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Driving induced coherent quantum energy transport
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Nonequilibrium energy flows in a driven quantum system coupled to two heat baths are investigated to describe
microscopic driven-dissipative processes, based on both a canonical transformation and full counting statistics.
The main focus is to understand the interference between the coherent driving and bath induced dissipation. We
aim to explore efficient modulation of the quantum energy transport, characterized as transient energy flow, by the
Rabi driving and the temperature bias. In particular, steady-state energy flow is divided into three components:
temperature bias flow, driving flow, and coherence flow. The driving flow is dominated by the external field
driving, and the coherence flow is determined by the interference of two side peaks that are blueshifted and
redshifted in Mollow’s triplet. The energy flow is mainly contributed by the temperature bias flow at a weak
driving limit, and the driving flow is in a strong driving regime. The effects of driving amplitude and temperature
bias on the steady-state flow are discussed comprehensively. The results may provide guidance for the efficient
control of energy and the information transport in nanodevices driven by an optical field.
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I. INTRODUCTION

The microscopic driven-dissipative processes in a quantum
system can be generally modeled by the spin-boson model
(SBM) [1,2], which describes the interaction between a quan-
tum two-level system and a bosonic bath. The controllable
dynamics of the driven spin-boson model (DSBM) is at the
core of vastly distinct state-of-the-art quantum technologies,
especially in solid-state implementations of individually ad-
dressable two-level systems [3]. The DSBM has been widely
studied both in experiment and theory, which is highly related
to various physical and chemical processes [4,5]. Recently,
great progress has been made in the study of controlled
coherent dynamics of qubits in quantum nanodevices, such
as superconducting devices based on Josephson tunneling
junctions [6,7], optically and electrically controlled qubits
in quantum dots [8–12], trapped ions [13,14], and nitrogen
vacancy center in diamond [15], while a quantum system
composed of two/multiple finite-temperature-biased bosonic
baths mediated by a driven qubit, i.e., the nonequilibrium
driven spin-boson model (NE-DSBM), has been used to study
quantum energy transport [16–18].

Recently, the quantumness and limitations of thermal
conductance in small quantum systems have attracted con-
siderable attention via quantum dissipation, which results in
the quantized thermal conductance of phonons [19,20] and
photons [21]. Furthermore, it has been found that the effect
of counter-rotating (CR) terms is significant in diverse topics,
such as the quantum Zeno effect [22,23], interference between
driving and dissipation [24,25], coherent destruction of tun-
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neling and the Bloch-Siegert shift [26,27], the Rabi model
with frequency modulation [28,29], and entanglement evolu-
tion [30–32]. Here we consider the effect of CR spin-boson
coupling on quantum energy transport in the DSBM.

Technically, the reduced system dynamics of the DSBM
has been studied using various numerical and analytical meth-
ods, e.g., the time-dependent numerical renormalization group
[33,34], the quasiadiabatic propagator path integral [35],
stochastic dynamical equations [36–38], hierarchical equa-
tions of motion [39], the generalized master equations based
on Floquet theory [40–42], the noninteracting blip approxi-
mation [43–45], polaron transformation [18,46,47], canonical
transformation [48], and the variational Davydov approach
[49]. We acknowledge that each method has its own advan-
tages and limitations, depending on the spin-boson coupling
strength, the bath temperature, and the bath spectral density
distribution. Here we extend the analytical method based on
the unitary transformation [24,25] to the NE-DSBM at finite-
temperature bias. Our method is suitable for the general bath
spectral density function. We will show the energy transport in
two Ohmic baths. This analytical method provides a practical
utility, which enables us to obtain a deep understanding of the
interference in quantum energy transport between coherent
driving and bath induced dissipation.

In this paper, we calculate the transient and steady-state
flows by applying the canonical transformation and full
counting statistics. The Rabi driving amplitude and tempera-
ture bias are modulated in the NE-DSBM, respectively. The
manipulation of a qubit in the periodically time-dependent
driving field is commonly described as HS = −�σx/2 +
� cos(ωdt )σz, with the coherent tunneling strength �, the
Rabi driving amplitude �, driving frequency ωd, and Pauli
operators σx and σz. As we know, when � = 0, the flow is di-
rected from the high-temperature bath to the low-temperature
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one, and the steady-state flow vanishes as the two baths’
temperatures become equal. We demonstrate that when � �=
0, the transient energy flow presents damped oscillation
with the oscillation frequency and the decay rate identi-
cal to their counterparts in quantum dissipation dynamics.
When the driving amplitude is large, the steady-state flow
to the high-temperature bath becomes positive, which means
that external driving generates a positive energy flow to the
high-temperature baths. By setting low temperatures of two
reservoirs, the steady-state flow shows nonmonotonic be-
havior, which first intensifies dramatically and then slowly
decreases with the increase of the Rabi driving amplitude. In
particular, the energy flow is divided into three components:
temperature bias flow, driving flow, and coherence flow. In
particular, the coherence flow is a consequence of the inter-
ference between dissipation and driving.

In our Hamiltonian, the interaction of the spin bath and
the spin driving are commutative, i.e., both are coupled to σz,
while the bare spin tunneling −�σx/2 and the external driving
� cos(ωdt )σz are noncommutative. Our analysis shows that
the driving flow comes from the noncommutativity of the spin
tunneling with the external driving and the spin-bath coupling.
Moreover, we discuss the steady-state flow with modulations
of the temperature bias and various driving amplitudes.

We find that in the weak driving regime, the temperature
bias flow and the driving flow are both weakened, resulting
in the steady-state flow in the low-temperature area of the
right bath that is insensitive to the change in the left bath’s
temperature. With the increase of Rabi driving, the temper-
ature bias flow and driving flow become strengthened, and
the total energy flow gradually changes from being domi-
nated by temperature bias flow to being dominated by driving
flow. In the NE-DSBM, the Rabi driving amplitude � and
the temperature, TL and TR, have cooperative effects on the
nonequilibrium energy transport, which will yield new appli-
cations in two- and three-terminal thermal devices.

