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Correcting charged supercell defect calculations in low-dimensional semiconductors
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Accurate predictions of the nature of defects in low-dimensional materials are essential to enable and promote
their applications in micro- and optoelectronic devices. However, when dealing with charged defects in low-
dimensional semiconductors, conventional first-principles calculations based on the jellium model encounter
the divergence problem, where the formation energy diverges with the vacuum layer thickness. Two promising
approaches, the supercell extrapolation method based on the jellium model [Wang et al., Phys. Rev. Lett. 114,
196801 (2015)] and the real charge model [Xiao et al., Phys. Rev. B 101, 165306 (2020)], have been proposed
to address this divergence issue. However, these two models disagree when extrapolated to an infinitely large
supercell following the first-order Makov-Payne correction. Whether they are unified or physically different
remains unknown. In this work, we analyze the scaling behaviors of charged defect formation energy in these
two computational models. We find that when considering the real charge distribution of ionized charge in
two-dimensional systems, an extra quadratic finite-size correction L−2

S (LS is the lateral supercell size) is required
for the formation energy calculations. After this correction, the results of these two models can be unified when
extrapolated to infinity following the derived scaling behaviors. Meanwhile, based on the understanding of the
differences between these two models, we propose a simple and convenient approach to correct the jellium model
error for charged defect calculations in low-dimensional semiconductors. Our work thus provides a practical
understanding of the charged defect calculations in low-dimensional semiconductors.

DOI: 10.1103/PhysRevB.108.245305

I. INTRODUCTION

Low-dimensional semiconductors, including transition
metal dichalcogenides [1–3], phosphorene [4,5], boron nitride
[6,7], quantum dots [8], and more, have received considerable
attention for their potential to advance the miniaturization of
microelectronic devices and sustain Moore’s law. It is widely
recognized that defects play a crucial role in determining
the properties of low-dimensional semiconductors, serving
as the basis for their various functionalities in applications
[9–12]. Therefore, the development of our understandings
and accurate predictions as well as the engineering of defect
properties in low-dimensional semiconductors are of utmost
importance.

The first-principles electronic structure calculations based
on the density functional theory (DFT) have made significant
advances in predicting defect properties of conventional bulk
semiconductors [13–15]. Usually, in standard first-principles
defect calculations, a finite-size supercell with an embedded
defect is used under the periodic boundary condition [15,16].
In this approach, for the charged defects, a jellium model in
which uniform background charge is introduced to maintain
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system neutrality and prevent total energy divergence is often
used. However, under this jellium model, the calculated for-
mation energies suffer from slow convergence with respect
to the supercell size due to artificial long-range Coulomb
interactions between the periodic image charges [15–17], thus
finite-size corrections are needed to estimate this error.

In three-dimensional (3D) bulk semiconductors,
the Makov-Payne (MP) correction, which scales as
EMP = a1L−1 + a3L−3, with L = 3

√
V (V being the supercell

volume), is often used to correct this image interaction
error [16–19]. A modified version of the MP correction was
developed by Lany et al., providing consistent schemes to
determine the defect quadrupole moment Q and potential
alignment [20]. Apart from supercell scaling, Freysoldt
et al. shows how this supercell artifact can be removed
by directly calculating the corresponding electrostatic
energy, i.e., Freysoldt-Neugebauer-Van de Walle (FNV)
correction [21,22]. Furthermore, alternative approaches
involve self-consistently correcting the electrostatic potential
(SCPC) to that of the isolate defect charge [23–25], but
concerns were raised about the potential neglect of the
polarization outside the supercell [21].

