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Carrier mobility tensor in doped phosphorene due to scattering by charged impurities
using the energy loss method
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We use the energy loss method (ELM) to evaluate the drift mobility tensor of doped phosphorene due to
scattering of its carriers on an ensemble of charged impurities located in a substrate. The ELM makes it possible
to circumvent the endeavor of numerically solving the Boltzmann transport equation for the same problem,
whereby it yields an explicit expression for the mobility tensor components as a double integral, making it
straightforward to survey various model layouts and parameters. This enabled us to perform a statistical analysis
of the effects of spatial correlation among the impurities by means of a geometric structure factor for the
hard-disk model of a planar distribution of pointlike impurities. We found that the correlation distance between
impurities plays an important role at doping densities of phosphorene that are lower than the areal density of
impurities. Moreover, the ELM naturally brings about the dielectric function of phosphorene, allowing us to
explore the role of interband electron transitions in static screening of the impurities, in addition to the role
played by the intraband transitions, which we treat in the random phase approximation. We found that the
interband transitions augment the screening when impurities are close to phosphorene and when its doping
density increases, thereby increasing the mobility tensor components while decreasing their asymmetry ratio.
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I. INTRODUCTION

Phosphorene is a single layer of black phosphorus, which
has attracted a great deal of interest over the past decade
[1–3] as a monoelemental two-dimensional (2D) semicon-
ductor, whose puckered atomic lattice structure gives rise to
strong anisotropy of its mechanical, electronic, optical, and
transport properties with a plethora of possible applications
[4–7]. In the area of nanoelectronic devices [8], measurements
of transport properties of phosphorene are still scarce [2,9,10],
while the agreement of experiments with theory remains
insufficient, at least when modeling of the carrier-phonon
scattering mechanism at room temperature is concerned [11].
On the other hand, modeling of the drift mobility tensor
for an anisotropic 2D material due to its carrier scattering
on charged impurities (CIs) at low temperature by means of
the linearized Boltzmann transport equation (BTE) is greatly
complicated by the need to solve numerically an integral
equation for momentum relaxation time (MRT) that depends
on the direction of the applied electric field [12–16]. This
points to a serious limitation of the BTE when it comes to
exploring various designs of nanoelectronic devices based on
phosphorene [8,10,11], and, more importantly, it makes it
extremely computationally costly, if not impossible, to use the
BTE to study the effects of a spatial arrangement of CIs on the
mobility of phosphorene.

An elegant but far less favored approach than the BTE
to calculating the drift mobility is based on the energy loss
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method (ELM). [17–19] The idea behind the ELM in the
case of carrier scattering on CIs is simple: it rests on the
Galilean transformation between the laboratory frame where
the impurities are at rest and the frame moving with constant
drift velocity of charge carriers in the conducting material
[20–24], coupled with an equivalence of the energy loss rate
for the moving impurities and the Joule heat released in the
material [25]. The ELM has several advantages over the BTE
approach. First, it eliminates the need to introduce MRT, but
rather uses the dielectric function for intraband electronic
transitions in a 2D conducting material, which only needs
to be available to the leading order in frequency [17,18].
Using dielectric functions at various degrees of approximation
enables straightforward inclusion of various material prop-
erties into the mobility calculations, such as the anisotropy
of the band structure [12,14–16], finite temperature [13], or
contribution of interband transitions to the static screening of
the impurity potential [26–30]. Second, the ELM completely
avoids the need to solve an integral equation for MRT of
the BTE approach, but rather yields an explicit expression
for the drift mobility, or the dc electric conductivity of the
material in terms of an integral, which includes a properly
screened external potential on which the charge carriers are
scattered. This makes it straightforward to explore variations
in the arrangement of the nearby dielectrics via the Green’s
function (GF) of the Poisson equation [31], as well as to study
various external scattering centers for charge carriers, which
are not necessarily limited to CIs. For example, the ELM was
used to describe electron scattering on interface roughness
[32], polarizable scattering centers [33], and dislocations in
semiconductors [24]. The ELM was also used for mobility
calculations in a quasi-2D electron gas [34] and graphene
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[31], with the latter work exploring the effects of spatial
correlation among the CIs by means of a geometric structure
factor.

While all the above implementations of the ELM were
concerned with isotropic conducting materials, in this work
we adapt the ELM to the case of an anisotropic 2D material
by choosing a dielectric function that describes single band
occupancy of an electron doped phosphorene [12,14,16], and
we apply it to the carrier scattering on an arbitrary distribution
of pointlike CIs in an SiO2 substrate, as in Ref. [31]. We derive
expressions for the mobility tensor in the zero-temperature
limit, corresponding to the case studied in Ref. [12], but
note that generalizations can be readily made to the regime of
finite temperature [13] and to phosphorene encapsulated be-
tween two dielectrics [8,10] by using the GFs from Ref. [31].
We first show that our expressions for the mobility tensor
components reproduce the results of a numerical solution of
the BTE presented in Ref. [12] when we use their model
parameters. We then continue by using the phosphorene pa-
rameters deduced from ab initio calculations by Novko et al.
[29], and we explore the effects of the interband electron
transitions in static screening of the impurity potential [30],
the finite gap between phosphorene and the substrate [31], and
the effects of finite correlation distance between impurities
using the hard-disk (HD) model parametrized by Rosenfeld
[35]. While we do not aim to reproduce experimental data on
the mobility of phosphorene, we advocate in this work in favor
of the ELM as a powerful alternative to the BTE in the case
of phosphorene and other anisotropic materials, which can
readily tackle a significantly expanded set of model systems
of interest for designing future nanoelectronic devices [8,10].

II. THEORETICAL MODEL

Using a Cartesian coordinate system with the coordinates
R ≡ {r, z}, where r = {x, y}, we assume that a flat phospho-
rene sheet of large area A is placed in vacuum at the height
h � 0 above the planar surface of a substrate with (relative)
dielectric constant εs, which occupies the half-space z � 0
and contains a large number N of pointlike impurities, each
carrying a charge of Ze (e > 0 being the proton charge). We
assume that the impurities are statistically distributed, having
the charge density described by ρ0(r, z) in the laboratory
frame, which is translationally invariant in the directions of
r. An ensemble average over the geometric arrangements of
the impurities, denoted by 〈· · · 〉, gives an average density
〈ρ0(r, z)〉 ≡ ρ̄0(z) that may only depend on the perpendicular
distance z. This average does not participate in the carrier scat-
tering in phosphorene, but its integral,

∫
dz ρ̄0(z) = Ze nimp

with nimp = N
A being the areal density of impurities, defines

(in conjunction with the applied gate voltage) the doping of
phosphorene with electrons or holes having an equilibrium
areal density n. On the other hand, the carrier scattering is
governed by the fluctuation part of the CI density, δρ0(r, z) =
ρ0(r, z) − ρ̄0(z).

