 1. Classification of spin-orbit-coupled double quantum
dots. (a) Illustration of a spin-orbit-coupled DQD. In our preferred
gauge, tunneling is pseudospin-conserving (t0), and the g tensors
are real (but not necessarily symmetric) matrices. (b) Classification
based on the eigenvalue structure of the combined g tensor M. Red,
blue, and black rows show the number of positive, negative, and
complex (nonreal) eigenvalues, respectively, defining the six classes
from A to F. For a given class (column), these numbers add up to
three, since M is a 3 × 3 matrix.

“spin-orbit field direction” [18,26,28,30,37–42]. In fact, one
of our classes (Class A) includes that special case, whereas
the other five classes we predict and discuss correspond to
novel, unusual phenomenology as the magnetic-field parame-
ter space is explored.

We also analyze the existence of magic loops in the space
of magnetic-field directions, corresponding to equal local Zee-
man splittings. These directions correspond to stopping points
in Pauli spin blockade in two-electron DQDs and provide
dephasing sweet spots in single-electron DQDs. We prove that
the existence of such magic loops depends on the singular
values of the matrix M ′ = gLg−1

R (note the difference with
respect to M defined above).

The rest of this paper is structured as follows: In Sec. II, we
introduce our parametrized model for the spin-orbit-coupled
DQD and transform it for convenience to a specific gauge
(gauge of pseudospin-conserving tunneling). In Sec. III, we
provide a classification of our DQD model family, i.e., a
partitioning of the parameter space based on the eigenvalue
structure of the combined g tensor M = g−1

R gL. In Secs. IV
and V, we discuss physical features associated with the magic
magnetic-field directions in a DQD with a single electron
(with two electrons). In Sec. VI, we describe how transitions
between the different classes can occur as the g tensors are
changed by, e.g., tuning the gate voltages of the DQD. In
Sec. VII, we analyze magic loops, i.e., magnetic-field direc-
tions where the Zeeman splittings in the two dots are equal.
Finally, we conclude in Sec. VIII.

II. HAMILTONIAN FOR A SPIN-ORBIT-COUPLED
DOUBLE QUANTUM DOT

We start with a frequently used phenomenological 4 × 4
model Hamiltonian describing a single electron (or hole) in a
spin-orbit-coupled DQD. This Hamiltonian acts on the Hilbert
space spanned by the local Kramers basis states in the two
dots, |L⇑̃〉, |L⇓̃〉, |R⇑̃〉, and |R⇓̃〉, where L and R refer to the
two dots and the arrows refer to local pseudospin basis states
that form a local Kramers pair in each dot.

In particular, for the local basis states it holds that they are
related by the time reversal operator T , e.g., |L⇓̃〉 = T |L⇑̃〉.
For a single quantum dot with spatial symmetries, those spa-
tial symmetries imply a natural choice for the Kramers-pair
basis [43]; however, here we consider DQDs and assume
that all spatial symmetries are broken by the nanostructured
environment (e.g., gates, leads), which motivates us to use
generic Kramers pairs as described above.

In this basis, our Hamiltonian reads

H = Hos + Ht + HZ, (1a)

Hos = ε

2
τz, (1b)

Ht = t̃0τx + t̃ · σ̃ ⊗ τy, (1c)

HZ = 1

2
μB(σ̃L · g̃LB + σ̃R · g̃RB), (1d)

where Hos, Ht, HZ are on-site, tunneling and Zeeman terms,
respectively.

The vector σ̃ = (σ̃x, σ̃y, σ̃z ) is the vector of Pauli ma-
trices acting on the local Kramers bases on the two dots,
e.g., σ̃z = |⇑̃〉〈⇑̃| − |⇓̃〉〈⇓̃|. The vector τ = (τx, τy, τz ) is the
vector of Pauli matrices acting on the orbital degree of free-
dom, e.g., τz = |L〉〈L| − |R〉〈R|. The vector σ̃L consists of
components such as σ̃z ⊗ (1 + τz )/2, etc. Furthermore, ε de-
notes the on-site energy detuning between the two dots. The
pseudospin-conserving tunneling amplitude is denoted by t̃0,
and t̃ = (t̃x, t̃y, t̃z ) is the vector of pseudospin-nonconserving
tunneling amplitudes. Note that the tunneling amplitudes
are gauge dependent, such that their combination t̃2

0 + t̃2 is
gauge invariant. This tunneling Hamiltonian Ht respects time-
reversal symmetry [44], the latter being represented by iσ̃yK ,
where K is complex conjugation.

In the Zeeman term HZ, the Bohr magneton is denoted μB,
whereas g̃L and g̃R are the g tensors of the two dots, and B
is the external magnetic field. Note that the matrix elements
of the g tensors depend on the gauge choice, i.e., the choice of
the local Kramers-pair basis, which we have not yet specified
[43]. In a generic gauge, the g tensors are real matrices, but
they are not necessarily symmetric.

For convenience, we convert the Hamiltonian above to a
gauge that we refer to as the gauge of pseudospin-conserving
tunneling. This is done by a local change of the Kramers basis
in one of the dots, say, the right one, i.e., |R ⇑〉 = W |R⇑̃〉 and
|R ⇓〉 = W |R⇓̃〉, where W is a 2 × 2 special unitary matrix.
An appropriately chosen basis change W yields (see Ap-
pendix A for details) the following transformed Hamiltonian:

H = ε

2
τz + t0τx + 1

2
μB(σL · gLB + σR · gRB). (2)
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As a result of the basis change on dot R, the corresponding
g tensor has been rotated such that gR = Rg̃R. On the other
hand, the g tensor of dot L is unchanged, gL = g̃L. The Hamil-
tonian in Eq. (2) is illustrated in Fig. 1. In what follows, we
refer to gLB and gRB as the internal Zeeman fields. We em-
phasize that, in this gauge, all effects of spin-orbit interaction
are incorporated in the two effective g tensors, and the interdot
tunneling term is pseudospin-conserving. Note that W being
an SU(2) matrix implies that in the new gauge the form of the
time-reversal operator is preserved, i.e., it is iσyK .

Before analyzing Hamiltonian (2), let us discuss a few ex-
perimental observations regarding g tensors in DQDs. Based
on, e.g., Refs. [21,25,27,29,32], g-tensor principal values in
semiconductor DQDs range between 0.05 to 30, and the prin-
cipal axis might [29,32] or might not [27] be correlated with
the device geometry. Furthermore, in Ref. [29], a planar Ge
hole DQD was studied, with the conclusion that the g factors
in the out-of-plane direction have the same sign on the two
dots, whereas they exhibit opposite signs in a certain in-plane
direction. This anticipates that in DQDs with strong spin-orbit
interaction, g tensors can have a rich variety, including strong
anisotropy, large g-tensor difference between the two dots,
and even different signs of the two g-tensor determinants are
possible. From now on, we take these features as our moti-
vating starting point and discuss potential scenarios arising
from this rich variety of g-tensor configurations on a concep-
tual level. In this work, we suppress further material-specific
considerations, e.g., based on real-space models of strong
spin-orbit interaction. Such considerations are important steps
to be taken in future work.

III. MAGIC MAGNETIC FIELD DIRECTIONS AND THE
CLASSIFICATION OF THE COMBINED g TENSOR

Equation (2) describes a Hamiltonian family parametrized
by 20 parameters, out of which 18 describe the two g tensors.
We now classify this Hamiltonian family into six classes. The
classification is based on the two g tensors. In particular, it
is based on the physical intuition that there might be spe-
cial (“magic”) magnetic-field directions such that the internal
Zeeman fields gLB and gRB in the two dots are parallel.
If the magnetic field is pointing to such a magic direction,
then the pseudospin (more precisely, its projection on the
internal Zeeman field direction) is conserved, leading to a
major simplification of the spectral and dynamical properties,
as discussed below.

For which magnetic-field directions are the internal Zee-
man fields gLB and gRB parallel to each other? They are
parallel [45], i.e.,

gLB ‖ gRB, (3)

if it holds that

g−1
R gLB ‖ B. (4)

This holds if B is a (right) eigenvector of the combined g
tensor

M = g−1
R gL, (5)

FIG. 2. Eigenvalues of the combined g tensor M = g−1
R gL, il-

lustrating the sixfold classification of spin-orbit-coupled double
quantum dots. Insets specify the g-tensor examples. Red, blue, and
black points denote positive, negative, and complex eigenvalues,
respectively. For classes A, B, D, and E, gR is defined via a rotation
matrix Ry(α) of angle α around the y axis. Note that for classes A
and D, the example gR is nonsymmetric.

that is,

MB = λB. (6)

In fact, the internal Zeeman fields are aligned (anti-aligned), if
B is an eigenvector of M corresponding to a positive (negative)
eigenvalue. We call the eigenvectors of M corresponding to
real eigenvalues as magic magnetic field directions.