For charged defect calculations in low-dimensional semi-
conductors, the finite-size supercell corrections are more
complicated and present significant challenges. Methods that
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are practical in 3D cases become limited in low-dimensional
systems. Supercell scaling based on the MP correction re-
mains viable [26,27], but the need to include the vacuum layer
often results in large supercell sizes, making such calculations
expensive [28]. On the other hand, approaches such as the
FNV or SCPC correction face limitations, as the dielectric
constant profile is required [25–27]. Furthermore, defect cal-
culations in low-dimensional systems typically take the limit
Lz → ∞ (Lz being the vacuum layer thickness). However,
continuously increasing Lz results in a divergent Coulomb
energy. Consequently, the formation energy of the charged
defect in the finite-size supercell unrealistically diverges as
Lz grows [28]. For this reason, many previous studies have
reported widely scattered results with arbitrarily chosen Lz

[29–32].
Over the years, some models have been proposed to

address this divergence issue, with two categories receiving
more attention for their simplicity and practicality. The first
type employs a variant of the MP correction, where both
the size and shape of the supercell are studied for supercell
scaling [28,33–35]. For example, in Ref. [28], Wang et al.,
based on the jellium model, derived a supercell size dependent
analytical formula. Using this formula, they extrapolate the
calculated formation energy to Lz = 0 to remove the Lz

dependent divergence term. It is then found that the extrapo-
lated formation energy linearly scales with the inverse lateral
supercell size L−1

S = 1√
S
, where S = LxLy is the lateral area

of supercell (denoted as the supercell extrapolation method
based jellium model or SEJM for convenience). The second
type confines the neutralizing charge within a specific region
by placing it into artificial or realistic states [36–38]. For ex-
ample, in the work of Xiao et al. [38], they proposed to replace
the compensating jellium charge with the real host-band-edge
charge (denoted as the transfer to real state model or TRSM
for convenience) that is confined within the host structure and
can also effectively eliminate the divergence term with Lz.
However, results from these two models exhibit a discrepancy
when extrapolated to an infinitely large supercell following
the first-order MP correction. For example, extrapolated
formation energy of charged defects in BN monolayer based
on the first-order MP correction shows a discrepancy of 0.14–
0.18 eV between these two methods (Fig. 2). This obviously
goes against the physical intuition that the results should be
consistent as the supercell size tends to infinity. This disparity
raises uncertainty about whether these two methods are
unified or physically different. Therefore, it is of vital
importance to address the physical origin of this discrepancy
of these two methods and deepen our understanding for
accurate charged defect calculations in low-dimensional
semiconductors.

In this paper, we revisit charged defect calculations in low-
dimensional semiconductors. In the case of a two-dimensional
(2D) system, we analyze the scaling behaviors of the charged
defect formation energy under the SEJM and TRSM models.
We find that when considering the real charge distribution
of the ionized charge in two-dimensional systems, an ad-
ditional L−2

S correction term is required for the finite-size
supercell correction. After this correction, these two models
can be effectively unified, as the results obtained from both
methods are consistent by the extrapolation to an infinite-size

supercell. Furthermore, based on the understanding of the
discrepancies between these two models, we also propose a
simple and convenient approach to correct the jellium model
error for the charged defect calculations in low-dimensional
semiconductors, which yields almost the same accuracy as the
well-established TRSM methods.

II. METHODS

The formation energy for a charged defect α in its charge
state of q is given by [15]

�Hf (α, q) = EN−q
tot (α,q) − EN0

tot (host)

+
∑

i

ni(Ei+μi )+q(EF +εVBM). (1)

EN0
tot (host) is the total energy of the N0-electron defect-free

host supercell. The integer ni indicates the number of atoms
of type i that have been removed from (ni > 0) or added to
(ni < 0) the supercell to form the defect. μi is the atomic
chemical potential referenced to atomic energy Ei in its stable
solid or gas phase. EF is the Fermi energy referenced to the
valence band maximum (VBM) εVBM of the defect-free host
system with the same dimensional structure. EN−q

tot (α, q) is
the total energy of the defect supercell, where |q| electrons
(holes) are removed from the defect state and become ionized
charges. As a result, the supercell is left with N − q electrons
(N being the electron count of the defect supercell for a neutral
defect). To keep the defect supercell charge neutral, a com-
pensating background charge is needed. Usually, the current
treatment of this compensating background charge involves
two models: the artificial uniform jellium charge [Fig. 1(a),
denoted as 3DJM], and the real band-edge charge [Fig. 1(c),
denoted as TRSM] [38]. For both treatments, the EN−q

tot (α, q)
could suffer from the errors induced by the artificial inter-
action between the defect charge and its periodic images,
as well as the defect charge and compensating background
charge for the finite-size supercell calculations. Especially in
low-dimensional semiconductors, where dielectric screening
is reduced due to the absence of charges in the vacuum layer
[27], these artificial interactions are more significant and lead
to even larger errors [39]. It is therefore important to identify
the errors caused by the two models and the corresponding
corrections for the finite-size-supercell defect calculations.
Detailed ab initio parameter settings for all the data provided
can be found in Appendix A.