This paper is organized as follows: In Sec. II, we introduce
the Hamiltonian of the NE-DSBM, and we establish the dy-
namical equation by using the canonical transformation and
full-counting statistics. The transient and steady-state energy
flow for various driving �, and the temperatures TL and TR,
are presented and discussed in Sec. III. Finally, the conclusion
is given in Sec. IV.

II. MODEL AND THEORY

A. Model

The NE-DSBM consists of one periodically driven spin
coupled to two bosonic reservoirs at different temperatures.
The schematic diagram is shown in Fig. 1(a). The Hamiltonian
is described as (h̄ = 1 and kB = 1)

H = HS + HB + HI

= −1

2
�σx + � cos(ωdt )σz +

∑
k,ν

ωk,νa†
k,ν

ak,ν

+
∑
k,ν

gk,ν

2
(a†

k,ν
+ ak,ν )σz, (1)

a

b

FIG. 1. (a) A schematic diagram of the nonequilibrium driven
spin-boson model consisting of a period-driven spin is coupled to two
finite-temperature boson baths. The driving and dissipation couple to
σz. (b) The transitions are depicted, and the corresponding frequen-
cies of the phonon are η �, η � − �, and η � + �. We see that the
transition strength of phonons with unshifted frequencies (η �) is
twice that of the two types of phonons with side-shifted frequencies
(η � − � and η � + �).

where σz and σx are the Pauli matrices, and � is the coherence
tunneling of the spin. The operator a†

k,ν
(ak,ν ) creates (anni-

hilates) one boson with the frequency ωk,ν in the ν bath for
ν = (L, R). The parameter gk,ν shows the coupling strength
between the spin and the ν bath. The driving and dissipation
are coupled to σz and commutative to each other. But the
tunneling of the spin is in the σx-direction, and is noncom-
mutative with dissipation and driving. Therefore, in this paper
we discuss the interference of driving and dissipating in the
same direction on energy transfer, whether they reinforce or
weaken each other. Here, the coupling of the spin and the
ν bath is characterized by the spectral function as Gν (ω) =∑

k,ν g2
k,νδ(ω − ωk ) = 2ανω

sω1−s
c,ν θ (ωc,ν − ω), where αν is

the dimensionless spin-bath coupling strength, ωc,ν is the
cutoff frequency of the ν bath, and θ (x) is the usual step
function. In this work, we specify the Ohmic spectrum s = 1
to characterize the reservoirs and select the system-reservoir
interaction strength away from the quantum criticality.

We mainly study the response of the energy flow to the
external driving field. With the Rabi frequency � increasing
from small to large, the energy spectrum of spin changes
from a single peak to a Mollow triplet, i.e., the tunneling
energy changes from � to η� and η� ± �, as shown in
Fig. 1(b), where η is the renormalized coefficient from the
polaronic qubit-bath interaction, which will be discussed later.
Here we choose the parameter � � �, which is different
from the strong driving case (� � �) in Refs. [41,42]. In
the strong driving, when the ratio of driving amplitude to
driving frequency is the root of the Bessel function, the co-
herent destruction of tunneling (CDT) occurs, which freezes
the qubit dynamics. In this paper, our parameter condition is
set as � � �, where there is no CDT effect.

In the following, we generalize the Hamiltonian by
including the auxiliary counting field χ . When setting
χ = 0, the conventional Hamiltonian is recovered. The
full counting statistics (FCS) as a mathematically rigorous
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method is usually applied to measure the arbitrary order
of the energy current fluctuation [50], of which the lowest
order gives the energy flow. To count the energy transported
in, e.g., the right bath, we add the counting term to the
whole Hamiltonian [45,51] as Hχ = HS + HB + HI (χ ) =
exp(iχ

∑
k ωk,Ra†

k,Rak,R/2)H exp(−iχ
∑

k ωk,Ra†
k,Rak,R/2),

where the χ -dependent interaction Hamiltonian is obtained
as

HI (χ ) =
∑

k

gk,R

2
[a†

k,Re
iχ
2 ωk,R + ak,Re− iχ

2 ωk,R ]σz

+
∑

k

gk,L

2
(a†

k,L + ak,L)σz. (2)

Taking into account CR correlation of the spin and
baths, we apply the canonical transformation [48,52,53],
H ′ = exp(SR+L)Hχ exp(−SR+L), with the generator SR+L =
SR + SL. And Sν is given as Sν = ∑

k
gk,ν ξk,ν

2ωk,ν
[a†

k,ν
e

iχδν,Rωk,ν
2 −

ak,νe− iχδν,Rωk,ν
2 ]σz, and the renormalization parameter ξk,ν =

ωk,ν/(ωk,ν + ην�). Up to the order of gk,ν , the transformed
Hamiltonian H ′ is written as H ′ = H ′

0 + H ′
1, where the renor-

malized spin and first-order spin-bath interaction terms are
given by

H ′
0 = 1

2
η � sz + � cos(ωdt )(s+ + s−) +

∑
k,ν

ωk,νa†
k,ν

ak,ν

−
∑
k,ν

|gk,ν |2
4ωk,ν

ξk,ν (2 − ξk,ν ) (3)

and

H ′
1(χ ) =

∑
k

g̃k,R
(
a†

k,Rs−e
iχωk,R

2 + ak,Rs+e− iχωk,R
2

)

+
∑

k

g̃k,L(a†
k,Ls− + ak,Ls+), (4)

respectively, with η = ηR ηL. Here we define the renormalized
spin tunneling as η �, the spin-bath interaction parameter
g̃k,ν = ( ην �

ωk,ν+ην �
)gk,ν , and

ην = exp

[
−

∑
k

g2
k,ν

2ω2
k,ν

ξ 2
k,ν coth

(
ωk,ν

2Tν

)]
. (5)

The creation and annihilation operators are denoted as sz =
|s1〉〈s1| − |s2〉〈s2|, s+ = |s2〉〈s1| and s− = |s1〉〈s2|, in which
the states |s1〉 and |s2〉 are the corresponding eigenstates of
σx, written as σx|s1(2)〉 = +(−)|s1(2)〉.

In the definition of ην , if the temperature of two baths
is different (TL �= TR), ηL is not equal to ηR. Therefore, the
coupling strength of renormalization g̃k,ν is dependent on ην.