A. Energy loss method

The ELM is based on a thought experiment pertaining to
a conductivity measurement [18,21,24], which assumes that

a (weak but otherwise arbitrary) constant electric field E is
applied tangentially to phosphorene where it induces an in-
plane drift current Jd , so that the total Joule power released
in phosphorene is PJ = ∫∫

d2r Jd · E = AJd · E. Expressing
the current in terms of a (constant) drift velocity vd of charge
carriers in an (electron-doped) phosphorene as Jd = −envd ,
one may invoke Ohm’s law in the form Jd = ←→σ · E, where←→σ is the in-plane dc conductivity tensor of phosphorene,
which can be expressed in terms of the mobility tensor as←→σ = −en←→μ . Therefore, we have PJ = −Aenvd · E and the
relation vd = ←→μ · E, which may be used to eliminate the
electric field in terms of the (small but otherwise arbitrary)
drift velocity to finally express the Joule power as

PJ = −Aen vd · ←→μ −1 · vd , (1)

where ←→μ −1 is the inverse of the mobility tensor of phospho-
rene.

The equivalence principle invoked in the ELM by reversing
the frames of reference asserts that the Joule power in the
conductivity experiment with drifting carriers in phosphorene
is equal to the energy lost by the system of CIs that moves
rigidly with the opposite velocity v = −vd parallel to a frame
where phosphorene with zero drift is at rest. In that frame,
the fluctuation part of the CI density, given by δρ(R, t ) =
δρ0(r − vt, z), induces an electrostatic potential, δ�pol(R, t ),
due to polarization of charge carriers in phosphorene away
from their equilibrium state with zero drift. This potential may
be expressed via the GF of the Poisson equation, which takes
into account static screening by the nearby dielectrics as [31]

δ�pol(R, t ) =
∫∫∫

d3R′
∫

dt ′ Gpol(R, R′; t − t ′) δρ(R′, t ′).

(2)

Assuming translational invariance of the structure, we may
perform the Fourier transform (FT) with respect to the
in-plane coordinates (r → q = {qx, qy}) and time (t → ω),
allowing us to rewrite the above relation (using the tilde to
denote the transformed functions) as

δ�̃pol(q, z, ω) =
∫ ∞

−∞
dz′ G̃pol(q; z, z′; ω) δρ̃(q, z′, ω), (3)

where

δρ̃(q, z, ω) =
∫∫

d2r
∫ ∞

−∞
dt e−iq·r+iωt δρ0(r − vt, z)

= 2π δ(ω − q · v) δρ̃0(q, z) (4)

with the δ function in the second line expressing the
Galilean transformation between the moving frame and
the rest frame of phosphorene. Here, δρ̃0(q, z) = ρ̃0(q, z) −
(2π )2 δ(q) ρ̄0(z) is the FT of the fluctuating part of the CI den-
sity with respect to the in-plane coordinates in the laboratory
frame, where impurities are at rest.

The energy loss rate of the moving system of CIs can be
obtained from

Pimp =
∫∫∫

d3R Jimp(R, t ) · Epol(R, t ), (5)

where Jimp(R, t ) = vδρ0(r − vt, z) is the associated current
density, and Epol(R, t ) = −∇rδ�pol(r, z, t ) is the polarization
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electric field parallel to phosphorene. Switching to the FT and
using Eqs. (3) and (4) in Eq. (5) allows us to write an ensemble
average of the impurity energy loss rate as

〈Pimp〉 =−i
∫∫

d2q

(2π )2 (q · v)
∫

dz
∫

dz′ G̃pol(q; z, z′; q · v)

× 〈δρ̃0(−q, z)δρ̃0(q, z′)〉. (6)

Taking into account the relevant symmetries in the FT domain
(see Appendix A), the above expression may be cast for the
configuration of dielectrics used in this work in the following
form:

〈Pimp〉 = − NZ2
∫∫

d2q

(2π )2 (q · v)VC(q)

[
εbg(q)

ε0
bg

]2

e−2qh

× S (q) Im

[ −1

ε(q, q · v)

]
, (7)

where VC(q) = 2πe2/q is the in-plane FT of the Coulomb

potential with q =
√

q2
x + q2

y , and

εbg(q) =
[

1 − εs − 1

εs + 1
exp (−2qh)

]−1

(8)

is a background dielectric function describing static screening
due to dielectric(s) surrounding phosphorene, which takes the
well-known form ε0

bg = (εs + 1)/2 in the limit of zero gap,
h = 0 [12,14]. The loss function Im[−1/ε(q, ω)] appearing
in Eq. (7), which describes energy dissipation due to the po-
larization of phosphorene, is expressed in terms of an effective
2D dielectric function of phosphorene defined as

ε(q, ω) = εbg(q) + VC(q) χ (q, ω), (9)

where χ (q, ω) is the density-density dynamic response func-
tion of phosphorene. A statistical description of the geometric
structure of the CIs is included in Eq. (7) via the structure
factor S (q), which is discussed next.

B. Structure factor of charged impurities

We define an effective 2D structure factor of the CIs resid-
ing in the substrate at z � 0 as [31]

S (q)= 1

Ne2Z2

∫ 0

−∞
dz

∫ 0

−∞
dz′ eq(z+z′ )〈δρ̃0(−q, z)δρ̃0(q, z′)〉.

(10)

Assuming that the impurities occupy sites R j ≡ {r j, z j} in the
laboratory frame with z j � 0 for j = 1, 2, . . . , N , their charge
density is given by

ρ0(r, z) = eZ
N∑

j=1

δ(r − r j ) δ(z − z j ). (11)

Statistical properties of the distribution of the impurity posi-
tions may be modeled by assuming translational invariance
of their structure in the r directions and using the one- and
two-particle distribution functions [36],

F1(r, z) = N

A
f1(z) (12)

and

F2(r1, r2; z1, z2) = N (N − 1)

A2
f1(z1) f1(z2)

× g(r2 − r1; z1, z2). (13)

Here, f1(z) describes the distribution of particle positions in
the perpendicular direction, which is nonzero for z � 0 and
is normalized to 1, whereas g(r; z1, z2) is related to the usual
radial distribution function having the limit g → 1 as r ≡
‖r‖ → ∞ [36]. With these specifications and additionally
assuming that the impurities are isotropically distributed in
the directions parallel to phosphorene, the structure factor is
finally obtained as (see Appendix B)

S (q) =
∫ 0

−∞
dz f1(z) e2qz + 2πnimp

∫ 0

−∞
dz1 f1(z1) eqz1

×
∫ 0

−∞
dz2 f1(z2) eqz2

∫ ∞

0
dr rJ0(qr)

× [g(r; z1, z2) − 1], (14)

where J0 is a Bessel function of zeroth order.
It is difficult to model a full three-dimensional (3D)

structure of CIs in the substrate in the presence of correla-
tion, which is largely unknown anyway (see Appendix B of
Ref. [31]), so we shall only consider two special cases. An
ensemble of spatially uncorrelated impurities is defined by
setting g = 1 in Eq. (14), leaving only the first term to describe
the impurity distribution along the z axis [14,31]. In this case,
we shall consider a uniform 3D distribution over the layer of
finite thickness L in the substrate, as in Ref. [12], defined
by f1(z) = 1/L for −L � z � 0, which gives S (q) = (1 −
e−2qL )/(2qL) from Eq. (14). A more frequently used model
in the literature assumes a planar distribution of impurities at
constant depth d � 0 from the surface of the substrate with no
spatial correlation among the impurities, which is recovered
by setting f1(z) = δ(z + d ) and g = 1 in Eq. (14), thereby
giving S (q) = e−2qd [12,14,31].