III. JELLIUM MODEL

First, we revisit charged defect calculations in the 3D
jellium model. Actually, the error in the 3DJM-based forma-
tion energy �Hf (α,q, 3DJM) could be accessed by using a
two-dimensional jellium model (2DJM). For the 2DJM, a 2D
jellium charge that is uniformly distributed within the material
plane is employed for the treatment of the ionized charge
[Fig. 1(b)]. In the 2DJM, the ionized charge is confined within
the 2D sheet; it can effectively screen the artificial interac-
tion between the defect charge and its image charges across
the vacuum region (along the z direction). Consequently,
the 2DJM-based total energy of charged defect supercell
EN−q

tot (α, q, 2DJM) will not diverge with the vacuum layer
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FIG. 1. Charge distribution of the compensating charge in different models: (a) 3D jellium scenario where the ionized charge is distributed
uniformly over the whole supercell; (b) 2D jellium scenario where the ionized charge is distributed uniformly within the 2D sheet; (c) real
charge scenario where the ionized charge occupies the host-band-edge state with real 2D charge distributions.

thickness Lz. However, the artificial interaction between the
defect charge and its image charges within the same layer (i.e.,
xy plane) still persists. Therefore, considering the dominant
periodic defect charge interaction in the 2D xy plane, i.e., 2D
Madelung energy γ

LS
[40] (γ is the Madelung constant, similar

to MP corrections in 3D cases), the total energy of a finite-size
charged defect supercell under the 2DJM can be corrected
as EN−q

tot (α, q, LS, Lz, 2DJM) = EN−q
0 (α, q, LS, Lz ) + γ

LS
,

where EN−q
0 (α, q, LS, Lz ) is the true total energy of the

charged defect supercell that is free from any artificial in-
teraction. Thus, based on Eq. (1), the scaling behavior of the
charged defect formation energy under the 2DJM is expressed
as

�Hf (α, q, LS, Lz, 2DJM) = �Hf 0(α, q) + γ

LS
. (2)

Here, �Hf 0(α,q) denotes the desired true and size-
independent formation energy in an infinitely large supercell.

Furthermore, when the compensating charge varies from
the 2D jellium charge in the 2DJM [Fig. 1(b)] to the 3D
jellium charge in the 3DJM [Fig. 1(a)], the change in elec-
trostatic potential can be expressed as

�U1(r)= 1

8πε⊥

∫
dr′ ρ3DJM(r′) − ρ2DJM(r′)

|r−r′| = qLz

24ε⊥L2
S

,

(3)
where ε⊥ is the dielectric tensor in the z direction, and
can be directly calculated by the density functional
perturbation theory (DFPT) [41] or the linear response
method [42]. The detailed derivation of Eq. (3) can be found
in Appendix B. Thus, the total energy of the finite-size
charged defect supercell under the 3DJM is given by
EN−q

tot (α, q, LS, Lz, 3DJM) = EN−q
tot (α, q, LS, Lz, 2DJM) +

q2Lz

24ε⊥L2
S
. The scaling behavior of the charged defect formation

energy under the conventional 3DJM can then be expressed
as

�Hf (α, q, LS, Lz, 3DJM)

= �Hf (α, q, LS, Lz, 2DJM) + q2Lz

24ε⊥L2
S

= �Hf0(α, q) + γ

LS
+ q2Lz

24ε⊥L2
S

. (4)