Hence, even if the dimensionless spin-bath coupling strengths
of two baths are the same (αL = αR), the effective coupling
strengths after canonical transformation of the two baths (g̃k,L

and g̃k,R) are different when the temperatures of the two baths
are different, i.e., asymmetric caused by temperature.

In the following, we solve the equation of motion of the
density matrix in the rotating frame with the rotating operator
R(t ) = exp[− i

2ωd(sz + ∑
k,ν a†

k,ν
ak,ν )t], and the Hamiltonian

becomes

H ′(χ ) = 1

2
(η � − ωd ) sz + 1

2
�(s+ + s−)

+
∑
k,ν

(ωk,ν − ωd )a†
k,ν

ak,ν

+
∑

k

g̃k,R
(
a†

k,Rs−e
iχωk,R

2 + ak,Rs+e− iχωk,R
2

)

+
∑

k

g̃k,L(a†
k,Ls− + ak,Ls+), (6)

where the two high-frequency terms e±i2ωd related to the
counter-rotating terms of the qubit driving are approximately
ignored.

Generally, one may bound the validity of the rotating-wave
approximation (RWA) of the qubit driving by the safe scope
���. It is also known that the increase of the driving ampli-
tude � with counter-rotating terms is expected to modify the
behaviors of the currents with RWA. Though not shown here,
by including the influence of counter-rotating terms with the
Floquet master equation [4], we find that both the transient
and steady-state currents provided by the RWA and the Flo-
quet master equation are qualitatively the same in the regime
of � � �, with certain quantitative deviations. Hence, we
believe that the RWA of qubit driving can be approximately
adopted as � � �, which enables us to obtain the analytical
expression of the currents in the following.

Now the static Hamiltonian H ′(χ ) (6) has the same form as
the Hamiltonian in the RWA. But the parameters are renormal-
ized to include the effects of the CR terms (a†

k,Rs+ and ak,Rs−).
The energy detuning between the driving amplitude and the
energy level of spin is ωd − η �. We consider the resonant
case ωd = η � in this paper, and the energy flow under the
nonresonant condition can be straightforwardly extended in
future study.

B. Equation of motion of the density matrix

We derive the master equation of the NE-DSBM combined
with the FCS, and the equation of motion of the density matrix
ρSB for the spin (S) and bath (B) is given by dρSB(t )/dt =
−i[H, ρSB(t )]. After unitary transformations, we have the
equation of motion dρ ′

SB(χ, t )/dt = −i[H ′(χ ), ρ ′
SB(χ, t )]χ ,

where [A(χ ), B(χ, t )]χ = A(χ )B(χ, t ) − B(χ, t )A(−χ ), and
ρ ′

SB = exp(SR+L)ρSB exp(−SR+L) is the density matrix in the
Schrödinger picture with the transformed Hamiltonian H ′(χ ).
The details of the derivation of the equation of motion are in
Appendix A.

Using the Kronecker product property and the
technique of the Lyapunov matrix equation, we ex-
pand the density matrix into a vector, |ρ ′

S (χ, t )〉 =
|ρ ′

11(χ, t ), ρ ′
12(χ, t ), ρ ′

21(χ, t ), ρ ′
22(χ, t )〉. Here the subscript

of ρS (1 and 2) indicates the eigenstates of σx, |s1〉 and |s2〉,
thus ρ ′

S (χ, t ) is the density matrix in the eigenspace of σx.
The equation of motion is expressed as

d

dt
ρ ′

S (χ, t ) = L̂(χ )|ρ ′
S (χ, t )〉, (7)
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where L̂(χ ) is the Liouvillian superoperator. Generally,
the reduced density matrix is given by |ρ ′

S (χ, t )〉 =
exp[L̂(χ )t]|ρ ′

S (χ, 0)〉, where |ρ ′
S (χ, 0)〉 is the initial state,

which is specified in this work as |ρ ′
S (χ, 0)〉 = [1, 1, 1, 1]T/2.

Therefore, the cumulant-generating function is obtained,
Ft (χ ) = ∂ lnZχ (t )/∂t , with the cumulant function
Zχ (t ) = TrS[ρ ′

S (χ, t )]. In the rotating frame, the Hamiltonian
(6) and the superoperator L̂(χ ) are time-independent, and
ρ ′

S (t ) has a steady-state solution. Then the corresponding
nth cumulant of energy current fluctuations is given by
J (n)(t ) = ∂nFt (χ )/∂ (iχ )n|χ=0. In particular, the energy
flux is the first cumulant J (t ) = ∂Ft (χ )/∂ (iχ )|χ=0.
Equation (7) is solved with the Laplace transformation
in Appendix B, and we obtain the regrouped density
matrix |ρ ′′

S (χ, t )〉 = |ρ ′′
11(χ, t ), ρ ′′

12(χ, t ), ρ ′′
21(χ, t ), ρ ′′

22(χ, t )〉
with ρ ′′

11(χ, t ) = ρ ′
11(χ, t ) − ρ ′

22(χ, t ), ρ ′′
12(χ, t ) =

ρ ′
21(χ, t ) − ρ ′

12(χ, t ), ρ ′′
21(χ, t ) = ρ ′

21(χ, t ) + ρ ′
12(χ, t ),

and ρ ′′
22(χ, t ) = ρ ′

11(χ, t ) + ρ ′
22(χ, t ). Then, the cumulant

function is expressed as Zχ (t ) = 〈I|ρ ′′
S (χ, t )〉, with the vector

defined as 〈I| = 〈0, 0, 0, 1|. The transient flow is

J (t ) = ∂L41(χ )

∂ (iχ )

∣∣∣∣
χ=0

[ρ ′
11(t ) − ρ ′

22(t )]

+ ∂L43(χ )

∂ (iχ )

∣∣∣∣
χ=0

[ρ ′
12(t ) + ρ ′

21(t )]

+ ∂L44(χ )

∂ (iχ )

∣∣∣∣
χ=0

. (8)

In the eigenspace of σx, the diagonal and off-diagonal
terms of the density matrix correspond to 〈σ ′

x(t )〉 = ρ ′
11(t ) −

ρ ′
22(t ) and 〈σ ′

z (t )〉 = ρ ′
21(t ) + ρ ′

12(t ), which correspond to the
nonequilibrium correlation in the Hamiltonian (6) with χ = 0.