However, we shall explore the role of correlation among
the impurities within a planar distribution by setting f1(z) =
δ(z + d ) and invoking the HD model in Eq. (14), which
yields S (q) = e−2qd SHD(q), where for the HD structure factor
SHD(q) we use Resenfeld’s parametrization [35], as given in
Eq. (B1) of Ref. [31]. A key parameter of the HD model is
packing fraction p = πnimpr2

c /4, where rc is the correlation
distance between the impurities, which will be seen to give
rise to a deviation from the simple inverse proportionality
of the mobility with the average impurity density nimp for
increasing rc values. We note that Resenfeld’s parametrization
of SHD(q) provides reasonably accurate representation of the
HD model up to quite large packing fractions of p ≈ 0.69
[35].

For small packing fractions, the HD structure factor
exhibits week oscillations about the value SHD(q) = 1 char-
acterizing uncorrelated impurities (rc = 0), with the peaks
located close to the values q
 = 2π
/rc, where 
 = 1, 2, . . .,
which correspond to the 
th coordination shell of the HD
model [35,36]. As p increases, SHD(q) is dominated by a
strong peak at q1 corresponding to the first coordination
shell, followed by heavily damped oscillations peaking at
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subsequent coordination shells, and ultimately reaching the
value of SHD(q) = 1 as q → ∞. On the other hand, at long
wavelengths, q < q1, the magnitude of the HD structure factor
is strongly reduced for increased packing fraction, reaching
the value of SHD(0) = (1 − p)3/(1 + p) as q → 0 [31].

C. Polarization function of doped phosphorene

The density-density polarization function of doped phos-
phorene in the random phase approximation includes con-
tributions from both the intraband and interband electron
transitions, χ (q, ω) = χintra (q) + χinter (q, ω) [29]. Without
loss of generality, we shall consider n-doped phosphorene
with an electron density n and assume that the Fermi level
only crosses the lowest conduction band (see Fig. 5 in
Ref. [29]). It was shown that, for the purpose of the mo-
bility calculations [14], the electron energy dispersion may
be approximated near the � point of the Brillouin zone by

εk = h̄2k2
x

2mx
+ h̄2k2

y

2my
with respect to the band bottom. Here, mx

and my are the effective electron masses in the directions
along the principal axes of the phosphorene lattice, labeled
the armchair (AC) and zigzag (ZZ) directions, respectively
[12,14,16]. With this energy band approximation for charge
carriers in phosphorene, the intraband polarization function
may be obtained as [16,28]

χintra (q, ω) = χiso(Q, ω), (15)

where χiso(Q, ω) is the polarization function of an equivalent
isotropic 2D electron gas (2DEG), which has the same doping
density, n, and the electron mass defined by md = √

mxmy,
whereas its wave number Q is a function of the wave vector
q = {qx, qy} and the effective electron masses of phosphorene,
given by

Q(q) =
√

q2
x

√
my

mx
+ q2

y

√
mx

my
. (16)

For our purpose, it suffices to use Lindhard’s function of
an isotropic 2DEG [37,38] as a model for χiso(Q, ω). Namely,
we only need an approximation for Eq. (7) to the second order
in the velocity v so that it may be compared with Eq. (1). This
requires a linear approximation for the frequency dependence
of the loss function Im[−1/ε(q, ω)] [17,18], which may be
deduced from the linearization of the Lindhard function for a
degenerate 2DEG at zero temperature [39,40],

χiso(Q, ω) ≈ md

π h̄2

[
1 − 1

Q

√
Q2 − (2kF)2H (Q − 2kF)

]
+ iω

2m2
d

π h̄3Q

H (2kF − Q)√
(2kF)2 − Q2

, (17)

where H (·) is the Heaviside function, and kF = √
2πn is the

Fermi wave number. To include the effect of finite tempera-
ture [13], one should apply Maldague’s formula to the above
expression [41], but this goes beyond our goal in this work.

As for the interband contribution to the polarization func-
tion of phosphorene, it was shown that for frequencies h̄ω �
Eg/2, where Eg ≈ 2 eV is its gap energy, and for the wave
numbers q � 1 nm−1, it is an excellent approximation to use
the static limit [28,42] along with the long-wavelength limit

[29,30], which give

χinter (q) = 1

e2

(
αxq2

x + αyq2
y

)
, (18)

where αx and αy are the static in-plane polarizabilities due
to the interband transitions in the AC and the ZZ directions,
respectively [29,43]. Thus, combining Eq. (18) with Eq. (15)
where we employ the approximation in Eq. (17) gives the
effective dielectric function of phosphorene in Eq. (9), which
can be used to obtain the loss function to the linear order in
frequency. Upon substitution ω = q · v, this gives an expres-
sion for the loss function to be used in Eq. (7) as

Im

[ −1

ε(q, q · v)

]
= q · v

[εstat (q)]2

kTF

q

2md

h̄Q

H (2kF − Q)√
(2kF)2 − Q2

, (19)

where kTF = 2md e2/h̄2 is the Thomas-Fermi inverse screen-
ing length of the equivalent isotropic 2DEG, and εstat (q) is
a static dielectric function of phosphorene, defined in the
presence of the interband contribution as [29]

εstat (q) = εbg(q) + 2π

q

(
αxq2

x + αyq2
y

) + kTF

q
(20)

for wave vectors constrained by the condition Q(q) < 2kF,
which follows from Eq. (19) with Q(q) given in Eq. (16).

Several comments are in order regarding the function in
Eq. (20). It generalizes the Rytova-Keldysh model dielec-
tric function, which is often used for static screening of the
Coulomb interaction in modeling excitons in 2D semiconduc-
tors [26,27,29]. In the dynamic regime, when the intraband
transitions may be approximated by a Drude form of the
intraband contribution χintra (q, ω), the presence of the terms
with static polarizabilities αx/y in Eq. (20) gives rise to a sat-
uration of the sheet plasmon dispersion with increasing wave
numbers, accompanied by “slowing down” of that plasmon
[42,44,45]. On the other hand, even though any asymmetry
between static polarizabilities αx and αy implies anisotropic
static screening by the function εstat (q) in Eq. (20), the pri-
mary effects of anisotropy in the mobility will be seen to arise
from the asymmetry between the effective masses in the func-
tion Q, Eq. (16). This becomes especially clear at low doping
densities of phosphorene, where a regime of the so-called
“complete screening” is achieved for n → 0 (see below) [16],
when the dielectric function in Eq. (20) is dominated by the
Thomas-Fermi term, kTF/q.