The above observation implies that the spin-orbit-coupled
DQDs characterized by the Hamiltonian of Eq. (2) can be
categorized into six classes, as shown in Fig. 1(b). (i) If
det M > 0, i.e., if the determinants of the two g tensors have
the same sign, then there are three classes, to be denoted by A
(+, c, c), B (+,−,−), and C (+,+,+). The sign + stands
for a positive eigenvalue, the sign − stands for a negative
eigenvalue, and c stands for a complex (nonreal) eigenvalue
of the M matrix. (ii) If det M < 0, i.e., if the determinants
of the two g tensors have opposite signs, then there are three
further classes: D (−, c, c), E (−,−,−), and F (+,+,−). We
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illustrate these classes in Fig. 2 by plotting the eigenvalues of
M, computed for representative g-tensor examples.

Our conclusion so far is that spin-orbit-coupled DQDs
can be classified through the eigenvalue characteristics of
the combined g tensor M. The number of positive, neg-
ative and complex eigenvalues of M varies as we move
between the classes. For each real eigenvalue of M, there
is a magic magnetic-field direction, specified by the corre-
sponding eigenvector of M, where pseudospin is conserved.
Below, we show that the DQD’s physical properties depend
markedly on the sign of the eigenvalue corresponding to the
magic direction, i.e., the case of aligned internal Zeeman fields
is accompanied by different physical consequences than the
case of anti-aligned internal Zeeman fields.

We also note that, in the above classification, we implicitly
assumed that the g tensors are invertible, i.e., all eigenvalues
are nonzero. Nevertheless, our classification is satisfactory
in the sense that g tensors with a zero eigenvalue form a
zero-measure set within the space of g tensors. Also, our clas-
sification has a certain “robustness” or “stability”: given that a
Hamiltonian is in a certain class, then its perturbation cannot
change the class as long as the perturbation is sufficiently
weak. Transitions between different classes upon continuous
perturbations are discussed in Sec. VI below.

We highlight already here that certain physical features of
a spin-orbit-coupled DQD are determined by an alternative
combination of the g tensors, i.e., by the matrix M ′ = gLg−1

R ,
which we introduce and analyze in Sec. VII. The eigenvalues
of M ′ are the same as those of M, i.e., knowing M ′ also implies
the class of a DQD. However, the implications we can draw
from M and M ′ are different, as we discuss in more detail in
Sec. VII.

Finally, we relate our classification to the concept of “spin-
orbit direction” (or spin-orbit field direction) [18,26,28,30,37–
42]. We note that this phrase may have multiple interpreta-
tions; here we focus on a specific theoretical interpretation.
The model family we study incorporates the special case of
weak spin-orbit interaction induced by band-structure effects,
e.g., of Rashba or Dresselhaus type. In that case, the g tensors
of our DQD Hamiltonian are well approximated as identical
and isotropic g tensors, and the direction of the tunneling vec-
tor t, often called the spin-orbit field direction in this case, is
governed by the Rashba and Dresselhaus Hamiltonians. This
special case is included in class A of our classification. Fur-
thermore, in this case the spin-orbit field direction coincides
with the single magic magnetic-field direction. However,
strong spin-orbit interaction and the symmetry breaking as-
sociated with the nanostructured environment often implies
highly anisotropic g tensors, opening up a broader spectrum of
physical scenarios, as characterized by the further five classes
of our sixfold classification.

IV. SINGLE-ELECTRON EFFECTS WITH MAGIC
MAGNETIC-FIELD DIRECTIONS

In what follows, we highlight the role of the magic
magnetic-field directions in determining physical properties.
In this section, we focus on the properties of spin-orbit-
coupled DQDs hosting a single electron.

FIG. 3. Single-electron spectral degeneracies in a spin-orbit-
coupled double quantum dot when the magnetic field is in a magic
direction. The values of the g tensors in left and right dots are
gL = diag(6,−4, 5) and gR = diag(3, 5, 2), respectively. The tun-
neling amplitude is set to t0 = 0.02 meV. (a) B = (0.05, 0, 0) T,
implying that the Zeeman energy is much smaller than tunneling
energy. Note that this field points to a magic direction with a positive
eigenvalue. This yields no spectral degeneracies. In panels (b) and
(c), the magnetic field is B = 0.6 T, implying that the Zeeman energy
is larger than tunneling energy. (b) In a generic magnetic-field direc-
tion B/B = (1/

√
2, 1/

√
2, 0), four anticrossings appear; there are no

band crossing points. (c) B = (0.6, 0, 0) T, i.e., B is an eigenvector
of M with a positive eigenvalue. Band crossings occur between the
antibonding pseudospin band and the bonding pseudospin band. (d)
B = (0, 0.6, 0) T, i.e., B is an eigenvector of M with a negative
eigenvalue. A band crossing occurs between the two bonding bands,
and another band crossing between the two antibonding bands. Such
crossings occur also if the Zeeman splitting is much smaller than the
tunneling energy.

A. Robust spectral degeneracies

First, we describe single-electron spectral degeneracies
that appear when the magnetic field points to a magic di-
rection. These are illustrated in Fig. 3, where we show four
energy spectra, plotted as a function of the on-site energy
detuning ε.

Figure 3(a) shows four energy levels (bands) as a function
of detuning, for a weak magnetic field, such that the Zeeman
energy is much smaller than the tunneling amplitude, and the
field points into a magic direction with a positive eigenvalue.
In this case, there are no degeneracies in the spectrum. Note
that the tunneling amplitude sets the gap between the bonding
(lower-energy) and antibonding (higher-energy) bands at zero
magnetic field.

By varying the magnetic field strength and direction, we
see band anticrossings or crossings, as shown in Figs. 3(b)–
3(d). In Fig. 3(b) we show the detuning-dependent spectrum
for a generic (nonmagic) magnetic field direction, where the
Zeeman splitting is comparable to the tunneling energy. In this
case, the bands exhibit four anticrossings, i.e., there are no
spectral degeneracies.
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Spectral degeneracies are associated with the magic
magnetic-field directions, as shown in Figs. 3(c) and 3(d). In
Fig. 3(c), the magnetic field points to a magic direction of a
positive eigenvalue. In this case, two band crossing points be-
tween the bonding band of the high-energy pseudospin and the
antibonding band of the low-energy pseudospin are present.
The reason for the presence of these spectral crossing points is
that the 4 × 4 Hamiltonian now separates into two uncoupled
pseudospin sectors, due to pseudospin conservation, which in
turn is the consequence of the magnetic field pointing to a
magic direction.

In Fig. 3(d), the magnetic field points to a magic direction
of a negative eigenvalue. In this case, there is a crossing point
between the two bonding bands, and there is a crossing point
between the two antibonding bands. Again, the crossings arise
due to pseudospin conservation. We emphasize that the sign
of the eigenvalue (corresponding to the magic direction along
which the magnetic field is applied) determines which pair(s)
of bands cross.

Remarkably, these spectral degeneracies are robust in the
following sense: If the g tensors suffer a small perturbation,
e.g., due to a small change of the voltages of the confinement
gates, then the eigenvalue characteristics (number of positive,
negative, complex eigenvalues) of the combined g tensor M
remain unchanged, albeit that the eigenvectors and eigenval-
ues of M do suffer a small change. This means that the magic
directions change a bit, but a small adjustment of the mag-
netic field to align with the new magic direction is sufficient
to reinstate the degeneracy points in the detuning-dependent
spectrum again.

This robustness of the degeneracy points is often phrased
as topological protection [27,46–48], and it is a direct conse-
quence of the fact that the subset (“stratum”) of matrices with
a twofold eigenvalue degeneracy has a codimension of three
in the space of Hermitian matrices [49,50].

In fact, we can consider a three-dimensional parameter
space formed by the detuning ε, and the polar and azimuthal
angles θ and φ that characterize the direction of the magnetic
field. In that three-dimensional parameter space, one can as-
sociate a topological invariant to the degeneracy point, which
is often called the Chern number [51] or the local degree [52].
For Hermitian matrices parametrized by three parameters
(such as our Hamiltonian), (i) band crossings arise generically,
(ii) the value of the Chern number associated with a generic
band crossing is ±1, and (iii) such band crossings are robust
against small changes of further control parameters (e.g., the
elements of the g tensors, or the magnetic field strength, in
our physical setup). We have computed the Chern number
for the band crossings shown in Fig. 3, and indeed found
±1, confirming the topological protection of these degeneracy
points.

A natural question is how to perform the classification
experimentally? In other words, given an experimental setup
with a tuned-up single-electron DQD in a material with strong
spin-orbit coupling, how could an experiment find out the
eigenvalue class corresponding to that setup?

(1) A natural idea is to use spectroscopy based on
electron-spin resonance [6] or electrically driven spin reso-
nance [7], such that the magnetic field strength and direction
are scanned. In principle, these techniques provide access to

all spectral gaps as functions of detuning and magnetic field,
and hence are suited to locate the spectral degeneracies in the
parameter space, e.g., in the space of ε, θ , and φ. On the
one hand, the number of degeneracy points found between
the lowest two energy levels is equal to the number of de-
generacy points between the highest two energy levels, and
this number is also the number of negative eigenvalues of M.
On the other hand, the number of degeneracy points between
the first and second excited levels implies the number of
positive eigenvalues of M, hence completing the experimental
classification.