As expected, the formation energy in the 3DJM lin-
early diverges as the vacuum layer thickness Lz grows when
the LS is fixed, and Eq. (4) is fully consistent with the
findings in Ref. [28], where the derivation has invoked com-
plicated expansions of the formation energy under special
cell sizes. We note that for acceptors, this linear depen-
dence fails for large Lz. This is because at large Lz the
vacuum level is lowered relative to the defect level by
the artificial jellium. The defect charge ends up occupying
the unrealistic vacuum state, leading to unreliable results
[28]. Moreover, Eq. (4) is also valid for 3D bulk semicon-
ductors, only that ε⊥ is increased due to better screening
for the 3D bulk system. Regardless of the dimensionality
of the host semiconductor, supercell scaling can be per-
formed simultaneously in all three directions to fit Eq. (4).
We set LS = Lz = L = 3

√
V ; the extrapolation formula be-

comes �Hf (α, q, LS, Lz, 3DJM) = �Hf 0(α, q) + λ
L , with

λ = γ + q2

24ε⊥
and λ being the fitting parameter. Conse-

quently, the extrapolation correction adopts a conventional
first-order MP correction. Alternatively, one can first fix the
lateral supercell size LS and extrapolate Lz to Lz = 0 to elimi-
nate the Lz linear term in Eq. (4). Then the Lz = 0 results can
be extrapolated with respect to 1

LS
to obtain the desired forma-

tion energy in an infinitely large supercell, as demonstrated by
Wang et al. in Ref. [28], i.e., the SEJM method.

IV. TRSM METHOD

In the following, we can begin our understanding of the
TRSM method by comparing it to the 2DJM. Under the
TRSM scheme, the ionized charge has a realistic undulating
charge distribution constrained within the 2D sheet [Fig. 1(c)],
denoted as ρC,V(r) = −q|ψC,V(r)|2, where ψC,V is the wave
function of the host CBM (VBM) state (CBM is the con-
duction band minimum). When the charge distribution of
the compensating charge shifts from the in-plane jellium
charge in the 2DJM [Fig. 1(b)] to the real host-band-edge
charge [Fig. 1(c)], the change in the electrostatic potential can
be expressed by the difference between the 2D jellium charge
and the real charge distributions:

�U2(r)= 1

8πε‖

∫
dr′ ρC,V(r′) − ρ2DJM(r′)

|r − r′| = k(ρC,V,ε‖)

S
,

(5)
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FIG. 2. The extrapolation of the formation energy of (a) C1+
B ,

(b) C1−
N , (c) V1+

N , and (d) V1−
B in BN monolayer using the SEJM

and TRSM methods respectively. alatt is the lateral supercell size
in the unit of lattice parameters. The grey dashed lines denote the
first-order MP L−1

S extrapolations of the TRSM results. Among all
those calculations, the chemical potentials of all elements are set to
zero and the Fermi levels are all set to VBM.

where k(ρC,V, ε‖) is the fitting parameter that depends on
the real host-band-edge charge distribution ρC,V(r) and
the in-plane dielectric constant ε‖. Since it always fulfills
that ∫r′∈plane dr′ρ2DJM(r′) = ∫r′∈plane dr′ρC,V(r′) = −q,
thus ρ2DJM(r′), ρC,V(r′) ∝ 1

S , the �U2(r) term
is proportional to 1

S . Therefore, the total energy
of the defect supercell in TRSM should have
EN−q

tot (α, q, LS, Lz, TRSM) = EN−q
tot (α, q, LS, Lz, 2DJM)

+ 
(ρC,V, ε‖ )
S , 
(ρC,V, ε‖) = qk(ρC,V, ε‖) is the fitting

parameter and depends on the real charge distributions, and is
independent of Lz. Thus, the scaling behavior of the formation
energy under TRSM can be written as

�Hf (α, q, LS, Lz, TRSM) = �Hf 0(α, q)+ γ

LS
+
(ρC,V, ε‖)

L2
S

.