In Eq. (8), the first and second terms give the time-dependent
evolution part of J (t ) related to the dynamics of ρ ′

11(t ) −
ρ ′

22(t ) and ρ ′
21(t ) + ρ ′

12(t ). The third term is a constant inde-
pendent of time. The transient flow, Eq. (8), is one of the main
results of our paper and gives the relationship between the
energy flow and the dynamic quantities of the nonequilibrium
spin-boson model. Also, Eq. (8) can be naturally reduced to
the previous result [48] in the absence of an external driving
field.

C. Steady-state energy flow

We study the expression of the steady-state energy flow in
FCS. We count the energy flow in the right bath. Then, we de-
rive the steady-state flow at the long-time limit in Appendix C,
which is expressed as

Jss≡J (t→∞) = ∂L41(χ )

∂ (iχ )

∣∣∣∣
χ=0

(ρ ′
11 − ρ ′

22)ss

+ ∂L43(χ )

∂ (iχ )

∣∣∣∣
χ=0

(ρ ′
12 + ρ ′

21)ss

+ ∂L44(χ )

∂ (iχ )

∣∣∣∣
χ=0

, (9)

where the first derivative of the counting-field embedded Li-
ouvillian operator elements is obtained in Eqs. (C4a)–(C4c).

In the resonant case, the steady-state dynamics of density
matrix elements can be analytically solved as

(ρ ′
11 − ρ ′

22)ss = γ−�−�1 − γ�+�1

�+(��1 + 2�2)
, (10a)

(ρ ′
12 + ρ ′

21)ss = γ−
�+

, (10b)

where the combined spectral function denotes γ− =∑
ν=(R,L)[γν (η � − �) − γν (η � + �)] and the com-

bined transition rates are �± = ∑
ν=(R,L)(�ν,2±�ν,3),

�1 = ∑
ν=(R,L) �ν,1, and � = 2�1 + �+, with the rate

�ν, j = [1 + 2nν (ω j )]γν, j , the Bose-Einstein distribution
function nν (ω j ) = 1/[exp(ω j/kBTν ) − 1], and the modified
spectral function γν, j = π (ηv�/(η� + ω j ))2Gν (ω j ), where
j = 1, 2, and 3 corresponds to the Mollow frequencies
ω1 = η�, ω2 = η� − �, and ω3 = η� + �. The results are
consistent with previous work [24,25].

The steady-state population bias (ρ ′
11 − ρ ′

22)ss has two
competing terms, which both reflect the cooperative effect of
the driving and dissipation, which are characterized by the
interference of two side peaks (η� − � and η� + �) of both
baths, while the off-diagonal term (ρ ′

12 + ρ ′
21)ss includes the

coefficient γ−, which also stems from the interference of the
Mollow side peaks.

Then, steady-state flow is divides into three components
Jss = Jt + Jd + Jc, which are specified as

Jt = ω1γR,1�e

∑
j=(1,2,3)
ν=(L,R)

[(1 + δ j,1)γν, j (nν, j − nR,1)]

+ω2γR,2�e

∑
j=(1,2,3)
ν=(L,R)

[(1 + δ j,1)γν, j (nν, j − nR,2)]

+ω3γR,3�e

∑
j=(1,2,3)
ν=(L,R)

[(1 + δ j,1)γν, j (nν, j − nR,3)],

(11a)

Jd = �2

2(��1 + 2�2)
(2ω1γR,1 + ω2γR,2 + ω3γR,3), (11b)

Jc = γ−
4�+

[
�−�1

��1 + 2�2
(2ω1�R,1 + ω2�R,2 + ω3�R,3)

+ (ω3�R,3 − ω2�R,2)

]
, (11c)

with the Kronecker symbol δm,1 and the coefficient �e =
2�1/(��1 + 2�2). The flow Jt is clearly characterized as
three frequencies of the Mollow triplet [54]: ω1 = η �, ω2 =
(η � − �), and ω3 = (η � + �). Accordingly, Jt transfers
energy with unshifted frequency η �, redshifted frequency
(η � − �), and blueshifted frequency (η � + �), respec-
tively, and the transition channels of the unshifted frequency
ω1 are twice that of two side frequencies ω2 and ω3, as shown
in Fig. 1(b).

The first flow component Jt in Eq. (11a) is driven by the
bosonic distribution difference (nL, j − nR,i ) and (nR, j − nR,i ).
In the absence of external driving (� = 0), it is naturally
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reduced to the previous result [55]

Jt = 2(nL,1 − nR,1)γR,1γL,1ω1

(1 + 2nL,1)γL,1 + (1 + 2nR,1)γR,1
. (12)

Therefore, it is referred to as the traditional temperature bias
flow.

The second flow component Jd in Eq. (11b) is explicitly
proportional to the square of the driving amplitude, and it is
termed the driving flow. The first factor �2/2(��1 + 2�2)
comes from the population bias (ρ ′

11 − ρ ′
22)ss and is sym-

metric about the temperatures of two bosonic baths. The
other factor (2ω1γR,1 + ω2γR,2 + ω3γR,3) contains the renor-
malized spectral function γR, j = π ( ηR �

ηR �+ω j
)2GR(ω j ), which

becomes asymmetric induced by the temperature of the right
bath. This asymmetry becomes significant as the temper-
ature increases, while in the rotating-wave approximation,
γR, j−RWA = πGR(ω j )/4 becomes temperature-independent.
Then Jd−RWA is strictly symmetric about the temperature of
the left and right baths. Therefore, the CR terms contribute
to the asymmetric behavior of the driving flow component.
Even under the weak spin-boson interaction αR = 0.01 (cor-
responding to the renormalized ηR in the range of 0.90–0.99),
the flow component shows obvious asymmetry with the tem-
perature of the two baths.