D. Expression for the mobility tensor of phosphorene

When Eq. (19) is substituted into Eq. (7) for 〈Pimp〉, the
integrand will contain a factor (q · v)2, which may be written
as v · (qq) · v, allowing the two velocity factors to be taken
outside the integral, whereas (qq) should be treated as the
outer (or dyadic) product inside the integral, viz.,∫∫

d2q (q · v)2 · · · ≡ v ·
(∫∫

d2q (qq) · · ·
)

· v. (21)

Using the above rearrangement in Eq. (7) yields an expression
for 〈Pimp〉 that may be directly equated with the Joule power
PJ in Eq. (1) and, taking into account the fact the velocity
v = −vd is arbitrary, one may deduce an expression for the
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inverse of the drift mobility tensor as

←→μ −1 = h̄

e

nimp

n
k2

TF

∫∫
d2q
2π

(q̂q̂)S (q)

[
εbg(q)e−qh

ε0
bgεstat (q)

]2

× 1

Q

H (2kF − Q)√
(2kF)2 − Q2

, (22)

where (q̂q̂) is the outer product of two unit vectors q̂ = q/q,
and Q is a function of the wave vector q given in Eq. (16). The
above formula is the main result of our implementation of the
ELM that replaces a typical procedure of the BTE approach,
which resorts to numerical solution of an integral equation for
the direction-dependent MRT, followed by an integration of
such MRT to obtain numerical values of the mobility tensor
components for a preassigned set of the model parameters
[12,14–16].

The integration in Eq. (22) may be performed in polar
coordinates, q = {q cos θ, q sin θ}, wherefrom switching to a
double angle, φ = 2θ , helps show that the inverse mobility
tensor is diagonal, with the components 1/μxx and 1/μyy

being the inverses of the mobilities along the AC and the
ZZ directions, respectively. Furthermore, changing the wave
number according to q = 2kF

sin γ

b(φ) , where

b(φ) =
√

my + mx

2md
+ my − mx

2md
cos φ, (23)

makes it possible to express the inverse mobility components
as a double integral over the angles γ and φ,

1

μxx/yy
= 4

h̄

e
nimp

∫ π/2

0
dγ

∫ π

0
dφ S∗

[
ε∗

bg

ε0
bg

e−2kFh sin γ

b

]2

× (1 ± cos φ) sin2 γ

(b2 + ε∗
bgbν sin γ + aν2 sin2 γ )2

, (24)

where ν = 2kF/kTF, S∗ and ε∗
bg stand for functions of γ and φ

that are obtained by substituting q = 2kF
sin γ

b(φ) in the original
functions S (q) and εbg(q), and a stands for the auxiliary
function

a(φ) = πkTF[αx + αy + (αx − αy) cos φ], (25)

whereas the ± sign in Eq. (24) refers to the AC/ZZ direction.
While the integral in Eq. (24) is easily computed numeri-

cally for a general set of parameters, it is of interest to take
advantage of its analytical tractability and consider its lim-
iting forms for small and large carrier density n, where the
dependence on n can be factored out from the dependence
on the effective masses of charge carriers. In such limiting
cases, the mobility components may be approximately written
as μxx/yy = Px/y(n)M (
)

x/y, where the latter factor is defined by

M (
)
x/y =

[
1

π

∫ π

0
dφ

(1 ± cos φ)

b
(φ)

]−1

, (26)

with b(φ) given in Eq. (23) and 
 being an integer. When
such factorization is possible, the mobility asymmetry ra-
tio becomes independent of n and is given by μxx/μyy =
M (
)

x /M (
)
y ≡ R
, which happens to be an increasing function

of 
.

For example, in the limit of zero doping of phosphorene
(n → 0, the “complete screening” approximation [16]), we
find for planar distribution of impurities that the factor Px/y(n)
is independent of n and is given by

P0
x/y = e

π2h̄

1

nimpSHD(0)
, (27)

while the corresponding effective mass factor is M (4)
x/y = md

mx/y
.

Thus, the mobility components at zero density are expected to
approach μ0

xx/yy ≈ P0
x/yM (4)

x/y for sufficiently low density and
thereby exhibit the anisotropy ratio of R4 = my/mx. This
result is valid when k−1

F is the longest length scale in a
structure with planar impurity distribution, i.e., when 2kF �
min(kTF,

1
d , 1

h , 1
2παx

, 1
2παy

, 2π
rc

), and it is also valid for a distri-
bution of uncorrelated impurities over finite thickness L when
rc/(2π ) is replaced by L in this list while setting SHD(0) = 1
in Eq. (27).

Interestingly, Eq. (27) shows that, while the mobility com-
ponents are inversely proportional to the average impurity
concentration nimp in the absence of correlation among the
impurities, i.e., when SHD(0) = 1, the presence of the fac-
tor SHD(0) = (1 − p)3/(1 + p) with the packing fraction p =
πnimpr2

c /4 gives rise to a U-shaped dependence of P0
x/y on

nimp for any given finite value of the correlation distance rc.
This dependence exhibits a well-defined minimum at the im-
purity concentration nimp ≈ 0.86/(πr2

c ), corresponding to the
packing fraction of p ≈ 0.215, so that the minimum value that
the mobility components can reach in the regime of complete
screening is given in terms of rc by

μ0
xx/yy

∣∣
min

≈ 0.93 r2
c

e

h̄

md

mx/y
. (28)

We note that R4 = my/mx is the largest anisotropy ratio,
which can be attained in the limit of zero-carrier density only.
It will be shown in the next section that, when this density
increases, the anisotropy ratio decreases, which will be dis-
cussed by considering various limiting forms of Eq. (24) in the
opposite regime of large densities. Depending on the model
configuration, the mobility components will be found to scale
as μxx/yy ∝ ν4−
M (
)

x/y with 
 taking values 3, 2, and 1, where
ν = 2kF/kTF ≡ √

n/nTF with nTF = k2
TF/(8π ). This will give

the sequence of asymmetry ratios R4 > R3 > R2 > R1 for
various configurations at large carrier densities. It should
be kept in mind, however, that the regime of large carrier
densities is of somewhat academic interest because then the
assumption of a single band occupancy and/or the concept
of (constant) anisotropic effective electron or hole masses in
phosphorene may become questionable.

III. RESULTS

We shall first demonstrate validity of the formula in
Eq. (22), that is Eq. (24), by reproducing results reported in
Fig. 3 of Ref. [12] and in Fig. 4 of Ref. [16] using the model
parameters from those references. We shall then switch in
the remainder of this section to the parameters deduced from
the ab initio data of Ref. [29] for n-doped phosphorene with
the electron density of n = 1013 cm−2, giving mx ≈ 0.133 m0
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and my ≈ 1.119 m0, where m0 is the free-electron mass, and
αx = 0.572 nm and αy = 0.488 nm for static polarizabilities
due to interband transitions. Even though the values of the
electron effective masses show some variation with the doping
density, they remain approximately unchanged up to about
n = 5 × 1013 cm−2 [29], so we shall take mx and my as con-
stant over the range of n considered here. We note that the hole
effective masses exhibit a larger anisotropy than the electron
effective masses, but also show more pronounced variation
with the doping density in the considered range [29], so we
focus on n doped phosphorene to study the effects of vari-
able doping density and different distributions of impurities
assuming fixed values of mx and my. For the substrate, we take
εs = 3.9 representing SiO2.