(2) Besides resonant mapping of the energy gaps via the
spectroscopic techniques described above, the magic direc-
tions belonging to the negative eigenvalues of the combined g
tensor can also be found using simpler techniques sensitive to
the ground state only. A ground-state degeneracy point, such
as the one depicted in Fig. 3(c), is often detected via cotunnel-
ing spectroscopy [27]. Moreover, at low enough temperature
this degeneracy causes a Kondo effect at finite magnetic field
[27,53]. Finally, the ground-state degeneracy point of Fig. 3(c)
leads to characteristic features of the quantum capacitance,
e.g., the suppression of the latter [30] compared with the quan-
tum capacitance induced by an anticrossing. This quantum
capacitance suppression can be detected as a function of the
magnetic field direction, along the lines of the experiment of
Ref. [30], revealing the magic direction belonging to the neg-
ative eigenvalue. We discuss this effect further in Appendix B.

Methods (1) and (2) can help to do the classification ex-
perimentally. However, it can happen that the measured data
suggest a level crossing, even when there is no level crossing
but an anticrossing, with a local minimum of the spectral gap
that is nonzero and smaller than the spectral resolution of the
experiment. Such cases might hinder a successful classifica-
tion.

What are the practical aspects of this caveat? Below, we
describe certain functionalities in spin-qubit experiments that
we associate to magic magnetic-field directions. Some of
these functionalities rely only on the vanishing (or almost-
vanishing) anticrossing size between neighboring levels: an
example is the fully diabatic transition utilized for spin-qubit
readout, see Sec. V B. For some other functionalities, such as
the relaxation sweet spot of Sec. IV B and the shuttling sweet
spot in Sec. IV C, the almost-vanishing anticrossing size is
not sufficient; for these, the magnetic field has to point into a
magic direction. In fact, these sweet-spot functionalities serve
as further evidence for a magic direction: if observed, they
establish confidence that the apparent level crossing is an ac-
tual level crossing belonging to a magic direction, even if the
methods of (1) and (2) have insufficient spectral resolution.

B. Relaxation sweet spot

A further physical consequence of setting the magnetic
field in a magic direction is an increased spin-relaxation time.
That is, the magic direction provides a spin-relaxation sweet
spot in the parameter space of magnetic-field directions. The
description of this feature follows.

In a spin-orbit-coupled DQD, a key mechanism of spin
relaxation is detuning noise. Electric fluctuations, including
phonons, fluctuating charge traps, gate voltage jitter, etc.,
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induce on-site energy fluctuations, leading to fluctuations of
the detuning ε. In turn, these detuning fluctuations push the
electron back and forth between the two dots. If the magnetic
field is not along a magic direction, then the electron feels
an internal Zeeman field with a fluctuating direction, leading
to qubit relaxation. However, if the magnetic field is pointing
along a magic direction, then the pseudospin is conserved
despite the fluctuating electron motion, and hence qubit re-
laxation is suppressed.

Of course, relaxation is absent only in the idealized case
described above. In reality, electric fluctuations not only
modify the detuning, but also reshape the landscape of the
double-dot confinement potential, and hence modify tunnel-
ing as well as the g tensors. Nevertheless, as long as the
dominant qubit relaxation mechanism is due to detuning
noise, a qubit relaxation sweet spot is expected if the magnetic
field is pointing in a magic direction.

C. Shuttling sweet spot

Shuttling electrons in quantum dot arrays is a prominent
element of proposals describing scalable spin qubit architec-
tures [54–58]. In such architectures, it is desirable to preserve
the quantum state of a spin qubit upon shuttling to a neighbor-
ing dot [13,59–64]. In a double-dot setup, such high-fidelity
qubit shuttling is facilitated if a conserved pseudospin can be
defined. This is indeed the case whenever the magnetic field
is oriented along a magic direction.

V. TWO-ELECTRON EFFECTS WITH MAGIC
MAGNETIC-FIELD DIRECTIONS

So far we studied a spin-orbit-coupled DQD hosting a
single electron, and we investigated the role of the magic
magnetic-field directions in the qualitative structure of the
single-particle spectrum, as well as their relation to sweet
spots for relaxation and coherent shuttling. However, such
DQD systems are also often operated in the two-electron
regime, typically tuned to the vicinity of the (1,1)–(0,2) charge
degeneracy.

Measurement of the current through the DQD in this set-
ting is useful to characterize both coherent and dissipative
components of the spin dynamics. A combination of DQD
gate-voltage pulse sequences and charge sensing provides
elementary experiments toward spin-based quantum informa-
tion processing, demonstrating initialization, coherent control,
readout, and rudimentary quantum algorithms.

The mechanism of Pauli spin blockade (PSB) is an es-
sential ingredient in those experiments. In this section, we
connect the two-electron DQD physics and PSB to the matrix
M defined in Sec. III. We assess the potential of the spin-
orbit-coupled DQD for hosting spin qubits and performing
PSB-based qubit readout, highlighting the special role of the
magic magnetic-field directions we introduced above. We be-
lieve that connecting the experimental phenomenology to the
properties of the matrix M provides a more precise represen-
tation of the underlying physics than the usual interpretation
in terms of a spin-orbit field that only acts during electron
tunneling. In particular, we provide a potential explanation

FIG. 4. Two-electron spectrum of H (2) as a function of detuning
ε, for a pair of g tensors in class F. The explicit g tensors used for
the left and right dot are, respectively, gL = diag(6, −4, 5) and gR =
diag(3, 5, 2). The tunneling amplitude is set to t0 = 0.02 meV and we
use a magnitude B = 0.2 T for the applied magnetic field throughout.
(a) The spectrum for a generic direction of B = ( 1√

2
, 1√

2
, 0)B. In

this scenario |S02〉 anticrosses with all four (1,1) states. (b), (d) The
magnetic field B is oriented along the x and z axes, respectively. In
these two magic directions, the internal Zeeman fields in the two dots
are aligned, resulting in two level crossings in the spectrum, between
|S02〉 and the highest- and lowest-energy (1,1) states. (c) Now B is
oriented along the y axis, resulting in two internal Zeeman fields that
are anti-aligned, and we see level crossings between |S02〉 and the
two inner (1,1) states.

of the recently observed experimental feature [15] which we
term “inverted PSB readout.”

A. Robust spectral degeneracies in the two-electron
low-energy spectrum

First, we investigate the low-energy part of the spectrum
close to the (1,1)–(0,2) charge transition. To this end,
we write a two-electron version of the Hamiltonian (2),
projected to the four (1,1) states—|T+〉 = |L ⇑, R ⇑〉, |T0〉 =

1√
2
[|L ⇑, R ⇓〉 + |L ⇓, R ⇑〉], |T−〉 = |L ⇓, R ⇓〉, and

|S〉 = 1√
2
[|L ⇑, R ⇓〉 − |L ⇓, R ⇑〉]—and the (0,2) singlet

|S02〉 = 1√
2
[|R ⇑, R ⇓〉 − |R ⇓, R ⇑〉], yielding

H (2) = 1
2μB(σL · gLB + σR · gRB)

+
√

2t0[|S〉〈S02| + H.c.] − ε|S02〉〈S02|. (7)

To understand the different possible scenarios, we focus
on class F, which hosts both types of magic field directions
(both corresponding to positive and negative eigenvalues of
M). Figure 4(a) shows a typical spectrum as a function of the
detuning ε, at a finite magnetic field in a generic direction
(see the caption for parameters used). The detuning-dependent
state |S02〉 decreases in energy with increasing ε and it anti-
crosses with all four (1,1) states, indicating that they indeed
all have a finite singlet component. Away from the anticross-
ings, the four (1,1) eigenstates correspond to the four possible
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configurations with both pseudospins aligned or anti-aligned
with the local internal Zeeman field gL,RB.

In Figs. 4(b)–4(d) we explore the three magic magnetic-
field directions available in class F. For the simple ex-
ample g tensors we chose [gL = diag(6,−4, 5) and gR =
diag(3, 5, 2)] the three magic directions are along the three
Cartesian axes x̂, ŷ, and ẑ. Directing B along x̂ or ẑ [shown
in Figs. 4(b) and 4(d), respectively] corresponds to a pos-
itive eigenvalue of M, causing the local (internal) Zeeman
fields on the dots gL,RB to be parallel. This implies that the
highest (lowest) (1,1) state in the spectrum has its two pseu-
dospins parallel to each other, which explains why they do not
hybridize with the singlet |S02〉. In Fig. 4(c) B points along ŷ,
which is a magic direction corresponding to a negative eigen-
value of M. In this case the internal Zeeman fields gL,RB are
anti-aligned and the highest and lowest (1,1) states now have
their pseudospins anti-aligned with each other [each pseu-
dospin aligns with the local internal Zeeman field]. These two
states now have a finite overlap with |S〉 and thus hybridize
with |S02〉, whereas the two central states now have parallel
pseudospins and thus cross with |S02〉.