The third flow component Jc in Eq. (11c) is partially
contributed by the the steady-state off-diagonal elements
(ρ ′

12 + ρ ′
21)ss, which stem from the interference of the driving

and dissipation. Then Jc is termed the coherence flow.
From γ− = ∑

ν=(R,L)[γν (η � − �) − γν (η � + �)] with

γR(η � − �) − γR(η � + �) = 2παR[( ηR �

2ηR �−�
)2(η � −

�) − ( ηR �

2ηR �+�
)2(η � + �)], we find that γ− is proportional

to the first order of the spin-bath coupling strength α in
the Ohmic bath. When the driving amplitude � = 0, the
coherence flow disappears, while in the rotating wave
approximation, γ−,RWA = −2πα�, and the corresponding
coherence flow Jc−RWA is always linearly proportional to
�. This clearly demonstrates the important role of the CR
terms on the coherent behaviors (e.g., coherence flow)
of the driven-dissipative systems, which is analogous to
what was observed in Ref. [56] by applying the stochastic
Liouville–von Neumann exact equation to study the Brownian
motion. Therefore, it is clear that the CR terms contribute to
the nonlinearity behavior of the coherent flow component by
tuning �. Only in the condition of low temperatures and weak
driving is it found that γ− ≈ γ−RWA, where the coherence
flow is reduced to being proportional to the Rabi frequency
�. Considering that the driving flow is squarely proportional
to �, the coherence flow is expected to show behavior that is
distinct from the driving flow.

III. RESULTS AND DISCUSSIONS

In this section, we show the transient flow J (t ) and
steady-state flow Jss of the NE-DSBM, and we discuss the
interference effect of the driving and dissipation on energy
flows. We set � = 1 as the unit. For simplicity, we set the
spin-bath coupling strength αL = αR = 0.01 and the energy
η � resonant with the driving frequency ωd = η �, the cutoff

FIG. 2. The transient energy current J (t ) for different Rabi driv-
ing amplitudes (a) � = 0.0, (b) � = 0.25, (c) � = 0.5, and (d) � =
0.75.

frequency ωc = 10, and the time in the unit of �−1. The
temperature bias is defined as δT = TL − TR.

In Fig. 2 we plot the transient flow J (t ) into the right bath
with various external driving Rabi amplitudes � = 0, 0.25,
0.5, and 0.75. Specifically, Fig. 2(a) shows the flow in the
absence of the driving, where the flow asymptotically tends to
the traditional steady-state counterpart. If the temperature bias
of the two baths is zero (e.g., TL = TR = 0.1), the steady-state
flow is expected to be zero. Then, we tune on the driving
amplitude to analyze the transient flow in Figs. 2(b)–2(d).
When the driving amplitude is not zero, the flow generally
exhibits damped oscillation, i.e., the amplitude of oscillation
decreases with time and finally reaches the steady-state cur-
rent. Moreover, the finite steady-state flow is generated even
against the temperature bias.

Figure 3 shows the steady-state flow Jss as a function of
the driving Rabi frequency �. In Fig. 3(a), when TL and
TR are low temperature, the steady-state flow first increases
rapidly and then decreases slowly by increasing �. When
the temperature bias is negative (e.g., TL = 0.1 and TR =
0.5), the negative-to-positive crossover of the steady-state
flow can be easily realized by slightly increasing the driving
amplitude. Figure 3(b) shows the steady-state flow in the
high-temperature region. It is shown that the flow increases
obviously with the increase of the Rabi frequency � as δT �
0, while in the case δT < 0 (e.g., TL = 1 and TR = 5), the

FIG. 3. The steady-state energy current with Rabi frequency
�. The low-temperature and high-temperature cases are shown in
(a) and (b), respectively.
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FIG. 4. The three components Jt , Jd, and Jc of the steady-state
flow with Rabi frequency �. The low-temperature and high-
temperature cases are shown in (a), (c), (e) and (b), (d), (f),
respectively.

flow changes sign from negative to positive when the Rabi
frequency � becomes finite (e.g., � ≈ 0.24). Therefore, we
conclude that the additional driving and coherent flows should
be considered to analyze quantum energy transport beyond the
weak external driving regime.

To give an explicit picture of three flow components (Jt , Jd,
and Jc), we plot Fig. 4 by tuning the Rabi frequency �. It is
interesting to find that the driving flow generally shows dra-
matic positive enhancement by slightly increasing the driving
amplitude �, and the coherence flow is negatively enhanced
at finite �, regardless of the temperature bias. Moreover, in
the absence of the temperature bias (δT = 0) in Figs. 4(a)
and 4(b), it is found that the temperature bias flow Jt always
becomes vanishing. Hence, the driving and coherence flows
dominate energy transport at zero-temperature bias, while at
finite temperature bias in Figs. 4(c)–4(f), the temperature bias
flow is expected to mainly contribute to the steady-state flow
with weak driving amplitude (e.g., � = 0.02). By increasing
�, the temperature bias flow asymptotically approaches zero
from the positive value at δT > 0 and the negative one at
δT < 0. Therefore, it is natural to observe the negative-to-
positive crossover of the heat flow in the bias regime of δT <

0 [e.g., in Fig. 3(b)], considering the competition between the
driving flow and the temperature bias flow in Figs. 4(c) and
4(d).

Figure 5 shows the contour plot of steady-state energy
flow into the right bath and its components with weak Rabi
driving amplitude � = 0.1, i.e., the total steady-state flow

FIG. 5. The contour plot of steady-state flow in weak driving am-
plitude � = 0.1. (a) The total of steady-state flow Jss, (b) temperature
bias flow Jt , (c) the driving flow Jd, and (d) the coherence flow Jc.