In Fig. 1, we used Eq. (24) with the effective masses
mx = 0.15 m0 and my = m0 corresponding to the hole masses
used in Ref. [12], while setting αx = αy = 0 and h = 0 for
uncorrelated impurities (rc = 0) with the areal density nimp =
1012 cm−2 that occupy a planar layer at three different depths
or a layer of thickness L = 300 nm in a SiO2 substrate. Our re-
sults for the mobility components are shown with solid lines,
whereas the curves from Fig. 3 of Ref. [12] are reproduced
with dashed lines. We see an almost complete agreement
between the ELM and BTE methods, except for some small
discrepancy (of unknown origin) in the mobilities shown in
panels (a) and (b) for a planar layer at finite depths d = 1 and
2 nm, which is augmented in the plots of the mobility ratio in
panel (c) when the doping density exceeds ∼1013 cm−2.

At the lowest doping density in Figs. 1(a) and 1(b), the mo-
bility curves show a tendency to level off at a constant value
implied by Eq. (27) with SHD(0) = 1, whereas the asymmetry
ratio of μ0

xx/μ
0
yy = R4 ≈ 6.7 can be reached in Fig. 1(c) for

a density below some critical value that depends on the selec-
tion of the model parameters [see the conditions of validity for
Eq. (27)]. As the density increases, the mobility components
also increase in Figs. 1(a) and 1(b), but their ratio tends to
decrease in Fig. 1(c). This is a consequence of the increased
screening of impurities due to the intraband electron transi-
tions in phosphorene, which apparently tends to reduce the
effects of asymmetry in the effective masses in a manner that
is modulated by varying the distance between the impurities
and phosphorene. In the cases of a planar layer at zero depth
and impurities occupying a thick layer in the substrate, the
ratio decreases monotonically, but in the case when a planar
layer is at finite depth, the ratio exhibits a minimum, which
occurs in Fig. 1(c) at a density in a range between ∼1013 and
1014 cm−2 when d = 1 and 2 nm.

In the case of uncorrelated impurities occupying a layer of
thickness L, an expression for the mobility can be deduced
from Eq. (24) when k−1

F is still the longest length scale in
the structure, except for the condition 2LkF � 1. We find
then that the mobility components may be approximated by
μxx/yy = e

2π h̄
L̄ν

nimp
M (3)

x/y, where L̄ = kTFL. This exhibits the scal-

ing μxx/yy ∝ √
n and gives an asymmetry ratio of R3 ≈ 4.2 at

an intermediate doping density, which seems to apply in the
region around n = 1011 cm−2 in Fig. 1(c). On the other hand,
for this model of the impurity distribution, the dependencies
on n and the effective masses cannot be factored at large
doping densities.

FIG. 1. Mobilities along (a) x-axis, (b) y-axis, and (c) their ratio
vs carrier density n using the ELM (solid curves) and the BTE
(dashed curves) of Ref. [12] for impurities with the density nimp =
1012 cm−2 and zero correlation, which occupy a plane at the depth
d = 0 (red), d = 1 nm (green), and d = 2 nm (blue) and are uni-
formly distributed over the layer of thickness L = 300 nm (orange)
in a SiO2 substrate with the gap h = 0. The parameters are taken
from Ref. [12].
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In the case of a planar layer of uncorrelated impurities
with d = 0 in Fig. 1, taking the limit of large doping density,

such that ν � 1 in Eq. (24), we find μxx/yy = e
2π2 h̄

(ε0
bgν)2

nimp
M (2)

x/y,

where M (2)
x/y = (

√
mx + √

my)/(2
√

mx/y). This implies the
scaling μxx/yy ∝ n for n � nTF and gives the asymmetry ratio
of R2 = √

my/mx ≈ 2.6 [16], which is smaller than the ratio
R4 = my/mx ≈ 6.7 for n → 0, but is only reached slowly at
densities far exceeding those shown in Fig. 1(c).

In the case when a planar layer has finite depth, the occur-
rence of the minima in the asymmetry ratio in Fig. 1(c) for
d = 1 and 2 nm was attributed in Ref. [12] to the factor e−2qd

in the impurity scattering potential of the BTE method, and
the densities where the minima occur were estimated to be
n ∼ 1/(2πd2). However, while the mobility ratio curves from
the BTE method in Fig. 1(c) exhibit sharp upturns for densities
exceeding those at the minimum points and they reach the
values of μxx/μyy ≈ 1.9 and 3.6 at n = 1014 cm−2 for the
depths of d = 1 and 2 nm, respectively, the minima in the cor-
responding mobility ratios from the ELM occur at similar
densities, but are rather shallow and, instead of a sharp upturn,
the ratios quickly settle at a constant value when n exceeds the
densities at the minimum points. This is the main discrepancy
between the BTE and ELM, which requires further analysis
of both approaches. Here, we only comment on the limiting
behavior of the mobility components in the ELM, which may
be obtained from Eq. (24) with S (q) = e−2qd in the limit
of large carrier densities. Namely, assuming that 2kTFd �
1 and 2kFd � 1, we obtain μxx/yy ≈ e

π h̄
ν3

nimp
d̄ (d̄ + ε0

bg)2M (1)
x/y,

where d̄ = kTFd . This gives the scaling μxx/yy ∝ n3/2 for n �
1/(8πd2) and the asymmetry ratio of R1 ≈ 1.6, which is
(almost) reached in Fig. 1(c) at the density 1014 cm−2 for
both d = 1 and 2 nm. We note that R1 may be evaluated from
Eq. (26) in an analytic form for an arbitrary set of effective
masses, and it represents the lowest attainable value of the
asymmetry ratio, which can apparently be reached only for a
planar distribution of impurities at finite depth for sufficiently
large doping density.

We also used Eq. (24) to calculate the resistivity compo-
nents, defined as ρxx/yy = (enμxx/yy)−1, by using the electron
mass ratios of my/mx = 10 and 2 of Ref. [16] for free phos-
phorene with h = 0 and planar distribution of uncorrelated
impurities at d = 0. Our calculations reproduced the curves
reported in Fig. 4 of Ref. [16] (not shown), which we take,
together with the comparison with Ref. [12] shown in our
Fig. 1, as a demonstration that the ELM is indeed a promising
and significantly simpler method for computing the drift mo-
bility in an anisotropic 2D material than the BTE. However,
there remains the discrepancy, seen in Fig. 1(c) at large carrier
densities, between the BTE and ELM asymmetry ratios for
a planar layer of uncorrelated impurities at finite depth. This
requires further analysis of both the BTE and ELM to reveal
whether this discrepancy originates from methodological dif-
ferences between them or is a consequence of limitation(s) of
their respective domains of validity. While this is certainly a
worthy project for future work, it should be kept in mind that
this discrepancy likely occurs at quite large carrier densities,
where several model assumptions used in this work and in
those based on the BTE method [12,16] may not be justified.