We note that the spectral crossings discussed here are ro-
bust in the same sense as described for the single-electron
spectral crossings in Sec. IV A.

B. Single-spin readout via Pauli spin blockade

A DQD, hosting two electrons, tuned to the vicinity of
the (1, 1)–(0, 2) charge transition, can be used to perform
readout of a single-spin qubit via spin-to-charge conversion.
This readout functionality relies on the PSB mechanism, as
we summarize below.

Assume that deep in the (1,1) charge configuration (left
side of the plots in Fig. 4) the left electron is in an unknown
pseudospin state, which one wants to read out in the basis of
the local pseudospin eigenstates | + L〉 and | − L〉, where +
(−) denotes the pseudospin state aligned (anti-aligned) with
the local internal field (gLB in this case). The electron in the
right dot will serve as a reference and is initialized in its local
pseudospin ground state | − R〉. In terms of the two-electron
eigenstates discussed above, the system will thus occupy one
of the states | ± L,−R〉, which are the (1,1) ground state and
the first- or second-excited state, depending on the relative
magnitude of |gLB| and |gRB|. The task of reading out the
left spin is thus equivalent to the task of distinguishing these
two states.

Such a classification is usually done by a slow, adiabatic
detuning sweep to the “right” side of the charge transition,
i.e., into the (0,2) charge region, followed by a detection
of the final charge state of the right dot: If one of the two
(1,1) states to be distinguished connects adiabatically to the
(0,2) state while the other connects to a (1,1) state, then the
outcome of a charge sensing measurement of the final state
provides unambiguous information about the initial state of
the left pseudospin. This readout mechanism is called PSB
readout, as the spin-to-charge conversion is based on the fact
that the Pauli principle forbids an aligned spin pair to occupy
the single ground-state orbital of the right dot.

Comparing the panels of Fig. 4, we can identify a few dif-
ferent scenarios, depending on the relative magnitude of |gLB|

and |gRB|. (Spectra such as shown in Fig. 4 will look quali-
tatively the same for |gLB| < |gRB| and |gLB| > |gRB|, the
main difference being the ordering of the levels | ± L,±R〉;
below we investigate both cases while referring to Fig. 4.) If it
happens to be the case that |gLB| < |gRB| then the two (1,1)
states to be distinguished are the ground state and first-excited
state. All four spectra shown in Fig. 4 now allow in princi-
ple for PSB readout, since in all cases the two lowest (1,1)
states connect adiabatically to different charge states in the
(0,2) region. However, for a generic field direction [Fig. 4(a)],
spin-to-charge conversion might be more demanding than for
the magic field directions: First, since in the generic case
the excited (1,1) state needs to traverse two anticrossings
adiabatically, with potentially different coupling parameters,
a careful engineering of the detuning pulse shape could be
needed.1 Second, in this case the charge-state readout signal
could be obscured due to the fact that the final (1,1) state has
a finite spin-singlet component, allowing for relatively fast
spin-conserving charge relaxation to the (0,2) ground state.

The situation is rather different when |gLB| > |gRB|. In
that case, the initial (1,1) states | ± L,−R〉 to be distinguished
are the ground and second-excited state (the first-excited state
being | − L,+R〉). Considering the four spectra shown in
Fig. 4, we see that the magic field directions corresponding
to positive eigenvalues of M [Figs. 4(b) and 4(d)] now create
a situation where neither of the two (1,1) states connects adia-
batically to the (0,2) state, suggesting that there is no reliable
spin-to-charge conversion through adiabatic passage in this
case. [In this case, fast spin-conserving charge relaxation in
the (0,2) region could in fact restore the PSB signal.] The sit-
uation for the generic field direction [Fig. 4(a)] is very similar
to before: The two (1,1) states do connect to different charge
states, but devising the optimal pulse shape for spin-to-charge
conversion could be challenging and fast charge relaxation
might obscure the signal. Finally, if the field points along
the magic direction that corresponds to a negative eigenvalue
of M [Fig. 4(c)], the lowest two (1,1) states again couple
adiabatically to different charge states that have an orthogonal
(pseudo)spin structure, thus yielding a proper PSB readout
signal.

Combining all the observations made so far, we see that
magic field directions corresponding to negative eigenvalues
of M are favorable for PSB-based spin readout, independent
of the ratio |gLB|/|gRB| and the spin-conserving charge re-
laxation rate in the (0,2) region. Since the relative magnitude
of |gLB| and |gRB| could be hard to control or extract in
experiment, one should thus rather search for a magic field
direction corresponding to a negative eigenvalue of M, e.g.,
along the lines suggested in Sec. IV A. This will yield good
spin-to-charge conversion irrespective of the more detailed
properties of gL,R.

1If the magnitude of the two coupling parameters is very different,
one could also design a pulse shape that results in adiabatic evolution
across one of the anticrossings and diabatic evolution across the
other, which would again result in good spin-to-charge conversion.
This is, however, a rather special situation and making it work would
require accurate knowledge about the details of the two g tensors.
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We emphasize that, in this case where the field is along a
magic direction corresponding to a negative eigenvalue of M,
the spectrum is inverted as compared with the “standard” level
ordering: upon sweeping the detuning, Pauli spin blockade
[i.e., no tunneling to (0,2)] occurs for the first excited (1,1)
state. With this in mind, we now interpret a recent unexpected
experimental observation. In Ref. [15], the authors implement
spin-to-charge conversion and PSB readout in a DQD, and
they observe that “both antiparallel spin states are blocked,
opposite to conventional” Pauli blockade readout. Our inter-
pretation is that the device of Ref. [15] is a spin-orbit-coupled
DQD whose combined g tensor M has a negative eigenvalue,
and this particular observation is made when the magnetic
field points approximately to a magic direction correspond-
ing to a negative eigenvalue of M. In that case, the energy
spectrum is qualitatively similar to that shown in Fig. 4(c).

With this in mind, we can now also place the connection
between PSB and the “orientation” of the spin-orbit coupling
in the right context. In a typical experiment where PSB is used
to extract information about the spin-orbit coupling, the DQD
is tuned to the (0,2) region and connected to a source and drain
contact in such a way that transport through the system de-
pends on the charge cycle (1, 1) → (0, 2) → (0, 1) → (1, 1),
where still the only accessible (0,2) state is a spin singlet.
Whenever one or more (1,1) states have a vanishing overlap
with |S〉, the system will inevitably enter PSB, resulting in a
strongly reduced current. Measuring the current as a function
of the direction of applied magnetic field, a minimum is then
usually associated with having the external field aligned with
an effective spin-orbit field. From the reasoning presented
above, we see that, in terms of the matrix M, one expects
a reduced current whenever the magnetic field direction hits
one of the magic directions. These dips in the current are, in
fact, equivalent to “stopping points” of type (iii) and (iv) as
discussed in Ref. [65], where they were explained, as usual,
in terms of the relative orientation of the local Zeeman fields
as compared with the direction of a field describing the spin-
orbit-induced non-spin-conserving tunneling. In the present
work, we understand these directions in a more “democratic”
way, as resulting from the basic properties of the combined
matrix M = g̃−1

R R−1g̃L that includes all onsite and interdot
spin-orbit effects.

VI. TRANSITION PATTERNS AMONG THE SIX CLASSES

In Sec. III, we have classified spin-orbit-coupled DQDs
into six classes, based on their combined g tensor M. In an
experiment, the two g tensors can be changed in situ, e.g., by
changing the gate voltages. As a result, the combined g tensor
M also changes, and if this change is significant, then M can
transition from one class to another. Are there any constraints
on how M can transition across the classes? Yes, there are, as
we discuss below.

We focus on “generic” transitions, which require only a
single-parameter fine tuning of the g tensors. Accordingly, we
take into account those cases where one eigenvalue of one of
the g tensors goes through zero (without the loss of generality,
we assume it is gL), but discard more fine-tuned cases, e.g.,
when two eigenvalues of one of the g tensors goes through

FIG. 5. Generic transitions among the six classes introduced in
Fig. 2. Colored circles represent the classes, and their coloring indi-
cates the number of positive, negative, and complex eigenvalues of
M (red, blue, and black, respectively). Solid (dashed) lines indicate
generic transitions where the sign of the determinant of M does not
change (changes).

zero simultaneously, and when one eigenvalue of each g tensor
goes through zero simultaneously.

We depict the generic transitions in Fig. 5 as lines con-
necting the colored circles, where the circles represent the
classes. Solid lines represent transitions where the sign of
the determinant of M does not change, whereas dashed lines
represent transitions where that sign does change.

In principle, the maximum number of transitions between
the six classes could be 15, but we find that only 8 of those
transitions are generic, as shown in Fig. 5. Instead of a formal
proof of this structure, we provide intuitive arguments.