Jss, temperature bias flow Jt, the driving flow Jd, and the
coherence flow Jc. In Fig. 5(a) with TR < 1, the steady-state
flow is dramatically affected by the temperature of the right
bath. Specifically in Fig. 5(b), the behavior of Jt with the
weak driving is analogous to its counterpart in the absence
of external driving [48]. The steady-state driving flow Jd in
Fig. 5(c) is almost symmetric by tuning the temperature bias.
The coherence flow Jc in Fig. 5(d) is almost independent of
the temperature of the left bath, and it is negative and small
compared to Jt and Jd. Hence, the contribution from Jc to Jss

could be ignored in the weak driving case.
Figure 6 plots the contours with the strong driving ampli-

tude � = 0.8. The total energy flow in Fig. 6(a) is apparently
amplified compared to its weak driving counterpart, which
is mainly contributed by the driving flow in Fig. 6(c). This
demonstrates the importance of the driving flow in the strong
driving regime. In Fig. 6(b), the magnitude of temperature bias

FIG. 6. The same contour plot as Fig. 5 in the driving amplitude
� = 0.8.
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FIG. 7. The effective asymmetric factor of heat current into the
Rth reservoir by tuning (a) the driving amplitude and (b) temperature
bias, with TL = T0 + �T and TR = T0 − �T .

flow Jt becomes asymmetric and suppressed, in contrast with
the weak driving case in Fig. 5(b). For the coherence flow Jc

in Fig. 6(d), it remains negative and sharply increases by an
order of magnitude 102 compared with the weak driving case,
and it should not be naively ignored by comparing with the
temperature bias flow.

Moreover, by observing Figs. 5(a) and 6(a), we find that
the flow into the R-reservoir by exchanging two bath tempera-
tures is asymmetric under the external field driving, i.e., such
thermal asymmetric behavior becomes vanishing as � = 0
and γL,1 = γR,1, shown in Eq. (12). Generally speaking, the
external driving could be considered as one additional bosonic
terminal [i.e., injecting (extracting) the energy into (out of)
the system], which makes the NE-DSBM an effective three-
terminal spin setup.

Here, we approximately characterize the asymmetric be-
havior of the current into the Rth reservoir by the factor [57]

RJ = |J+ + J−|/ max{|J+|, |J−|}, (13)

where J+ is identical with Jss, and J− is the current into the
right reservoir by exchanging TL and TR of two reservoirs. It
is known that based on the standard two-terminal setup in the
absence of external driving, J+ is exactly the current between
the Lth and Rth reservoirs, and there is no thermal diode effect
for a symmetric setup. While including the external driving,
we cannot explicitly classify the energy flow between two
reservoirs purely driven by the temperature bias, due to the
coherence. One should note that the asymmetry comes from
the way to measure the heat current, i.e., defining the current
as the one into the Rth reservoir, which is unlike the traditional
thermal diode effect.

Then, we study the influences of driving amplitude and
temperature bias on the asymmetric factor RJ in Fig. 7. By
tuning the driving amplitude, the factor shows a monotonic
increase and surpasses the unit with weak driving ampli-
tude [e.g., � ≈ 0.03 shown by a solid red line in Fig. 7(a)],
which characterizes the full blockade of J−. Then, RJ saturates
around 2, which implies J+≈J−. This is mainly contributed by
the factor that the driving current component dominates the
current, which is nearly independent of the temperature bias.
We also show the behavior of RJ by increasing the temperature
bias in Fig. 7(b). It is found that RJ is robust with strong
driving amplitude, compared to the fast decay of RJ in the
weak driving case.

IV. CONCLUSION

We study the quantum energy transport in the nonequilib-
rium driven quantum system exemplified as the spin-boson
model, based on a canonical transformation and full-counting
statistics. This analytical approach is valid for a wide variety
of spectral functions of the bosonic baths, e.g., super-Ohmic
and Lorentz forms, and it can be extended to more complex
driven quantum systems, e.g., coupled and collective qubits
cases. The nonmonotonic behavior of steady-state flow by
tuning the Rabi frequency � is exhibited. The steady-state
flow is naturally divided into three components: (i) the tem-
perature bias flow Jt , which is generated by the temperature
bias of two bosonic baths; (ii) the driving flow Jd, which is
proportional to the square of the driving amplitude; and (iii)
the coherence flow Jc, which mainly stems from the contri-
bution of steady-state off-diagonal density matrix elements.
The analytical expressions are exhibited in Eqs. (11a)–(11c).
Then, the cooperative effects of the temperature bias and
the coherent external driving on the steady-state flow and its
components are dissected. The heat flow becomes asymmetric
by exchanging two bath temperatures when we tune on the
driving amplitude. Moreover, the results show that with an
increase of the driving amplitude, the main contribution to
steady-state flow changes from Jt to the positive driving flow
Jd. The negative coherence flow Jc denotes an interference
effect of driving and dissipation, and it may not be naively ig-
nored at the strong driving regime. These results may deepen
the understanding of nonequilibrium energy transport under
an external field driving in quantum transport and quan-
tum thermodynamics. Moreover, it may provide theoretical
guidance for the smart control of energy and information in
low-dimensional quantum nanodevices.
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APPENDIX A: DERIVATION OF THE EQUATION
OF MOTION OF THE DENSITY MATRIX

This Appendix provides the derivation of the equa-
tion of motion of the density matrix in the interaction
picture of Eq. (6) with H ′

S = �(s+ + s−)/2, H ′
B =∑

k,ν (ωk,ν − ωd )a†
k,ν

ak,ν , and H ′
I = ∑

k g̃k,R(a†
k,Rs−e

iχωk,R
2 +

ak,Rs+e− iχωk,R
2 ) + ∑

k g̃k,L(a†
k,Ls− + ak,Ls+). The density

matrix of the total system in the interaction picture
ρ ′I

SB(χ, t ) = exp[i(H ′
S + H ′

B)t]ρ ′
SB(χ, t ) exp[−i(H ′

S + H ′
B)t]

yields the equation of motion

dρ ′I
SB(χ, t )/dt = −i

[
V ′

I (χ, t ), ρ ′I
SB(χ, t )

]
χ
, (A1)

with the time-dependent interaction Hamiltonian
V ′

I (χ, t ) = exp[i(H ′
S + H ′

B)t]H ′
I exp[−i(H ′

S + H ′
B)t], which is
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specified as

V ′
I (χ, t ) =

∑
k

(
g̃k,Ra†

k,Re[
iχωk,R

2 +i(ωk,R−ωd )t]eiH ′
St s−e−iH ′

St

+ g̃k,La†
k,Le[i(ωk,L−ωd )t]eiH ′

St s−e−iH ′
St
) + H.c.