(6)
In TRSM, the ionized charge naturally occupies the real

host-band-edge state, and is constrained within the 2D xy
plane. As a result, the artificial interaction between the defect
charge and its image charges in the z direction is effectively
screened, and the divergent q2Lz

24ε⊥L2
S

term is no longer presented.
Thus, the charged defect formation energy from the TRSM
method remains convergent as the vacuum layer thickness
grows when the lateral supercell size S is fixed, consistent with
Ref. [38]. Furthermore, for asymptotic extrapolation based
on the TRSM, the finite-size correction of the charge defect
formation energy requires an additional quadratic L−2

S term.
This extra L−2

S term accounts for the electrostatic difference
between 2D undulating charge and in-plane jellium charge.
It is therefore needed not only for the TRSM, but also for
other models using the 2D undulating charge as the com-
pensating charge [36,37]. To address the consistency of the
TRSM method with the SEJM method, Fig. 2 displays the

FIG. 3. The schematics of the calculated formation energy of (a)
a q = +1 donor defect and (b) the q = +1 VBM state with 3DJM
and TRSM models.

extrapolation of the formation energy of C1+
B , C1−

N , V1+
N , and

V1−
B in BN monolayer derived from both methods. Within the

L−2
S correction fitting in the TRSM method, the extrapolated

formation energies from both methods are identical (with
an error less than 0.01 eV), indicating that both calculation
schemes are equivalent and can be effectively unified. Note
that the TRSM method is more straightforward and physically
intuitive, making it more suitable for practical applications in
low-dimensional materials.

V. AN ALTERNATIVE CORRECTION SCHEME

Now that we have figured out the origin of the differ-
ence between the TRSM model and the JM model, next we
can explore how to correct the charged defect formation en-
ergy from the 3DJM to that of the TRSM. To facilitate the
discussion, we consider a q = +1 donor as an example. Com-
bining Eqs. (4) and (6), the difference in TRSM-based and
3DJM-based charged defect formation energy [�E (α,+1),
Fig. 3(a)] is

�E (α, +1) = �Hf (α, +1, TRSM) − �Hf (α, +1, 3DJM)

= 
(ρC,V, ε‖)

L2
S

− Lz

24ε⊥L2
S

. (7)

Directly calculating Eq. (7) is challenging due to the un-
known fitting parameter 
 and the difficulty in defining ε⊥.
Nonetheless, we note that �E (α,+1) mainly depends on
the supercell size (LS , Lz), the dielectric tensor of the host
material (ε‖, ε⊥), and the charge distribution of the band-edge
state ρC,V. Thus, these quantities are mainly the host system
properties. This is expected since the TRSM method and the
3DJM only differ in their treatments of the ionized charge
[Fig. 3(a)]. Technically we could reproduce this difference by
calculations solely with the host structure. In this case, we can
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consider the VBM state as a special donor state, and when
an electron is excited from the VBM to jellium EF state in
the 3DJM, it may produce the same error as that excited from
the defect state. The difference in formation energies for the
VBM as a donor defect state between the TRSM and 3DJM
models is �E (VBM,+1) =�Hf (VBM,+1, TRSM)−�Hf

(VBM,+1, 3DJM) [Fig. 3(b)]. Similar to the �E (α,+1),
�E(VBM, +1) is also determined by the difference in the
charge distribution between the 3D jellium charge and the
real charge [Fig. 3(b)]. Thus, under the same supercell size
�E (VBM,+1) could be almost equal to �E (α,+1). It
should be noted that although the charge distribution between
the donor defect (ρd) and VBM state (ρVBM) is different,
as both the donor defect charge and the VBM charge are
localized in the z direction, this difference tends to be small.
A similar discussion also holds for acceptors.