As an example of a generic transition, consider the AB
pair of classes, connected by a straight line in Fig. 5. It is
straightforward to exemplify a process where, by continuously
tuning the g tensors, the two complex eigenvalues shown in
Fig. 2 (black points) move simultaneously toward the negative
real axis, collide on the negative real axis, and separate as two
different negative eigenvalues. In fact, tuning the parameter
α from 1 to π [see inset of Figs. 2(a) and 2(b)] does result
in such a process. Furthermore, a small perturbation of such
a process still results in a similar change of the eigenvalue
structure of M. Hence, the AB transition is generic.

As a counterexample, consider the BC pair of classes,
which are not connected in Fig. 5. One way to generate this
transition is to change the g tensors in such a way that the two
negative eigenvalues in Fig. 2(b) (blue points) move to reach
zero simultaneously, and then move onto the positive real
axis. Clearly, this requires a higher degree of fine-tuning than
a BF transition, where only one of the negative eigenvalues
moves across zero. That is, the BF transition is generic, but
the BC transition is not. Another way to reach a BC transition
is to induce a collision of the two negative eigenvalues to
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render them a complex pair, and then move them onto the
positive real axis. This is a BA transition followed by an AC
transition. These arguments illustrate that the BC transition is
not generic.

Going beyond such arguments, a formalized derivation of
the generic transitions can be given using the codimension
counting technique we have discussed and used in Sec. III of
Ref. [45]. In that language, generic transitions are those that
are characterized with a codimension-one eigenvalue pattern
of M.

VII. MAGIC LOOPS

The magic magnetic-field directions we investigated in
the previous sections turned out to have many interesting
properties, with implications of qualitative importance for the
single- and two-electron physics in spin-orbit-coupled DQDs.
As explained in Sec. III, these directions, being the eigen-
vectors of the matrix M = g̃−1

R R−1g̃L, are the magnetic-field
orientations for which the internal Zeeman fields on the dots
are aligned (or anti-aligned).

In the context of PSB, the magic directions result in a
proper spin blockade since they make the states | + L,+R〉
and | − L,−R〉 truly orthogonal to the pseudospin singlet
state. Aligning the magnetic field along a magic direction
is thus expected to fully restore PSB, which is in general
lifted in DQDs with strong spin-orbit coupling. The converse,
however, is not true: A restored spin blockade does not al-
ways imply that the external field is pointing along a magic
direction. Indeed, it is known that there is one more internal
field configuration, not related to the magic directions, that
yields a full spin blockade: This is the configuration with the
two internal fields having equal magnitude, |gLB| = |gRB|.
In this case, the two (1,1) states | + L,−R〉 and | − L,+R〉
are degenerate at vanishing interdot tunneling, independent
of the relative orientation of the internal fields. Both states
being tunnel-coupled to the same state |S02〉 will result in
one “bright” and one “dark” state, the latter being fully spin-
blocked [44,65].

A few natural questions arise regarding these equal-
Zeeman directions for which |gLB| = |gRB|: (i) For a given
DQD Hamiltonian, do such equal-Zeeman directions exist?
(ii) Is their existence determined by the combined g tensor M?
(iii) If those equal-Zeeman directions do exist, then how are
they arranged on the unit sphere of magnetic-field directions?
(iv) Is there a particular relation between the arrangements of
equal-Zeeman directions and the arrangements of the magic
directions discussed in previous sections? (v) Can we identify
any physical consequence of the equal-Zeeman directions,
beyond the full PSB discussed above? We address these ques-
tions in what follows.

A. Existence condition of magic loops with equal
Zeeman splittings

The condition of equal Zeeman splittings in the two dots
reads:

|gLB| = |gRB|. (8)

This can be rewritten by inserting g−1
R gR, to obtain∣∣gLg−1

R gRB
∣∣ = |gRB|. (9)

We introduce the notations

M ′ = gLg−1
R , (10)

and

B′ = gRB. (11)

With this notation, Eq. (9) takes the following simple form:

|M ′B′| = |B′|. (12)

Rescaling the magnetic-field vector does not change this con-
dition, therefore we rewrite the latter in terms of the unit
vector b′ = B′/|B′| characterizing the magnetic field direc-
tion. Then, we obtain

|M ′b′| = 1. (13)

For a given M ′, is there a unit vector b′ that satisfies
Eq. (13)? This can be answered by analyzing the singular
values of M ′. We introduce the smallest singular value σ1 and
the greatest singular value σ3 of M ′:

σ1 = min
|b′|=1

|M ′b′|, σ3 = max
|b′|=1

|M ′b′|. (14)

According to the defining Eqs. (14), there is no b′ solv-
ing Eq. (13) if σ1 > 1 or σ3 < 1. If, however, σ1 < 1 < σ3,
there are unit vectors b′

1 and b′
3 for which |M ′b′

1| = σ1 < 1
and |M ′b′

3| = σ3 > 1. This divides the unit sphere of b′ into
regions where M ′ contracts or elongates the vectors it acts on.
The boundaries between these regions are the unit vectors that
satisfy Eq. (13). These boundaries appear generally as a pair
of loops, related to each other by inversion symmetry.

Transforming back, b = g−1
R b′ specifies the magnetic-field

directions b/|b| where Eq. (8) is satisfied. Note that, in gen-
eral, b is not a unit vector and it points to a different direction
as b′. However, on the unit sphere of magnetic-field directions,
these special directions b/|b| also form a pair of loops in an
inversion-symmetric configuration. We term these loops of
equal-Zeeman directions the “magic loops.” Magic loops are
exemplified, for a specific parameter set, as the yellow lines
in Fig. 6(a), where the violet and green manifolds indicate the
relative magnitude of the Zeeman splitting |gL,RB|/|B| on the
left and right dots, respectively, as a function of the direction
of B. A detuning-dependent spectrum in a two-electron dot,
calculated for the magnetic field directed to a point of the
magic loop, is shown in Fig. 6(b). The dark state discussed
above is shown in Fig. 6(b) as the flat (red) spectral line at
zero energy.

We wish to point out that the definitions of the matrices M
and M ′ are very similar, the only difference being the ordering
of gL and g−1

R . The relation between the two matrices is given
by the basis transformation

M ′ = gLg−1
R = gRg−1

R gLg−1
R = gRMg−1

R , (15)

therefore, their eigenvalues are the same. Hence, the matrix M ′
not only determines the existence of magic loops, but it also
describes which magic direction class (from A to F) the DQD
belongs to, the latter being determined by its eigenvalues. The
matrix M does not encode both properties, as the singular
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FIG. 6. Magic loops in a spin-orbit-coupled double quantum
dot. (a) Dimensionless Zeeman splitting |gLn̂|n̂ (violet) and |gRn̂|n̂
(green), of the two dots, where n̂ = B/B and B is the magnitude
of the applied magnetic field. The yellow closed curves are the
magic loops, defined as the intersection curves of the two sur-
faces. The Zeeman splittings in the two dots are equal for all
magnetic-field directions denoted by these loops. The g tensors are
gL = diag(6,−4, 5) and gR = diag(3, 5, 2). (b) Detuning-dependent
spectrum of a two-electron DQD for a magnetic-field direction that
satisfies the magic loop condition in Eq. (8). We set the tunneling am-
plitude to t0 = 0.1 meV and used B = 0.6 T and n̂ = (1/2,

√
3/2, 0).

A dark state [the flat spectral line at zero energy in panel (b) denoted
by red] is formed for all magnetic field directions along the magic
loop.

values of M and M ′ generally differ. It is tempting to conclude
that, in terms of their information content, M ′ is superior to
M, but that is not the case: In fact, the magic directions are
determined by M (as the eigenvectors of M corresponding to
real eigenvalues), but not determined by M ′.

So far we defined M ′ in the gauge of pseudospin-
conserving tunneling. In a generic gauge, the corresponding
definition reads

M ′ = g̃Lg̃−1
R R−1. (16)

The eigenvalues and singular values of this M ′ can be used
to perform the magic-direction classification and to determine
the existence of the magic loops. The rotation R−1 is necessary
to guarantee the equality of the eigenvalues of M and M ′. Note
that, with this defining equation, M ′ is a gauge-dependent
quantity but its eigenvalues and singular values are not.

B. Stopping points of leakage current in Pauli spin blockade

Based on the concepts of the (isolated) magic directions
and magic loops, we now return to PSB as a dc transport effect
as described in the last paragraph of Sec. V B. Our results
imply that [as long as the PSB leakage current is controlled
by our Hamiltonian (7)] a vanishing leakage current can be
caused by the magnetic field being in a magic direction, or
being directed to a point of a magic loop. One possibility to
distinguish between an isolated magic direction and a magic
loop is to measure the leakage current in a small region sur-
rounding the original magnetic-field direction. Another one
is to perform detuning-dependent spectroscopy and identify
qualitative features shown either in Fig. 4 (magic direction) or
in Fig. 6(b) (magic loop).