Under the Born-Markov approximation, the density ma-
trix ρ ′I

SB(χ, t ) can be approximated as the product state
ρ ′I

SB(χ, t ) = ρ ′I
S (χ, t ) ⊗ ρB(0). And the equation of motion is

given by

d

dt
ρ ′I

SB(χ, t ) = −
∫ t

0
dt ′TrB{[V ′

I (χ, t ′), [V ′
I

× (χ, t ′), ρ ′I
S (χ, t ) ⊗ ρB(0)]χ ]χ }, (A2)

where ρ ′I
S (χ, t ) = TrB[ρ ′I

SB(χ, t )]. Assuming the two boson
baths are in thermal equilibrium, they follow the Bose-
Einstein distribution that TrB(a†

k,ν
ak,νρB) = nν (ωk,ν ) and

TrB(ak,νa†
k,ν

ρB) = nν (ωk,ν ) + 1, where nν (ωk,ν ) is the ther-
mal average boson number at mode k given by nν (ωk,ν ) =
[exp(ωk,ν/kBTν ) − 1]−1. Returning to the Schrödinger picture,
the equation of motion of the density matrix is given by

d

dt
ρ ′

S (χ, t ) = −i[H ′
0s, ρ

′
S (t )]χ

−
∫ t

0
TrB[V ′(χ, t ) exp (iH ′

S (−t )),

× [exp(iH ′
St ′)V ′(χ, t ′) exp(−iH ′

St ′),

× exp(iH ′
St )ρ ′

S (χ, t ) ⊗ ρB(0)]χ ]χdt ′. (A3)

where the simplified interaction Hamiltonian is given by

V ′(χ, t ) =
( ∑

k

g̃k,Ra†
k,R exp

[
iχωk,R

2
+ i(ωk,R − ωd )t

]
s−

+
∑

k

g̃k,La†
k,Ls− exp [i(ωk,L − ωd )t]

)
+ H.c.

APPENDIX B: SOLUTION OF THE MASTER EQUATION
WITH FULL COUNTING STATISTICS

This Appendix gives the solution process of the mas-
ter equation with the superoperator L̂(χ ). Considering the
symmetry of the superoperator, we apply a rotating to the
equation of motion,

U =

⎛
⎜⎜⎝

1 0 0 −1
0 −1 1 0
0 1 1 0
1 0 0 1

⎞
⎟⎟⎠. (B1)

Therefore, the transformed density matrix becomes

|ρ ′′
S (χ, t )〉 = |ρ ′′

11(χ, t ), ρ ′′
12(χ, t ), ρ ′′

21(χ, t ), ρ ′′
22(χ, t )〉,

(B2)
with ρ ′′

11(χ, t ) = ρ ′
11(χ, t ) − ρ ′

22(χ, t ), ρ ′′
12(χ, t ) =

ρ ′
21(χ, t ) − ρ ′

12(χ, t ), ρ ′′
21(χ, t ) = ρ ′

21(χ, t ) + ρ ′
12(χ, t ), and

ρ ′′
22(χ, t ) = ρ ′

11(χ, t ) + ρ ′
22(χ, t ). The equations of motion

are rearranged as

d

dt
|ρ ′′

S (χ, t )〉 = L̂′(χ )|ρ ′′
S (χ, t )〉, (B3)

with the regrouped superoperator L̂′(χ ). It is composed of
three parts, L̂′(χ ) = L̂′

D + L̂′
L + L̂′

R(χ ), with the first part of
the driving L̂′

D,

L̂′
D =

⎛
⎜⎜⎝

0 −i� 0 0
−i� 0 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, (B4)

the second part of the left bath L̂′
L,

L̂′
L =

⎛
⎜⎜⎝

l11 0 l13 l14

0 l22 0 0
0 0 l33 l34

0 0 0 0

⎞
⎟⎟⎠, (B5)

l11 = − 1
2 (2�L1 + �L2 + �L3), (B6a)

l13 = 1
2 (�L2 − �L3), (B6b)

l14 = − 1
2 (2γL1 + γL2 + γL3), (B6c)

l22 = −�L1, (B6d)

l33 = − 1
2 (�L2 + �L3), (B6e)

l34 = 1
2 (2�L1 + �L2 + �L3), (B6f)

with �Lj = [1 + 2nL(ωj )]γL(ωj ), and the frequencies ωj with
j = 1, 2, 3 are, respectively, ω1 = η �, ω2 = (η � − �), and
ω3 = (η � + �), which are concerned with the Mollow
triplet. The variables γLj are determined by the spectral func-
tion of the bath,

γνj = γν (ω j ) = π
∑

k

g̃2
k (B7)

= π
∑

k

(
η �gk,ν

η � + ωk

)2

δ(ωk − ω) (B8)

= π

(
ην �

ην � + ω

)2

Jν (ω j ),

with ν = (R, L) and j = (1, 2, 3). And γνj is obviously inde-
pendent of temperature and is the zero-temperature decay rate.
The finite-temperature decay factor

�νj = (1 + 2nνj )γν,j, (B9)

with nνj = nν (ωj ) = [exp(ω j/kBTν ) − 1]−1. In the case of
zero temperature, �Lj = γLj. In this paper, we assume the
coupling spectra of the left and right bath are the same,
GL(ω) = GR(ω), but the temperature of the left and right bath
can be controlled independently.

The Lindblad superoperator of the right-bath part L̂′
R(χ ) is

L̂′
R(χ ) =

⎛
⎜⎜⎝

r11 0 r13 r14

0 r22 0 0
r31 0 r33 r34

r41 0 r43 r44

⎞
⎟⎟⎠. (B10)
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Because the auxiliary counting projector χ is applied to the
right bath, only the Lindblad operator L̂′

R(χ ) is χ -dependent.
Then, the matrix elements of the regrouped superoperator of
the right bath are

r11 = − 1
4 (2�R11 + �R12 + �R13), (B11a)

r13 = 1
4 (�R12 − �R13), (B11b)

r14 = − 1
4 (2�R21 + �R22 + �R23), (B11c)

r22 = 1
4 (−2�R11 + �R32 + �R33), (B11d)

r31 = 1
4 (�R32 − �R33), (B11e)

r33 = 1
4 (2�R31 − �R32 − �R33), (B11f)

r34 = 1
4 (�R22 − �R23), (B11g)

r41 = 1
4 (2�R41 + �R42 + �R43), (B11h)

r43 = 1
4 (�R43 − �R42), (B11i)

r44 = 1
4 (2�R31 + �R32 + �R33). (B11j)