Therefore, we propose an alternative simple and conve-
nient method for the jellium charge corrections (JCCs), under
which the charged defect formation energy can be corrected
by

�Hf (α, q, JCC) = �Hf (α, q, 3DJM) + δE0, (8)

where δE0 = EN0
tot (host, LS, Lz ) − EN0−q

tot (host, q, LS, Lz,

3DJM) − qεb, εb = εVBM for q > 0 and εb = εCBM for q < 0
can be calculated from the host system to simulate �E .
The JCC correction cancels out errors arising from treating
the ionized charge as the artificial jellium charge in the
3DJM model, and �Hf (α, q, JCC) is expected to obtain a
reliable accurate formation energy comparable to that from
the TRSM method for the finite-size-supercell calculations.
We note that this JCC correction method can be applicable to
semiconductors of arbitrary dimensionality. In conventional
3D semiconductors, due to the large dielectric screening
and the small difference in charge distribution between the
host-band-edge charge and the 3D jellium charge (since
both of them are fully delocalized in the whole supercell),
the correction term δE0 is small and can be ignored [38,43]
(see Fig. 5 in Appendix C). Thus, the conventional 3DJM
usually yields accurate formation energies for charged defects
in 3D bulk semiconductors. However, in low-dimensional
semiconductors, because the host-band-edge charge is no
longer distributed in the whole supercell, a large disparity
arises in the charge distribution between the host-band-edge
charge and the 3D jellium charge. The 3D jellium charge can
no longer serve as a reliable approximation for the host-band-
edge charge. δE0 is now no longer small and should be taken
into serious consideration [38] (see Fig.5 in Appendix C).

To prove the applicability of the JCC method, we show
in Fig. 4(a) the comparison between formation energies cal-
culated with the JCC scheme and the TRSM scheme for
different point defects in various low-dimensional materials,
such as WSe2 monolayer, GeS monolayer, black phosphorene,
black arsenene, BN monolayer and (3, 3) BN nanotube. It can
clearly be seen that the JCC corrected results have reached
excellent agreement with those derived by the TRSM. The
root mean square error of all considered defects is only about
a dozen meV (see Table I in Appendix D). The success of the
JCC method in (3, 3) BN nanotube has also proved its appli-
cability in 1D systems. Obviously, with this correction, it is

FIG. 4. (a) Comparison of formation energies of charged point
defects in WSe2 monolayer (Lz = 30 Å, 6 × 6, inverted triangles),
GeS monolayer (Lz = 20 Å, 6 × 6, diamonds), black phosphorene
(Lz = 20 Å, 6 × 6, round dots), black arsenene (Lz = 20 Å, 6 × 6,
pentagons), BN monolayer (Lz = 30 Å, 6 × 6, solid squares) and
(3, 3) BN nanotube (Lx = Ly = 25 Å, alatt = 9, hollow squares) cal-
culated by the JCC and TRSM methods. (b) The extrapolation of
formation energy of Si1−

N in BN monolayer to infinity using the
SEJM, TRSM, and JCC schemes respectively. Among all calcula-
tions, the chemical potentials of all elements are set to zero and the
Fermi levels are all set to VBM.

also easy to obtain �Hf 0(α,q) by extrapolating LS to infinity.
As shown in Fig. 4(b), the TRSM, JCC, and SEJM apparently
have the same �Hf 0(α,q) in the case of infinite supercell size.
Compared to the SEJM method, the JCC method stands out
for its simplicity, as it eliminates the linear extrapolation with
Lz. Furthermore, it has a much wider range of applications,
since its applications are not limited to 2D systems, but can
also be applied to other low-dimensional systems, such as
nanotubes, quantum dots, etc.

VI. CONCLUSIONS

In conclusion, we have addressed the previously observed
discrepancy between the SEJM and TRSM methods. De-
spite these two methods differing in the treatment of the
ionized charge, based on the first-order MP correction, they
can be unified when extrapolated to infinity even though they
have the different extrapolation formulas. Furthermore, we
proposed a simple and convenient JCC method for the finite-
size-supercell corrections of the charged defect calculations in
low-dimensional semiconductors. The JCC correction cancels
out errors arising from treating the ionized charge as the arti-
ficial jellium charge in the 3DJM model and exhibits the same
accuracy with the TRSM results. Our work has thus provided
a practical understanding of charged defect calculations in
low-dimensional semiconductors.
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APPENDIX A: COMPUTATIONAL DETAILS

Our DFT calculations were performed using QUANTUM

ESPRESSO ab initio codes [44,45]. The Perdew-Burke-
Ernzerhof functional [46] was selected as the exchange and
correlation potential. The valence electrons are described by
the norm-conserving pseudopotentials [47,48]. The kinetic
energy cutoff was set to 70 Ry, and the energy convergence
threshold was set to 10−12 Ry. A �-centered k-point mesh
with 2π × 0.03 Å−1 spacing was used for primitive cell cal-
culations, and a single k-point grid was employed for defect
supercell calculations. All atoms were fully relaxed until the
Hellmann-Feynman force on each atom reaches less than
10−8 Ry/Bohr.