In Fig. 2 we revert to using the effective electron masses
deduced from Ref. [29], both with αx = αy = 0 (solid curves)
and αx = 0.572 nm and αy = 0.488 nm (dashed curves), con-
sidering planar impurity distribution at three depths and the
gap h = 0, as in Fig. 1. A comparison of solid curves in
Figs. 1 and 2 shows the effects of changing the effective
masses from mx ≈ 0.15 m0 and my ≈ m0 to mx ≈ 0.133 m0

and my ≈ 1.119 n0, which is best exposed in the values ap-
proached by the mobility ratios for d = 0 at the lowest density
of n = 1011 cm−2 shown in those figures. Namely, those
curves approach the values R4 = my/mx ≈ 6.7 in Fig. 1(c)
and 8.4 in Fig. 2(c), as implied by the condition n � nTF for
the validity of Eq. (27) in the regime of “complete screening.”
The fact that the corresponding values of the mobility ratio
for finite depths of d = 1 and 2 nm are smaller than those
for d = 0 at n = 1011 cm−2 indicates that the corresponding
condition n � 1/(8πd2) can only be reached in those cases
at much smaller doping densities.

More importantly, a comparison between the solid and
dashed curves in Fig. 2 shows that the effect of screening
due to finite values of αx/y from the interband transitions
increases in magnitude with increasing doping density. This
effect is quite prominent for d = 0, i.e., when impurities lie in
the plane of phosphorene (given that h = 0), giving rise to a
more rapid decrease of the asymmetry ratio in Fig. 2(c) with
increasing carrier density, reaching a value of μxx/μyy ≈ 2.5
at n = 1014 cm−2, in contrast to the value μxx/μyy ≈ 5.5 for
the case with αx = αy = 0. In fact, it may be deduced from
Eq. (24) in the case with d = 0 that, for very large densities
such that 2πkFmin(αx, αy) � ε0

bg ∼ 1, the dependence of the
mobility on n may be approximated by the factor μxx/yy ∝

e
π h̄

ν3

nimp
āε0

bg, where ā is the angular average of a(φ) in Eq. (25),
but the effective mass dependent factor takes into account
asymmetries of both a(φ) and b(φ) in Eq. (23). This gives the
scaling μxx/yy ∝ n3/2, like in the case of impurities at finite
depth d , accompanied by an asymmetry ratio of μxx/μyy ≈
1.8, which is somewhat larger than R1 ≈ 1.7, but can only be
reached at densities far exceeding those shown in Fig. 2.

On the other hand, the relative importance of finite αx/y is
suppressed by the increasing depth of impurities. This may be
rationalized by referring to Eq. (22), where the form factor
S (q) involves a factor e−2dq, which should be compared with
the term involving αx/y in the dielectric function in Eq. (9).
One may conclude that, while both the screening by the depth
in the substrate and the screening by the interband electron
transitions in phosphorene cause a decrease of the mobility
asymmetry ratio with increasing doping density, the former
screening mechanism will prevail because of the exponential
dependence in e−2dq whenever the depth of impurities is such
that d � π max(αx, αy) ≈ 1.8 nm.

The phosphorene layer has a relatively large thickness,
which may be qualitatively taken into account by allowing
for a finite gap between the effective plane of the charge
density in a phosphorene sheet and the nearby dielectric sur-
face. While often a zero gap is assumed between phosphorene
and substrate in modeling the transport of charge carriers
[12,16], we explore the effects of finite gap h in Fig. 3 for a
doping density of n = 1013 cm−2 by showing variation in the
mobilities with changing h such that h + d = 1 nm, i.e., by
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FIG. 2. Mobilities along (a) x-axis, (b) y-axis, and (c) their ratio
vs carrier density n using αx = αy = 0 (solid curves) and nonzero
values of polarizabilities αx and αy (dashed curves) for impurities
with the density nimp = 1012 cm−2 and zero correlation, which oc-
cupy a plane at the depth d = 0 (red), d = 1 nm (green), and d = 2
nm (blue) in a SiO2 substrate with the gap h = 0. The parameters are
taken from Ref. [29].

FIG. 3. (a) Mobilities along x-axis (blue) and y-axis (red) and
(b) their ratio vs the gap h using αx = αy = 0 (solid curves) and
nonzero values of polarizabilities αx and αy (dashed curves) for
a fixed doping density of n = 1013 cm−2 and impurities with the
density nimp = 1012 cm−2 and zero correlation, which occupy a plane
at a variable depth d in a SiO2 substrate, such that the sum h + d is
held fixed at 1 nm. The parameters are taken from Ref. [29].

keeping a fixed distance of 1 nm between the charge carriers
in phosphorene and uncorrelated impurities with the density
nimp = 1012 cm−2 in a planar layer. While the dependence of
the mobility ratio on h in this setting is not strong, it does
indicate that the gap size should be included in a more detailed
modeling of transport properties in phosphorene. We consid-
ered in Fig. 3 the cases of both αx = αy = 0 (solid curves) and
αx = 0.572 nm and αy = 0.488 nm (dashed curves), which
seem to mainly provide an offset between the mobility curves,
which is comparable in size to their variation with changing
h.
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FIG. 4. Mobilities along (a) x-axis, (b) y-axis, and (c) their ratio
vs carrier density n using αx = αy = 0 for impurities with the density
nimp = 1012 cm−2, which occupy a plane at the depth d = 1 nm in a
SiO2 substrate with the gap h = 0, for correlation distances rc = 0,
3, 4, 5, 6, 7, 8, and 9 nm. The parameters are taken from Ref. [29].