C. Dephasing sweet spots

Finally, we derive another physical property of spin-orbit-
coupled DQDs with magic loops, which is practically relevant
when the DQD hosts a single electron as a qubit. We find that
if the magic loops are present, and the magnetic field points
to a magic-loop direction, then this is a dephasing sweet spot
[31,66] for the qubit at zero detuning, and the sweet spot is
robust against changing the detuning parameter.

Our derivation relies on the observation that for weak
magnetic fields, when both local Zeeman splittings are much
smaller than the tunneling amplitude, the splitting between the
two lowest eigenstates is described by a detuning-dependent
effective or “averaged” g tensor, which reads ‘

geff(ε)= 1

2

⎡
⎢⎣

⎛
⎜⎝1− ε√

ε2+ 4t2
0

⎞
⎟⎠gL +

⎛
⎜⎝1+ ε√

ε2+ 4t2
0

⎞
⎟⎠gR

⎤
⎥⎦.

(17)
We assume that, in our case, qubit dephasing is dominated
by charge-noise-induced fluctuations of the detuning ε. The
defining condition of a dephasing sweet spot is that the fluc-
tuating component of the internal Zeeman field should be
perpendicular to the static component. For our case, this trans-
lates to the condition

∂εgeff(ε)B ⊥ geff(ε)B, (18)

which is indeed fulfilled if ε = 0 and if B is along a magic
loop. This is proven straightforwardly by performing the
derivative of the left-hand side of Eq. (18) using Eq. (17),
evaluating both sides at ε = 0, and using the fact that, for
three-component real vectors a and b of equal length, a − b ⊥
a + b.

The dephasing sweet spots associated with the magic loops
survive a finite static detuning from ε = 0. Our argument for
this is as follows: We rewrite Eq. (18) as

f (ε, θ, ϕ) ≡ [geff(ε)n̂(θ, ϕ)] · [∂εgeff(ε)n̂(θ, ϕ)] = 0, (19)

where θ and ϕ are the polar and azimuthal angles of the
magnetic field. Consider the detuning value ε0 = 0 where
dephasing is reduced for magnetic-field directions along the
magic loop, and take a generic point (θ0, ϕ0) of the magic
loop. For generic values of the g-tensor matrix elements,
the derivative ∂ϕ f does not vanish at (ε0, θ0, ϕ0). Therefore,
by changing the detuning ε0 
→ ε0 + δε, we can follow the
displacement (θ0, ϕ0) 
→ (θ0, ϕ0 + δϕ) of the corresponding
point of the magic loop along the azimuthal direction via

δϕ = −δε
fε (0)

fϕ (0)
, (20)

where the new sweet spot is generically slightly away from
the magic loop. Here, we have simplified the notation of
the derivatives, e.g., fε (0) ≡ (∂ε f )(ε0, θ0, ϕ0). (Of course, an
alternative formulation of this argument is obtained by ex-
changing the roles of θ and ϕ.)

The mapping of the displacement via Eq. (20) can be done
for all points of the magic loop. Hence, we conclude that the
dephasing sweet spots identified for zero detuning survive for
finite detuning, but the loop formed by these points on the unit
sphere of magnetic-field directions is distorted as ε changes.
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Note that, depending on the two g tensors, it may happen that
for a finite critical value of ε, each loop contracts to a single
point.

An equivalent argument for the survival of dephasing sweet
spots at finite detuning is as follows: The dephasing sweet
spot condition is given by Eq. (18), valid also for finite de-
tuning. We now perform the differential on the left-hand side
of Eq. (18) using Eq. (17) and exploit the fact that, for real
three-component vectors a and b, the conditions a ⊥ b and
|a + b| = |a − b| are equivalent. This translates Eq. (18) to
the following form:

|[gL − G(ε)]B| = |[gR + G(ε)]B|, (21)

with

G(ε) = ε

2
√

ε2 + 4t2
0

(gL − gR). (22)

Equation (21) has the same structure as Eq. (8), with the only
difference being that the matrices in the former are different
from the matrices in the latter. Furthermore, there is a continu-
ous connection between those matrices, as G(ε = 0) = 0. The
singular-value analysis carried out above for Eq. (8) can be
straightforwardly adopted for Eq. (21), yielding ε-dependent
smallest and greatest singular values σ1(ε) and σ3(ε), both
being continuous functions as G(ε = 0) = 0. This continuity
implies that if the magic loops exist, i.e., σ1(0) < 1 < σ3(0),
then there is a detuning neighborhood around ε = 0 where
σ1(ε) < 1 < σ3(ε) holds, and therefore loops of reduced de-
phasing on the unit sphere of magnetic-field directions do
exist.

We remark that the claim of Sec. IV B, i.e., that a magic
magnetic-field direction provides a relaxation sweet spot, can
be derived using the notion of the averaged g tensor introduced
and expressed in Eq. (17). Namely, for a magic direction,
geff(ε)B is a weighted sum of the two parallel local internal
Zeeman fields gLB and gRB, which implies that the direction
of geff(ε)B does not depend on ε. In turn, this implies that
a fluctuating internal Zeeman field, caused by a fluctuating
detuning, does not have a transversal component to the static
internal Zeeman field, which leads to a suppression of qubit
relaxation.

VIII. CONCLUSIONS

We have proposed a sixfold classification (classes A–F)
of spin-orbit-coupled double quantum dots, based on a par-
titioning of the multidimensional space of their g tensors. Our
class A includes the often-studied special case of isotropic
and identical local g tensors and spin-dependent tunneling
due to Rashba- and Dresselhaus-type spin-orbit interaction;
the other five classes imply distinct phenomenology to be
explored experimentally. We have argued that the class deter-
mines physical characteristics of the double dot, i.e., features
in transport, spectroscopy, and coherence measurements, as
well as qubit control, shuttling, and readout experiments. In
particular, we have shown that the spin physics is highly
simplified by pseudospin conservation if the external field is
pointing to special directions (magic directions), where the
number of special directions is determined by the class. We
also analyzed the existence and relevance of magic loops

in the space of magnetic-field directions, corresponding to
equal local Zeeman splittings. The theoretical understanding
our study provides is necessary for the correct interpretation
and efficient design of spin-based quantum computing exper-
iments in material systems with strong spin-orbit interaction.
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APPENDIX A: GAUGE TRANSFORMATION

In this section, we describe the transformation of the
Hamiltonian to a gauge of pseudospin-conserving tunneling,
to write the Hamiltonian in the form as in Eq. (2). We have
the freedom to choose the Kramers-pair local basis states on
each quantum dot. As a consequence of spin-orbit interac-
tion, we have a pseudospin-nonconserving tunneling vector
t̃ , introduced in Eq. (1c), which describes the rotation of the
pseudospin upon the interdot tunneling event. We redefine
the basis on the right dot to eliminate t̃ , which renders the
pseudospin-conserving tunneling energy to t0 = (t̃0

2 + t̃2)1/2

[see Eq. (1c)].
The tunneling Hamiltonian Ht in the basis |L⇑̃〉, |L⇓̃〉,

|R⇑̃〉, and |R⇓̃〉 has the following matrix form:

Ht =

⎛
⎜⎜⎜⎜⎝

0 0 t̃0 − it̃z −i
(
t̃x − it̃y

)
0 0 −i(t̃x + it̃y) t̃0 + it̃z

t̃0 + it̃z i(t̃x − it̃y) 0 0

i(t̃x + it̃y) t̃0 − it̃z 0 0

⎞
⎟⎟⎟⎟⎠.

(A1)

The definition of the new basis is the following:

|R ⇑〉 = (t̃0 + it̃z )
∣∣R⇑̃〉 + (−t̃y + it̃x )

∣∣R⇓̃〉
t̃0

2 + t̃2 = W |R⇑̃〉,

|R ⇓〉 = (t̃0 − it̃z )|R⇓̃〉 + (t̃y + it̃x )|R⇑̃〉
t̃0

2 + t̃2 = W |R⇓̃〉. (A2)

This basis transformation is a local rotation of the pseu-
dospin around the vector ñso = t̃/|t̃| with an angle θso =
2 arctan (|t̃|/t̃0) on the right dot, i.e., W = exp(i θso

2 ñsoσ̃R).
Note that W has the same form in the new basis as well.

The original basis was formed by a Kramers pair, and the
new basis is also formed by a Kramers pair, i.e., T |R ⇑〉 =
|R ⇓〉. The tunneling Hamiltonian, rewritten in the new basis,
reads

Ht = t0|L⇑̃〉〈R ⇑| + t0|L⇓̃〉〈R ⇓| + H.c. (A3)
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The basis transformation also changes the g tensor on the
right dot. The Zeeman Hamiltonian for the right dot in the
original basis is proportional to σ̃R · g̃RB. The Pauli matrices
in the new basis can be related to the Pauli matrices in the
original basis as σ̃R = W †σRW = R−1σR, where R matrix is
a three-dimensional rotation with angle θso around the axis
ñso. The elements of R can be expressed with the tunneling
parameters directly:

Ri j = (t̃0
2 − t̃2)δi j + 2t̃it̃ j − 2t̃0

∑
k εi jkt̃k

t̃0
2 + t̃2 . (A4)

Note that the determinant of R is 1. Thus, the Zeeman term
expressed in the new basis is proportional to R−1σR · g̃RB =
σR · gRB, with the rotated g tensor gR = R g̃R.