APPENDIX B: SCALING BEHAVIOR OF �U1(R)

In Eq. (3) in the main text, the �U1( r ) term originates
from charge distribution difference of the ionized carriers
between 3DJM and 2DJM. In the host structure, we can ex-
pand the periodically distributed charge with the reciprocal
vectors:

ρ(r) =
∑

G

ρ(G)eiG·r, (B1)

ρ(G) = 1

V0

∫
r∈pc

drρ(r)e−iG·r, (B2)

in which V0 is the volume of primitive cell with lattice parame-
ters of a × a × Lz; we assume that Npc primitive cells are in-
cluded in our deductions. The integral

∫
r∈pc dr is done within

the primitive cell. For convenience we denote the charge
distribution’s Fourier component corresponded to recipro-
cal wave vector G(m, n, p) = m 2π

a

⇀

x + n 2π
a

⇀

y + p2π
Lz

⇀

z as
ρ(m, n, p); then it is evident that ρ(m, n, p) �= 0 only
when m = n = p = 0 for the 3DJM and only when m = n =
0 for the 2DJM. Furthermore, for a charged defect (α, q),
we have ρ3DJM(0, 0, 0) = ρ2DJM(0, 0, p) = −q

SLz
, where S =

LxLy is the lateral area of the supercell. We have

�U1(r) = 1

8πε0

∫
dr′ ρ3DJM(r′) − ρ2DJM(r′)

|r − r′|

= − 1

8πε0

∫
dr′ 1

NpcV0

∑
k

4π

k2 eik·(r−r′ )

×
∑
G �=0

ρ2DJM(G)eiG·r′

FIG. 5. The JCC correction term (δE0) in Si (4 × 4 × 4, 512
atoms), GaAs (4 × 4 × 4, 512 atoms), ZnO (4 × 4 × 4, 512 atoms),
GeS monolayer (Lz = 20 Å, 6 × 6), black phosphorene (Lz = 20 Å,
6 × 6), black arsenene (Lz = 20 Å, 6 × 6), and WSe2 (Lz = 41.45 Å,
10 × 10). For WSe2, the attached labels represent the number of
layers in the supercell.

= − 1

2ε0

∑
G �=0

ρ2DJM(G)

G2
eiG·r

= − 1

8π2ε0

∑
m2+n2+p2 �=0

ρ2DJM(m, n, p)
m2+n2

a2 + p2

L2
z

eiG(m, n, p)·r

= − 1

8π2ε0

∑
p�=0

ρ2DJM(0, 0, p)

p2/
L2

z

eiG(0, 0, p)·z

= qLz

8π2ε0S

∑
p�=0

1

p2
= qLz

24ε0S
. (B3)

APPENDIX C: COMPARISON OF THE CORRECTION
TERM IN 3D AND 2D MATERIALS

In order to compare the correction term in 3D and
2D materials, we calculated the JCC correction term
δE0 = EN0

tot (host) − [EN0−1
tot (host, 3DJM) + εVBM] in Si (4 ×

4 × 4, 512 atoms), GaAs (4 × 4 × 4, 512 atoms), ZnO (4 ×
4 × 4, 512 atoms), GeS monolayer (Lz = 20 Å, 6 × 6), black
phosphorene (Lz = 20 Å, 6 × 6), black arsenene (Lz = 20 Å,
6 × 6), WSe2 monolayer (Lz = 41.45 Å, 10 × 10). For WSe2,
we begin with the layered bulk structure (with six layers in
the supercell, bulk in the 3D region of Fig. 5), and reduce
the number of layers (grey region of Fig. 5), until it reaches
a monolayer (1L in the 2D region of Fig. 5). As shown in
Fig. 5, the JCC correction term in 3D bulk semiconductors
(red region) is small and can usually be ignored. However,
it gradually increases as the 2D characteristics of the host
structure become more prominent (grey region). Ultimately,
the JCC correction term becomes very large in 2D systems
(green region) and thus cannot be neglected.