In Fig. 4, we explore the effects of correlation among the
impurities with the density nimp = 1012 cm−2, which occupy
a plane at the depth d = 1 nm for phosphorene where we set
αx = αy = 0, as well as h = 0. We chose a range of values

for the correlation distance rc such that the packing fraction
stays p < 0.69 in this figure. One observes in panels (a) and
(b) a large spread of the mobility curves with different rc

values at doping densities n that are roughly smaller than
nimp, as well as a relatively abrupt congregation of all the
curves as the density increases beyond certain critical values
that are different for the AC and ZZ directions. This behav-
ior may be understood by noticing the constraint Q(q) ≡
qb(φ) < 2kF in Eq. (22) and recalling that the structure factor
S (q) = SHD(q)e−2qd in that equation involves the HD factor
SHD(q), which oscillates around the value SHD(q) = 1 for
small packing fractions p, but is strongly reduced at the wave
numbers q < q1 = 2π/rc for increasing p. Thus, for dop-
ing densities, such that kFrc � πb(φ), or n � π

2 [b(φ)/rc]2 ≡
nc(φ), one would expect an increase in the mobility resulting
from Eq. (24), which grows in magnitude with increasing
rc, as implied by the long-wavelength limit of SHD(0) =
(1 − p)3/(1 + p). On the other hand, once the doping density
surpasses the critical value nc, the q-integral in Eq. (22) is
increasingly dominated by the regions of large q values, where
the HD factor SHD(q) exhibits damped oscillations about the
value SHD(q) = 1. As a consequence, the effects of finite
correlation distance weaken and the mobility curves start to
congregate toward the case of uncorrelated impurities as the
doping density increases beyond nc. The role of the peak at q1

is most prominent at high packing fractions p, as evidenced
by the occurrence of the weak local minima in the mobility
curves for the correlation distance of rc = 9 nm in Figs. 4(a)
and 4(b). The location of those minima may be estimated
by setting φ = 0 (AC direction) and φ = π (ZZ direction)
in the function nc(φ), which yield nAC

c ≈ 5.6 × 1012 cm−2

and nZZ
c ≈ 6.7 × 1011 cm−2, in close agreement with the local

minima observed in the curves with rc = 9 nm in Figs. 4(a)
and 4(b), respectively.

In Fig. 4(c), one notices that increasing values of rc have
a relatively weak effect on the mobility ratio, except in a
region of the doping densities n near the impurity density nimp,
where the ratio develops a broad peak with the height that
increases with rc. While this peak is related to different doping
densities where the congregation of mobility curves sets in
for the AC and ZZ directions, the weak dependence of the
mobility ratio on rc at low doping densities is implied by the
formula in Eq. (27) for the regime of “complete screening,”
where the structure factor SHD(0) is a common factor in both
directions. Similarly, the diminishing dependence on rc at the
densities n � 1013 cm−2 in Fig. 4(c) is a consequence of the
convergence of the mobility curves to those characterizing
uncorrelated impurities, as observed in Figs. 4(a) and 4(b) at
n � nAC

c and n � nZZ
c , respectively.

We have repeated similar calculations with the impurity
density increased to nimp = 1013 cm−2 while choosing a range
of the rc values such that p < 0.69. While the overall mag-
nitudes of the mobility components were roughly decreased
by a factor of 10, as expected, qualitative behavior of all the
curves in such a plot (not shown) remained the same as in
Fig. 4, except for all the characteristic features being shifted
to increased values of the doping density by a factor of ∼10.

Finally, in Fig. 5, we compare the effects of finite cor-
relation among the impurities with the effects of screening
due to the interband electron transitions by juxtaposing the
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FIG. 5. Mobilities along (a) x-axis, (b) y-axis, and (c) their ratio
vs carrier density n using αx = αy = 0 (solid curves) and nonzero
values of polarizabilities αx and αy (dashed curves) for impurities
with the density nimp = 1012 cm−2, which occupy a plane at the depth
d = 1 nm in a SiO2 substrate with the gap h = 0, for correlation
lengths rc = 0, 5, and 7 nm. The parameters are taken from Ref. [29].

cases of αx = αy = 0 (solid curves) with αx = 0.572 nm and
αy = 0.488 nm (dashed curves) for impurities with the density

nimp = 1012 cm−2 and a subset of correlation distances rc

taken from Fig. 4. One notices in panels (a) and (b) that the
effects of finite αx/y are negligible at small doping densities,
where the effects of correlation prevail, while at large doping
densities, the curves with different rc congregate into two
distinct groups in a similar manner as in Fig. 4, with the group
having finite αx/y values reaching higher values of the mo-
bility than the group having αx = αy = 0, commensurate with
Fig. 2. At the same time, finite values of αx/y cause a relatively
small but noticeable reduction of the mobility ratio in the
panel (c) in the region of the broad peak that is positioned
at a doping density near nimp.

IV. CONCLUDING REMARKS

We have presented an adaptation of the ELM for compu-
tation of the drift mobility tensor due to the charged impurity
scattering of carriers in an anisotropic 2D material with model
parameters pertaining to doped phosphorene on a substrate.
By a comparison with the computational data available in
the literature that are based on the BTE approach to this
problem at zero temperature, we demonstrated that the for-
mula obtained from the ELM is reliable and that it offers a
computationally more efficient way for studying the transport
properties of such materials. To illustrate the efficiency of the
ELM, we explored the effects of random distribution of CIs
by means of a structure factor, which naturally arises in the
formula for the mobility components obtained in the ELM. In
addition, we have amended the density-density polarization
function of quasifree charge carriers in doped phosphorene by
including a static polarizability tensor with the components αx

and αy, which arise from the interband electron transitions in
phosphorene.

For a planar distribution of impurities, we have found that
increasing their depth in the substrate causes an increase of
the mobility tensor components and a decrease of their asym-
metry ratio as a consequence of weakened interaction with
charge carriers. These effects are more pronounced at higher
doping densities, indicating an increasing role of static screen-
ing due to the intraband electron transitions in phosphorene.
This latter mechanism of the impurity screening is augmented
by the inclusion of static polarizabilities αx/y due to the inter-
band electron transitions, which is particularly prominent for
shallow impurities and increasing doping density. The pres-
ence of finite αx/y in phosphorene also causes a reduction of
the mobility asymmetry ratio with increasing doping density,
similar to the effect of the increasing depth of impurities.

At the same time, the existence of finite correlation dis-
tance rc among the impurities in the hard disk model for a
planar layer in the substrate gives rise to an increase in the mo-
bility tensor components with increasing rc at doping densities
below the impurity density, while leaving the mobility asym-
metry ratio mainly unchanged in that range of densities. In the
limit of zero doping density, known as the complete screening
approximation, the dependence of the mobility components
on the impurity density exhibits a minimum, which is defined
by the value of rc. On the other hand, at high doping densities
that exceed the impurity density, there is a very little effect of
the correlation distance in both the mobility components and
their asymmetry ratio.
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Our work revealed a discrepancy between the BTE and
ELM theories in their predictions for the mobility asymmetry
ratio at large doping densities for a planar layer of impurities
at finite depth in the substrate. While the BTE predicts a
minimum followed by a substantial increase of the ratio, we
found that the ELM predicts that the mobility ratio should
level off at a constant value between 1 and 2 for sufficiently
large doping density. While these values are commensurate
with those from experimental measurements of the mobility
asymmetry in phosphorene [2,9,10], a resolution of the dis-
crepancy in theoretical results warrants further study to better
establish the domains of validity for both the BTE and ELM.