APPENDIX B: QUANTUM CAPACITANCE FEATURES
ALONG THE MAGIC MAGNETIC-FIELD DIRECTION

Here, we discuss the quantum capacitance features of a
spin-orbit-coupled DQD hosting a single electron in thermal
equilibrium. We expect that the measurement of this quantity
as a function of magnetic field direction and detuning can
reveal a magic direction that belongs to a negative eigenvalue
of the combined g tensor M. This expectation is reinforced
by a recent experiment [30] which demonstrates that the
quantum capacitance of a two-electron DQD is suppressed in
the vicinity of a ground-state crossing, as compared with the
case when an anticrossing is induced by spin-orbit interaction.
Interestingly, the simple model we present here predicts an
enhancement of the quantum capacitance at a crossing point.
We point out mechanisms that are probably relevant to explain
this difference, but postpone a detailed analysis for future
work.

We start our analysis with a DQD charge qubit, disregard-
ing spin for simplicity. The Hamiltonian in the left-right basis
reads

H =
(

0 �/2
�/2 ε

)
, (B1)

where ε is the on-site energy detuning on the two dots and �

is the interdot tunneling matrix element. At finite temperature,
the quantum capacitance contribution of the ground state and
the excited state are respectively given by

Cg
Q = e2 �2/2

(ε2 + �2)3/2

exp(−β Eg)

Z
,

Ce
Q = −e2 �2/2

(ε2 + �2)3/2

exp (−β Ee)

Z
, (B2)

where Eg and Ee are the two energy eigenvalues, Z is the
canonical partition function, β = 1/kB T , and e is the electron
charge. The total quantum capacitance CQ is a sum of these
two contributions. (Note that, in an experiment, the measure-
ment of this quantum capacitance is also influenced by the
lever arms between the gate electrodes and the quantum dots.)
As a function of detuning ε, the total quantum capacitance
shows a peak at ε = 0 with peak width ∝� and peak height

FIG. 7. Quantum capacitance peak height as function of mag-
netic field direction. Quantum capacitance maximum Cmax

Q over the
detuning axis is plotted, as a function of the magnetic field di-
rection, for a single electron in a double quantum dot at a finite
temperature of 50 mK. The g-tensor pair used here belongs to class
F, gL = diag(6, −4, 5) and gR = diag(3, 5, 2). The magic direction
corresponding to the negative eigenvalue of M is the y axis, and this
direction is signalled by the highest value of Cmax

Q . Further parameters
are t0 = 0.02 meV and B = 0.6 T.

expressed as

Cmax
Q ≡ max

ε
CQ(ε,�, T ) = e2

2�
tanh

�

2 kB T
. (B3)

Remarkably, this function decreases monotonically as the
anticrossing size � increases. In the limit of a crossing, i.e.,
for � → 0, from Eq. (B3) we obtain the following expression
for the peak height:

Cmax
Q = e2

4 kB T
. (B4)

The peak width converges to zero in this � → 0 limit.
Importantly, a quantum capacitance measurement using a ra-
diofrequency probe signal [67–69] might yield a result very
different from CQ, especially in the limit of � → 0, as we
discuss below.

Using the approach described above, we computed the
thermal-equilibrium quantum capacitance CQ(ε, B, T ) of a
single-electron DQD with g tensors, for the example we have
analyzed in Fig. 3. For detuning values where the ground state
participates in crossings [e.g., Fig. 3(d)] or anticrossings [e.g.,
Figs. 3(b) and 3(c)], the detuning dependence of the thermal
quantum capacitance develops a peak with a height essentially
described by Eq. (B3). Figure 7 shows the height of this capac-
itance peak height Cmax

Q = maxε CQ(ε, B, T ) as the function
of the magnetic-field direction, with a fixed magnetic-field
strength (see caption for parameters). This spherical plot ex-
hibits a maximum of Cmax

Q along the magic magnetic-field
direction corresponding to the negative eigenvalue. (Note that
our point grid on the spherical surface intentionally avoids the
magic direction itself to avoid the � → 0 limit.)

In principle, the pronounced feature observed in Fig. 7
would be useful to identify magic directions corresponding
to a negative eigenvalue, using relatively simple thermal-
equilibrium capacitance measurements [30,67,68]. However,
in practice, the theoretical model we have applied here prob-
ably needs to be refined, the required refinements depending
on the hierarchy of frequency and energy scales of the exper-
iment. A recent experimental result [30] that anticipates this
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has found a suppression of quantum capacitance associated
with spectral crossings, in contrast with the theory outlined
here which predicts an enhancement.

Further scales (beyond anticrossing size � and thermal en-
ergy kBT ) that probably enter such a refined analysis include
the amplitude and frequency of the radiofrequency probe
field used to measure the quantum capacitance. In fact, a ra-
diofrequency probe field of sufficient strength and frequency
induces overdrive effects [69], e.g., Landau-Zener transitions
between the two levels. As a consequence, the measured
charge response and the apparent quantum capacitance will
deviate from the prediction of the simple thermal equilibrium
picture we used above. In particular, Landau-Zener transitions
are efficient when the radiofrequency probe signal drives the
DQD charge through a small anticrossing corresponding to
the � → 0 limit discussed above. Quantitatively, such a sce-
nario is described by, e.g., the conditions ε,� � A, �2 �
Aω, where A is the amplitude of the on-site energy oscillations
induced by the probe field, and ω is the frequency of the
probe field. The resulting diabatic dynamics is expected to
lead to an apparent quenching of the quantum capacitance
[69], potentially explaining the findings of Ref. [30]. Further-
more, the strength of charge noise causing detuning jitter, as
well as the finite resolution of the detuning mesh used in the
experiment, can also play a qualitative role in such a quantum
capacitance measurement. We postpone the detailed analysis
of such refined models to future work.

APPENDIX C: CALCULATION OF THE CHERN NUMBER
OF THE SPECTRAL CROSSING POINTS

In the main text, we referred to the Chern number
C associated with the ground-state crossing points of the

single-electron spectra. There, we considered the three-
dimensional parameter space defined by the detuning ε and
the magnetic-field angles θ = arctan[Bz/(B2

x + B2
y )1/2] and

φ = arctan(By/Bx ), where Bx,y,z are the Cartesian components
of the magnetic field. Here, we outline the procedure to cal-
culate that Chern number C. More specifically, this procedure
evaluates the Chern number associated with the degeneracy
point and the ground-state manifold.

(i) We fix eight points ni = n(εi, θi, φi ), i = 1, . . . , 8
around the ground-state crossing point to define a cube en-
closing the crossing point in the three-dimensional parameter
space defined above.

(ii) At each vertex ni, we calculate the ground-state
wave function |ψg(ni )〉 to construct the projector Pi =
|ψg(ni )〉〈ψg(ni )|, which is gauge invariant.

(iii) For each side s of the cube, we calculate the Berry
flux F∫ = −arg Tr(PjPkPlPm) through that side, where j, k, l ,
and m are the integers labeling the vertices of that side. This
is in fact the Berry phase associated with the loop of the four
ground states [51]. The vertices of a side in the Berry flux
formula according to the right-hand rule, such that the surface
normal of the side points outward.

(iv) From the Berry fluxes Fs (s = 1, . . . , 6) of all six
sides, we calculate the Chern number via

C = 1

2π

6∑
s=1

Fs, (C1)

which turns out to be ±1. A similar scheme to calculate the
Chern number is mentioned in the supplementary information
of Ref. [27].
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Rehmann, A. Li, E. P. A. M. Bakkers, F. A. Zwanenburg,

D. Loss, D. M. Zumbühl, and F. R. Braakman, Strong spin-
orbit interaction and g-factor renormalization of hole spins
in Ge/Si nanowire quantum dots, Phys. Rev. Res. 3, 013081
(2021).

[29] D. Jirovec, P. M. Mutter, A. Hofmann, A. Crippa, M.
Rychetsky, D. L. Craig, J. Kukucka, F. Martins, A. Ballabio,
N. Ares, D. Chrastina, G. Isella, G. Burkard, and G. Katsaros,
Dynamics of hole singlet-triplet qubits with large g-factor
differences, Phys. Rev. Lett. 128, 126803
(2022).

[30] L. Han, M. Chan, D. de Jong, C. Prosko, G. Badawy, S.
Gazibegovic, E. P. A. M. Bakkers, L. P. Kouwenhoven, F. K.
Malinowski, and W. Pfaff, Variable and orbital-dependent
spin-orbit field orientations in an InSb double quantum dot
characterized via dispersive gate sensing, Phys. Rev. Appl. 19,
014063 (2023).