Here, there are four combinations of the three physical quan-
tities χ±(ωj ), nR(ωj ), and γR(ω j ):

�R1j = {[1 + nR(ωj )][χ1(ωj ) + 1]

+ nR(ωj )[χ2(ωj ) + 1]}γR(ωj ), (B12a)

�R2j = {[1 + nR(ωj )][χ1(ωj ) + 1]

− nR(ωj )[χ2(ωj ) + 1]}γR(ωj ), (B12b)

�R3j = {[1 + nR(ωj )][χ1(ωj ) − 1]

+ nR(ωj )[χ2(ωj ) − 1]}γR(ωj ), (B12c)

�R4j = {[1 + nR(ωj )][χ1(ωj ) − 1]

− nR(ωj )[χ2(ωj ) − 1]}γR(ωj ), (B12d)

and the functions related to counting operators are defined
as χ+(ωj ) = exp(iχωj ) and χ−(ωj ) = exp(−iχωj ). In above
expression, if we let the counting parameter χ = 0, then the
function of counting parameter, χ±(ωj ) = 1, and the right-
bath operator is the same as that of the left bath.

APPENDIX C: DERIVATION OF STEADY-STATE FLOW

This Appendix gives the derivation of steady-state flow.
The steady-state cumulant-generating function is derived as

Jss = ∂

∂ (iχ )

(
lim

t→∞
lnZχ (t )

t

)∣∣∣∣
χ=0

= lim
t→∞

1

t

∂ lnZχ (t )

∂ (iχ )

∣∣∣∣
χ=0

= 〈I| lim
t→∞

1

t

∂L̂′(χ )t

∂ (iχ )
exp[L̂′(χ )t]|ρ ′′

S (χ, 0)〉|χ=0.

(C1)

Then the steady-state solution of energy flow is simplified to

Jss = 〈I|∂L̂
′(χ )

∂ (iχ )

∣∣∣∣
χ=0

|ρ ′′
S (t )〉ss, (C2)

with the operator solution |ρ ′′
S (t )〉ss =

limt→∞ exp[L̂′(χ )t]|ρ ′′
S (χ, 0)〉|χ=0, which is the steady-state

of the density matrix |ρ ′′
S (χ, t )〉. Then, the steady-state energy

flow is written as

Jss = ∂L41(χ )

∂ (iχ )

∣∣∣∣
χ=0

(ρ ′
11 − ρ ′

22)ss

+ ∂L43(χ )

∂ (iχ )

∣∣∣∣
χ=0

(ρ ′
21 + ρ ′

12)ss

+ ∂L44(χ )

∂ (iχ )

∣∣∣∣
χ=0

. (C3)

Compared with Eq. (8), steady-state flow is the particular
solution of the transient flow as time approaches infinity, and
it is related with the dynamics of the steady state, (ρ ′

11 − ρ ′
22)ss

and (ρ ′
12 + ρ ′

21)ss.
In the resonant case, ωd = η �, the steady-state dynamics

is solved analytically in Eqs. (10a) and (10b) with the parame-
ters γ− = γR2 − γR3 + γL2 − γL3, �− = �R2 − �R3 + �L2 −
�L3, �1 = �R1 + �L1, �+ = �R2 + �R3 + �L2 + �L3, � =
2�R1 + �R2 + �R3 + 2�L1 + �L2 + �L3, γ = 2γR1 + γR2 +
γR3 + 2γL1 + γL2 + γL3. The zero-temperature decay fac-
tor γν,j and the finite-temperature decay factor �νj = (1 +
2nν,j )γν,j are given in Eqs. (B7) and (B9). The driving
amplitude � splits the driving frequency ωd = η � into
three frequencies, ω1 = η �, ω2 = η � − �, ω3 = η � + �,
which is consistent with the Mollow triplet. From the defi-
nition of variables, we see that the two terms, γ− and �−,

depend on the difference of the decay factor of the two side
peaks, ω2 and ω3. So both terms are entirely generated by
the interference of the external driving and the dissipation.
Without driving, � = 0, the interference factor γ− is zero,
(ρ ′

12 + ρ ′
21)ss = 0. Further, the coherence flow disappears.

The derivative of the Liouvillian superoperator is written
as

∂L41(χ )

∂ (iχ )

∣∣∣∣
χ=0

= 1

2
ω1�R1 + 1

4
ω2�R2 + 1

4
ω3�R3, (C4a)

∂L43(χ )

∂ (iχ )

∣∣∣∣
χ=0

= 1

4
ω3�R3 − 1

4
ω2�R2, (C4b)

∂L44(χ )

∂ (iχ )

∣∣∣∣
χ=0

= 1

2
ω1γR1 + 1

4
ω2γR2 + 1

4
ω3γR3. (C4c)

Since the counting field is included in the right bath, the
derivative of the Liouvillian superoperator L̂χ is only con-
cerned with the parameters in the right bath, which generates
an asymmetry about the temperature of the two baths, and it
leads to a fundamental difference between the energy trans-
port and the dissipation dynamics, which corresponds with the
temperature of both baths. The steady-state flow Jss is natu-
rally divided into three parts, i.e., Jss = Jt + Jd + Jc, which
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are specified as

Jt = �1

��1 + 2�2

[
�

(
1

2
ω1γR1 + 1

4
ω2γR2 + 1

4
ω3γR3

)
− γ

(
1

2
ω1�R1 + 1

4
ω2�R2 + 1

4
ω3�R3

)]
, (C5a)

Jd = 2�2

��1 + 2�2

(
1

2
ω1γR1 + 1

4
ω2γR2 + 1

4
ω3γR3

)
, (C5b)

Jc = γ−
4�+

[
2ω1�R1

(
�−�1

��1 + 2�2

)
+ ω2�R2

(
�−�1

��1 + 2�2
− 1

)
+ ω3�R3

(
�−�1

��1 + 2�2
+ 1

)]
. (C5c)
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