APPENDIX D: COMPARISON BETWEEN JCC AND TRSM

To verify the effectiveness of the JCC method more di-
rectly, we present in Table I in detail the formation energies
of charged defects calculated using the JCC and TRSM
method in different two-dimensional materials, including
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TABLE I. List of JCC corrected formation energies versus TRSM results for various charged points in different systems.

�Hf (eV) �Hf (eV)

Systems Defect JCC TRSM Systems Defect JCC TRSM

WSe2 monolayer V1−
Se 3.846 3.847 GeS monolayer Ge2+

S 1.473 1.489

V2−
Se 4.899 4.875 S1−

Ge 2.098 2.099

V1−
W 5.603 5.602 S2−

Ge 2.204 2.216

V2−
W 6.089 6.086 Ge1−

i 2.801 2.804

V1+
W 5.024 5.009 Ge2−

i 3.604 3.616

V2+
W 4.981 4.942 Ge1+

i 0.768 0.815

Se1−
W 5.430 5.425 Ge2+

i -0.301 −0.277

Se2−
W 6.315 6.279 S1−

i 1.563 1.566

Se1+
W 4.402 4.402 S2−

i 1.959 1.975

V1−
2Se 5.916 5.916 Black phosphorene V1−

p 1.940 1.937

V2−
2Se 7.183 7.189 p1−

i 1.874 1.872

GeS monolayer V1−
Ge 1.703 1.704 Black arsenene V1−

As 1.485 1.483

V2−
Ge 1.769 1.773 As1−

i 1.825 1.823

V1−
S 3.194 3.195 BN monolayer C1+

B 1.089 1.104

V2−
S 4.057 4.068 C1−

N 5.507 5.504

V1+
S 1.625 1.630 V1+

N 4.792 4.820

V2+
S 0.956 0.978 (3, 3) BN nanotube C1+

B 1.590 1.561

Ge1−
S 3.155 3.156 C1−

N 5.101 5.098

Ge2−
S 3.868 3.874 V1+

N 4.187 4.159

Ge1+
S 2.005 2.010

Root mean square error (eV) 0.017

WSe2 monolayer (Lz = 30 Å, 6 × 6), GeS monolayer (Lz =
20 Å, 6 × 6), black phosphorene (Lz = 20 Å, 6 × 6), black
arsenene (Lz = 20 Å, 6 × 6), BN monolayer (Lz = 30 Å, 6 ×
6) and (3, 3) BN nanotube (Lx = Ly = 25 Å, alatt = 9). The
corresponding correction terms are presented in Table II.

Among all those calculations, the chemical potentials of all
elements are set to zero and Fermi levels are all set to εVBM.
We can see that the two methods agree in the range of a
dozen meV, which directly illustrates the validity of the JCC
method.

TABLE II. The JCC correction term δE0 (eV) in different systems.

Systems q δE0 (eV) Systems q δE0 (eV)

WSe2 monolayer (Lz = 30 Å, 6 × 6) +1 −0.352 Black phosphorene (Lz = 20 Å, 6 × 6) +1 −0.131
+2 −1.434 −1 −0.147
−1 −0.348 Black arsenene (Lz = 20 Å, 6 × 6) +1 −0.130
−2 −1.424 −1 −0.129

GeS monolayer (Lz = 20 Å, 6 × 6) +1 −0.140 BN monolayer (Lz = 30 Å, 6 × 6) +1 −0.943
+2 −0.557 −1 −0.943
−1 −0.140 (3, 3) BN nanotube (Lx = Ly = 25 Å, alatt = 9) +1 −0.434
−2 −0.557 −1 −0.458
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