[31] N. Piot, B. Brun, V. Schmitt, S. Zihlmann, V. P. Michal, A. Apra,
J. C. Abadillo-Uriel, X. Jehl, B. Bertrand, H. Niebojewski, L.
Hutin, M. Vinet, M. Urdampilleta, T. Meunier, Y. M. Niquet,
R. Maurand, and S. D. Franceschi, A single hole spin with
enhanced coherence in natural silicon, Nat. Nanotechnol. 17,
1072 (2022).

[32] N. Hendrickx, L. Massai, M. Mergenthaler, F. Schupp, S.
Paredes, S. Bedell, G. Salis, and A. Fuhrer, Sweet-spot oper-
ation of a germanium hole spin qubit with highly anisotropic
noise sensitivity, arXiv:2305.13150.

[33] D. V. Bulaev and D. Loss, Spin relaxation and decoher-
ence of holes in quantum dots, Phys. Rev. Lett. 95, 076805
(2005).

[34] S. D. Liles, F. Martins, D. S. Miserev, A. A. Kiselev, I. D.
Thorvaldson, M. J. Rendell, I. K. Jin, F. E. Hudson, M.
Veldhorst, K. M. Itoh, O. P. Sushkov, T. D. Ladd, A. S. Dzurak,
and A. R. Hamilton, Electrical control of the g tensor of the first
hole in a silicon MOS quantum dot, Phys. Rev. B 104, 235303
(2021).

[35] J. C. Abadillo-Uriel, E. A. Rodríguez-Mena, B. Martinez, and
Y.-M. Niquet, Hole-spin driving by strain-induced spin-orbit
interactions, Phys. Rev. Lett. 131, 097002 (2023).

[36] S. Geyer, B. Hetényi, S. Bosco, L. C. Camenzind, R. S. Eggli,
A. Fuhrer, D. Loss, R. J. Warburton, D. M. Zumbühl, and A. V.
Kuhlmann, Two-qubit logic with anisotropic exchange in a fin
field-effect transistor, arXiv:2212.02308.

[37] T. Tanttu, B. Hensen, K. W. Chan, C. H. Yang, W. W. Huang, M.
Fogarty, F. Hudson, K. Itoh, D. Culcer, A. Laucht, A. Morello,
and A. Dzurak, Controlling spin-orbit interactions in silicon
quantum dots using magnetic field direction, Phys. Rev. X 9,
021028 (2019).

[38] V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den
Berg, I. van Weperen, S. R. Plissard, E. P. A. M. Bakkers,
and L. P. Kouwenhoven, Electrical control of single hole
spins in nanowire quantum dots, Nat. Nanotechnol. 8, 170
(2013).

[39] D. Q. Wang, O. Klochan, J.-T. Hung, D. Culcer, I. Farrer, D. A.
Ritchie, and A. R. Hamilton, Anisotropic Pauli spin blockade
of holes in a GaAs double quantum dot, Nano Lett. 16, 7685
(2016).

[40] A. Zarassi, Z. Su, J. Danon, J. Schwenderling, M. Hocevar,
B. M. Nguyen, J. Yoo, S. A. Dayeh, and S. M. Frolov, Mag-
netic field evolution of spin blockade in Ge/Si nanowire double
quantum dots, Phys. Rev. B 95, 155416 (2017).

245406-14

https://doi.org/10.1038/nature25766
https://doi.org/10.1038/s41586-021-03332-6
https://doi.org/10.1038/s41586-022-05117-x
https://doi.org/10.1103/PhysRevB.74.165319
https://doi.org/10.1038/nature09682
https://doi.org/10.1103/PhysRevLett.110.066806
https://doi.org/10.1021/acs.nanolett.5b02920
https://doi.org/10.1103/PhysRevLett.120.137702
https://doi.org/10.1038/s41565-020-00828-6
https://doi.org/10.1038/nature02693
https://doi.org/10.1103/PhysRevB.61.12639
https://doi.org/10.1103/PhysRevLett.108.166801
https://doi.org/10.1103/PhysRevLett.119.176807
https://doi.org/10.1038/s42005-019-0200-2
https://doi.org/10.1103/PhysRevResearch.3.013081
https://doi.org/10.1103/PhysRevLett.128.126803
https://doi.org/10.1103/PhysRevApplied.19.014063
https://doi.org/10.1038/s41565-022-01196-z
http://arxiv.org/abs/arXiv:2305.13150
https://doi.org/10.1103/PhysRevLett.95.076805
https://doi.org/10.1103/PhysRevB.104.235303
https://doi.org/10.1103/PhysRevLett.131.097002
http://arxiv.org/abs/arXiv:2212.02308
https://doi.org/10.1103/PhysRevX.9.021028
https://doi.org/10.1038/nnano.2013.5
https://doi.org/10.1021/acs.nanolett.6b03752
https://doi.org/10.1103/PhysRevB.95.155416


CLASSIFICATION AND MAGIC MAGNETIC FIELD … PHYSICAL REVIEW B 108, 245406 (2023)

[41] M. Marx, J. Yoneda, Á. G. Rubio, P. Stano, T. Otsuka, K.
Takeda, S. Li, Y. Yamaoka, T. Nakajima, A. Noiri, D. Loss, T.
Kodera, and S. Tarucha, Spin orbit field in a physically defined
p type MOS silicon double quantum dot, arXiv:2003.07079.

[42] J.-Y. Wang, G.-Y. Huang, S. Huang, J. Xue, D. Pan, J. Zhao, and
H. Xu, Anisotropic Pauli spin-blockade effect and spin–orbit
interaction field in an InAs nanowire double quantum dot, Nano
Lett. 18, 4741 (2018).

[43] L. F. Chibotaru, A. Ceulemans, and H. Bolvin, Unique defi-
nition of the Zeeman-splitting g tensor of a Kramers doublet,
Phys. Rev. Lett. 101, 033003 (2008).

[44] J. Danon and Y. V. Nazarov, Pauli spin blockade in the pres-
ence of strong spin-orbit coupling, Phys. Rev. B 80, 041301(R)
(2009).

[45] G. Frank, Z. Scherübl, S. Csonka, G. Zaránd, and A. Pályi,
Magnetic degeneracy points in interacting two-spin systems:
Geometrical patterns, topological charge distributions, and their
stability, Phys. Rev. B 101, 245409 (2020).

[46] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[47] R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov,
Multi-terminal Josephson junctions as topological matter, Nat.
Commun. 7, 11167 (2016).

[48] J. P. T. Stenger and D. Pekker, Weyl points in systems of multi-
ple semiconductor-superconductor quantum dots, Phys. Rev. B
100, 035420 (2019).

[49] J. von Neuman and E. P. Wigner, Über das Verhalten von Eigen-
werten bei adiabatischen Prozessen, Phys. Z. 30, 467 (1929).

[50] V. I. Arnold, Remarks on eigenvalues and eigenvectors of
Hermitian matrices, Berry phase, adiabatic connections and
quantum Hall effect, Sel. Math. 1, 1 (1995).

[51] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on
Topological Insulators (Springer, Berlin, 2016).

[52] G. Pintér, G. Frank, D. Varjas, and A. Pályi, Birth quota of non-
generic degeneracy points, arXiv:2202.05825.

[53] J. Nygård, D. H. Cobden, and P. E. Lindelof, Kondo
physics in carbon nanotubes, Nature (London) 408, 342
(2000).

[54] R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen, M.
Steudtner, N. K. Thomas, Z. R. Yoscovits, K. J. Singh, S.
Wehner, L. M. K. Vandersypen, J. S. Clarke, and M. Veldhorst,
A crossbar network for silicon quantum dot qubits, Sci. Adv. 4,
eaar3960 (2018).

[55] J. Helsen, M. Steudtner, M. Veldhorst, and S. Wehner, Quan-
tum error correction in crossbar architectures, Quantum Sci.
Technol. 3, 035005 (2018).

[56] H. Jnane, B. Undseth, Z. Cai, S. C. Benjamin, and B. Koczor,
Multicore quantum computing, Phys. Rev. Appl. 18, 044064
(2022).

[57] O. Crawford, J. R. Cruise, N. Mertig, and M. F. Gonzalez-Zalba,
Compilation and scaling strategies for a silicon quantum pro-
cessor with sparse two-dimensional connectivity, npj Quantum
Inf. 9, 13 (2023).

[58] S. M. Patomäki, M. F. Gonzalez-Zalba, M. A. Fogarty, Z. Cai,
S. C. Benjamin, and J. J. L. Morton, Pipeline quantum processor
architecture for silicon spin qubits, arXiv:2306.07673.

[59] F. Ginzel, A. R. Mills, J. R. Petta, and G. Burkard, Spin shuttling
in a silicon double quantum dot, Phys. Rev. B 102, 195418
(2020).

[60] M. J. Gullans and J. R. Petta, Coherent transport of spin by
adiabatic passage in quantum dot arrays, Phys. Rev. B 102,
155404 (2020).

[61] V. Langrock, J. A. Krzywda, N. Focke, I. Seidler, L. R.
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