Exploring other, more elaborate models of the geometric
arrangements of CIs near phosphorene is a natural task for
future work. While we have limited our considerations of the
geometrical arrangement of the CIs to an isotropic distribution
in the directions parallel to phosphorene, it may be interesting
to investigate how anisotropic models of the CIs’ structure
would affect the anisotropy in the mobility tensor of doped
phosphorene.
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APPENDIX A: GREEN’S FUNCTION

We derive the Green’s function (GF) of the Poisson equa-
tion for a layered structure consisting of two semi-infinite
dielectrics with relative dielectric constants ε1 and ε2, which
occupy regions z < 0 and z > 0, respectively, and phospho-
rene occupying the plane z = z0. The Fourier transform (FT)
of the GF, G̃(q; z, z′; ω), satisfies the Dyson-Schwinger equa-
tion [46]

G̃(z, z′) = G̃(0)(z, z′) + 1

4π

∫
G̃(0)(z, z′′) V̌ (z′′) G̃(z′′, z′) dz′′,

(A1)

where we dropped q and ω in G̃ and we dropped q in the
GF for the structure without phosphorene, G̃(0)(q; z, z′). The
presence of phosphorene is included un Eq. (A1) via
the interaction “potential” V̌ (z) ≡ −4πe2χδ(z − z0), where
χ ≡ χ (q, ω) is its density-density polarization function.
Thus, the solution of Eq. (A1) is

G̃(z, z′) = G̃(0)(z, z′) − e2χ G̃(0)(z, z0) G̃(0)(z0, z′)
1 + e2χG̃(0)(z0, z0)

. (A2)

Notice that G̃(z, z′) ≡ G̃ jk (z, z′) and G̃(0)(z, z′) ≡
G̃(0)

jk (z, z′) are actually tensors, with the indices j, k labeling
the cases when the observation point z is in the region
j = 1, 2 and the source point z′ is in the region k = 1, 2. The
components G̃(0)

jk (z, z′) for the structure without phosphorene
were obtained in Ref. [46] as

G̃(0)
11 (z, z′) = 2π

ε1q

[
e−q|z−z′ | + ε1 − ε2

ε1 + ε2
eq(z+z′ )

]
, (A3)

G̃(0)
21 (z, z′) = G̃(0)

12 (z′, z) = 4π

(ε1 + ε2)q
e−q(z−z′ ), (A4)

G̃(0)
22 (z, z′) = 2π

ε2q

[
e−q|z−z′ | + ε2 − ε1

ε1 + ε2
e−q(z+z′ )

]
. (A5)

We only require the G̃11(z, z′) component of the GF in
region 1 with ε1 = εs where the impurities reside, while
phosphorene is placed at a position z0 = h > 0 in region 2
where we set ε2 = 1. Thus, from Eq. (A2) we get G̃11(z, z′) =
G̃(0)

11 (z, z′) + G̃pol(z, z′), where the part of the GF due to polar-
ization of phosphorene may be written as

G̃pol(z, z′) = −e2χ G̃(0)
12 (z, h) G̃(0)

21 (h, z′)

1 + e2χG̃(0)
22 (h, h)

= 2π

q

[
1

ε(q, ω)
− 1

εbg(q)

][
εbg(q)

ε0
bg

]2

eq(z+z′−2h),

(A6)

with ε(q, ω) given in Eq. (9), and the background dielec-
tric function at the location of phosphorene εbg(q) given
in Eq. (8). Notice that the latter quantity is defined by
εbg(q) = 2π/[qG̃(0)

22 (q; h, h)] with the use of G̃(0)
22 (q; h, h) from

Eq. (A5). Upon using Eq. (A6) in Eq. (6), we invoke
the symmetry properties χ (−q,−ω) = χ∗(q, ω) and ac-
cordingly G̃pol(−q; z, z′; −ω) = G̃∗

pol(q; z′, z; ω), along with
δρ̃0(−q, z) = δρ̃∗

0 (q, z), where ∗ indicates complex conju-
gate, and recall that G̃(0)

jk (q; z, z′) are real-valued, enabling us
to derive Eq. (7) featuring the loss function along with the
(real-valued) structure factor in Eq. (10).

APPENDIX B: STRUCTURE FACTOR

Notice that the definition of the effective 2D structure fac-
tor in Eq. (10) involves a double integral of the autocovariance
of the FT, ρ̃0(q, z), of the random function ρ0(r, z) in Eq. (11),
which can be decomposed as

∫
dz

∫
dz′ eq(z+z′ )〈δρ̃0(−q, z)δρ̃0(q, z′)〉 =

∫
dz

∫
dz′ eq(z+z′ )〈̃ρ0(−q, z )̃ρ0(q, z′)〉 −

∣∣∣∣∫ dz eqz 〈̃ρ0(q, z)〉
∣∣∣∣2

. (B1)

We evaluate the first term in the right-hand side of the above equation involving the autocorrelation of ρ̃0(q, z) by means
of a classical N-particle joint probability density for impurity positions, FN (r1, z1; r2, z2; . . . ; rN , zN ), which gives rise to
the reduced one- and two-particle distribution functions, defined in Eqs. (12) and (13). After taking the FT of Eq. (11),
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we obtain∫
dz

∫
dz′ eq(z+z′ )〈̃ρ0(−q, z )̃ρ0(q, z′)〉

= e2Z2
∫ ∫

· · ·
∫

d2r1dz1 d2r2dz2 · · · d2rN dzN FN (r1, z1; r2, z2; . . . ; rN , zN )

⎡⎣ N∑
j=1

e2qz j +
N∑

j=1

N∑
k=1,k �= j

eiq·(r j−rk )eq(z j+zk )

⎤⎦
(B2)

= e2Z2

[∫∫
d2r

∫
dz e2qzF1(r, z) +

∫∫
d2r1

∫∫
d2r2 eiq·(r1−r2 )

∫
dz1

∫
dz2 eq(z1+z2 )F2(r1, z1; r2, z2)

]
(B3)

= e2Z2

[
N

A

∫∫
d2r

∫
dz e2qz f1(z) + N (N − 1)

A2

∫∫
d2r1

∫∫
d2r2 eiq·(r1−r2 )

∫
dz1eqz1 f1(z1)

×
∫

dz2 eqz2 f1(z2) g(‖r1 − r2‖; z1, z2)

]
(B4)

= Ne2Z2[S (q) + (2π )2nimpδ(q)
]
, (B5)

where S (q) is expressed in Eq. (14) in terms of the pair correlation function, g(r; z1, z2) − 1 [36]. Next, we notice that the average
of the function ρ0(r, z) is given by 〈ρ0(r, z)〉 ≡ ρ̄0(z) = nimpZe f1(z), so that the second term in Eq. (B1) may be evaluated as∣∣∣∣∫ dz eqz 〈̃ρ0(q, z)〉

∣∣∣∣2

=
∣∣∣∣∫∫

d2r e−iq·r
∣∣∣∣2∣∣∣∣∫ dz eqzρ̄0(z)

∣∣∣∣2

= (2π )2A δ(q)

∣∣∣∣∫ dz eqzρ̄0(z)

∣∣∣∣2

, (B6)

where in the last integral one may set q = 0 because of the δ function and use
∫

dz ρ̄0(z) = nimpZe to obtain an expression that
cancels out the second term in Eq. (B5) after both Eqs. (B5) and (B6) are inserted into the right-hand side of Eq. (B1).
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